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Abstract—This research examines the problem of team
formation in social networks. Agents, each possessing certain
skills, are given tasks that require particular combinations of
skills, and they must form teams to complete the tasks and
receive payoffs. However, agents can only join teams to which
they have direct connections in the social network. We find
that a simple, locally-rational team formation strategy can
form team configurations with near-optimal earnings, though
this greedy hill-climbing search does converge to suboptimal
local maxima. Under this strategy, a variety of random graph
topologies not only achieve earnings competitive with complete
graphs, but also are much more efficient, achieving these results
in less time and with far fewer connections between agents.
Several variations were tested; the best results for average
earnings and equality occurred when groups were allowed to
merge and expel agents, and when groups were fully connected
during formation.

I. INTRODUCTION

This research explores how people form teams within
social networks. Some jobs require multiple people with
varying skills – a team – to complete them. This research
looks at how people form teams to complete a job, given
the constraint that people can only join a team if they are
connected to someone on that team.

In the generalized scenario, jobs are posted that require
particular combinations of skills. Agents form teams with
their neighbors to perform the jobs. A team of agents
receives the payoff for a job if the team has the minimum
number of required skills. This scenario relates to team-
forming processes in numerous domains of business and
academia. For example, research funding follows this pat-
tern: a Request for Proposals requires particular research
skills. Researchers form collaborations based on their pre-
existing relationships to build teams that can successfully
address the Request for Proposals.

We built a simulation to explore how social network
structure affects the quality of teams, the speed at which
teams are formed, the stability of the teams, and the dis-
tribution of wealth among agents. We were particularly
interested in the effects of the constraint that agents only
join teams with whom they are connected in the social
network. Since agents can only interact with a subset of
the network, they will miss opportunities to form teams that

can perform higher-paying tasks. However, because agents
have far fewer potential teammates, the system will converge
to a stable configuration of teams much more quickly. The
more connections an agent has, the better the possible team
configurations will be. Even with a relatively small number
of connections, however, the system is predicted to achieve
disproportionately high average earnings, due to the small-
world structure of the social network.

II. RELATED WORK

Team formation has a sizeable research literature. The
problem is commonly addressed using agent-based models.
Research in economics deals with small problems of this
nature, but for larger numbers of agents or more complex
scenarios, the problem quickly becomes intractable for a
purely analytical approach.

Aldrich and Kim [1] compare how entrepreneurial teams
form in random, small world, and scale-free networks.
They propose two strategies for team formation: rational
(looking for a good mix of skills) and social (looking for
a good mix of personalities). They find that in strongly-
clustered topologies, teams often form from partnerships
within clusters, rather than between clusters; they do not
take advantage of inter-cluster links to find new talent and
skills. They also conclude that search for teammates is easier
in scale-free or fat-tail networks than in random or small-
world graphs. Their work lends insight into the theory of
graph topology’s effects on team formation, but it lacks
quantitative results obtained through simulation.

The Netlogo Team Assembly model [2] [3] [4] describes
how teams form in a context of academic collaboration. On
each iteration, agents try to form teams of a user-defined
size. They must decide how many newcomers to add to the
team, or how many incumbents to retain. The model shows
that a large connected component of agents often forms. This
work deals with a topic similar to ours, but it focuses more
on network formation, rather than constraints of an existing
network. In addition, our research is also concerned with
economic factors.

Taramasco, Cointet, and Roth [5] study similar cases of
collaborations in an academic setting. They propose a graph
structure based on 𝑛-adic interactions, rather than simple
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diadic (two-agent) links. They also study team formation
based on previous collaborations and subject matter, as well
as the mix of newcomers and veterans on teams. The authors
also build a mathematical model, and run simulations based
on a dataset of real academic collaborations.

Li, Chang, and Maheswaran [6] describe a system in
which agents in a social network are endowed with a set
of cards (skills). Agents then “play” these cards on their
links to their neighbors. Particular pairings of cards get
different rewards. The authors study how various graph
topologies and formation strategies influence social welfare
and inequality. They find that social welfare increases with
number of connections per node, and that the most effective
graph topologies are those that take advantage of information
about the card endowments of the individual agents.

Gaston, Simmons, and desJardins [7] propose a model
very similar to ours, in which a task requires certain skills,
agents each have a single skill, and agents can only join
adjacent teams. Agents use local information to join teams,
such as which teams are near them, and how close to
achieving a task each team is. Specifically, an agent will
join a team with probability proportional to the percentage
of positions on that team that have been filled already
(a team that is close to being successful). In this model,
teams commit to specific tasks. New tasks appear every
time interval, and teams must be formed within a time
limit. The authors look extensively at recovery from node
failure in the graph structure. Our model is similar, but it
focuses on agent strategies based on estimated payoffs, and
on economic features of the system, such as average payoff
and equality.

III. TEAM FORMATION MODEL

In this simulation, agents attempt to form teams so they
can complete tasks to obtain payoffs. A list of tasks is
posted, each with its own payoff and required set of skills.
Agents, each with their own skills, attempt to form teams
that have the skills required for tasks. However, an agent
can join a team only if it has a direct social connection to
an agent that is already on the team.

This simulation assumes a simple task model. The skills
required for a task are completely known, and the payment
for the task is all-or-nothing, based on whether a team has
the required number of each skill (or more). Teams receive
the payoff for the highest-paying task they qualify for, and
the payoff is divided evenly among the team members,
regardless of each member’s skills.1 The number of tasks
of each type is unlimited; any number of teams may receive
the same payoff for the same task.

In addition, agent decision-making is simplified to a
locally-rational heuristic: On each turn, agents switch to the

1Future work could model negotiations between team members to divide
payoffs unequally based on skills.

group that gives them the highest payoff or, if no team re-
ceives a non-zero payoff, the team that is closest to receiving
a payoff. (Agents do not think ahead about which tasks a
team might be able to complete given additional members.)
Every agent has this same decision-making strategy; there
are no differences between agents aside from their endowed
skills and their locations in the social network. Agents also
have no team loyalty, aside from staying with the current
team rather than switching if payoffs are equal.

Finally, social network structure is assumed to be static,
and social networks are randomly generated from well-
known small-world models. These small-world graphs re-
flect some features of real-world networks, but none is
entirely realistic.

To set up the model, a set of agents is generated and
randomly assigned skills. The random seed is assigned such
that the set of agents is the same for every simulation
with the same number of agents; this means that any two
simulations with the same 𝑛 should be able to achieve the
same average payoff, if topology is ignored. Therefore, any
variance in the results on a fully-connected graph is due
to randomness in the ordering of application, consideration,
and acceptance. Agents are randomly implanted into a
social network topology, and each agent begins as its own
degenerate group of one.

When the simulation starts, agents and groups begin iter-
ating over an application-admission process whereby agents
are allowed to join other groups. This process has three
steps:

1) Each agent looks at all of the groups that its neighbors
belong to. For each group, the agent calculates what
its payoff would be if it joined that group. The agent
compares that potential payoff with its current payoff,
and “applies” to every neighboring group that will
increase its payoff. Similarly, groups look at all of the
other adjacent groups and calculate which merge with
another group (if any) would benefit its members most.

2) Each group considers all the applications received from
agents and groups, and calculates how accepting the
application would affect the payoff of its members.
The group then accepts the application that increases
the individual member payoffs the most (if any such
application exists).

3) Each agent (and group) considers the acceptances re-
ceived (if any), and joins/merges with the group that
increases its payoff the most.

Ties are broken by choosing the agent or group that will
bring the group closest to achieving a task, and then by
the order the applications were processed. The order that
applications are processed is shuffled in every iteration; this
alone leads to significant variance in the results (as shown
in the results for the complete graph, Figure 4).

The simulation ends when one iteration has passed in
which no agents change teams (or when an iteration limit
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is exceeded; though the limit is set high enough to never
occur). The system is now in a Nash equilibrium: no agent
will be accepted to a different group in which its earnings
would be higher. Statistics are then calculated and output to
a file.

IV. PARAMETERS

The simulation supports numerous parameters to con-
trol social network construction, agent generation, and task
structure. The major parameters are listed here; numbers in
parentheses indicate either the range of values tested, or the
valid possible values.

n Number of agents (50-150)
graph_type

Topology of graph structure. Most NetworkX topolo-
gies are supported [8].

connections
Connections per agent; parameter for small-world net-
works (2-12)

prob_rewire
Probability of rewiring; parameter for small-world net-
works (0.05-0.35)

tasks
Task structure - a list of 2-tuples where the first item
is a list of the required skills to complete the task, and
the second is the payoff for the task. See below for task
structures used.

maxskills
Maximum number of skills per agent (1)

The simulation accepts a list of values for each parameter,
and runs over all combinations of the parameter values
to explore how results change over the parameter space.
Statistics are output for each simulation run; these include:

∙ Number of iterations to convergence
∙ Number of groups formed
∙ Number of successful groups
∙ Number of groups doing each task
∙ Number of successful agents
∙ Mean and standard devation of earnings per agent
∙ Gini coefficient among all agents and among only

successful agents
∙ Average number of group affiliation changes per agent

A. Graph topologies

The simulation has been tested on six primary graph
models:

Erdős-Rényi random GNM graphs – these graphs assign
a subset of 𝑚 edges randomly out of the set of all
possible edges. They tend to have a large connected
component, but low clustering. [9]

Connected Watts-Strogatz small-world graphs – a ring
of agents in which every agent is connected to its
𝑐 nearest neighbors, and then every edge may be

Table I
BASIC TASK

Number of each skill Payoff

3 3 0 0 90

0 3 3 0 150

0 0 3 3 210

4 3 2 1 200

0 0 0 4 160

3 0 3 0 120

2 2 2 2 200

rewired to a new, random destination with probability
𝑝. These graphs have short average path lengths and
high clustering. [10]

Barabási-Albert preferential attachment graphs – as
each node is added, it is connected to 𝑐 other agents,
with higher preference to agents of high degree. This
creates a power law degree distibution. [11]

Complete graphs – every possible edge is present; every
agent is connected to every other agent.

2D grid graphs – a two-dimensional lattice of agents
where all agents have 4, 3, or 2 edges, based on whether
they are on the interior, border, or corner (respectively)

2D grid graphs with random rewiring – like a grid
graph, but on creation, every edge may be rewired
with some probability 𝑝.

In the simulations, the number of edges in an Erdős-Rényi
graph is assigned to be equal to the number of edges a
Watts-Strogatz graph will have with the given connections
parameter. This allows comparisons between a small-world
graph and a random graph with the same number of edges.

B. Task structures

The simulation results are highly dependent on the task
structure. Several task structures have been tested; two of the
most informative are presented here. For these tasks, skills
were given different values – skill 1 was worth 10, skill 2
worth 20, skill 3 worth 30, and skill 4 worth 40. Payoffs for
the tasks were the sum of the values of the required skills.
This allowed explorations of efficiency and equality; we can
compare the earnings of each agent to the value of its skill.

The first set of tasks was designed so that at least 6 agents
are required to receive a payoff (except for task 5, which
requires only 4) (Table I). Simulations were also run on
this task set with the number of agents per task doubled, to
generate even larger groups.

The second task set was designed to study inequality in
the society. In this set of tasks, agents can either receive
payment in a group that is segregated into a single skill or
in a group with a mix of skills (Table II). Because payoff
is split evenly among group members, an agent with high-
valued skills will receive a higher payoff performing the
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Table II
EQUALITY TEST TASK

Number of each skill Payoff

1 1 1 1 100

2 2 2 2 200

3 3 3 3 300

4 3 2 1 200

4 0 0 0 40

0 4 0 0 80

0 0 4 0 120

0 0 0 4 160

Iterations to convergence (n=500, log10 scale)

Grid

Grid (rewire)

Watts−Strogatz (4)

Watts−Strogatz (8−12)

Watts−Strogatz (20)
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Figure 1. The complete graph takes much longer to converge than the
small-world graphs.

segregated tasks, while agents with low-valued skills will
prefer the mixed group tasks, where they benefit from the
higher-value skills of other team members. The results will
examine whether agents with high-value skills segregate into
groups that are best for them, and receive higher payoffs,
or whether wealth is distributed more equally in mixed
groups. The figures in this paper are generated from this
task structure.

V. RESULTS

A. Base results

1) Time to convergence: Convergence speed is defined as
the number of iterations required before the system enters a
state in which no agent wants to switch groups and is able
to. As described in section III, on each iteration, every agent
could apply to every group it can access, but each group can
accept at most one agent or merge proposal.

Convergence time in this simulation is primarily deter-
mined by the number of edges in the graph. Therefore,
complete graphs take much longer to converge than the
other topologies, and convergence time grows with number
of agents (Figure 1 and 2). Conversely, for small-world
networks, convergence time is determined by the number of
local connections per agent (exact, in Watts-Strogatz graphs;
average in Erdős-Rényi and Barabási-Albert) (Figure 3).
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Figure 2. Convergence time grows quickly with number of agents in the
complete graph.
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Figure 3. Convergence time depends on the number of local connections
in small-world graphs.

Percent of theoretical
maximum average earnings

Grid

Grid (rewire)

Watts−Strogatz (4)

Watts−Strogatz (8−12)

Watts−Strogatz (20)

Barabasi−Albert

Erdos−Renyi

Complete

0.2 0.4 0.6 0.8

●

●

●

●

●

●

●

●

●●●

●●●● ●● ●● ●●●

Figure 4. Average earnings as percent of theoretical maximum for various
topologies.

2) Average Earnings: In the simplified case where agents
can form teams with any other agent, by any algorithm, the
team formation problem can be represented as an 0-1 knap-
sack problem: given a fixed number of agents with each skill
(volume), how many of each task should be selected (items)
in order to maximize average payoff (value)? Therefore, a
relatively simple dynamic programming algorithm can be
used to find the optimal solution for a given task structure
and set of agents. Since the set of agents and task structure is
the same for every simulation run of the same 𝑛, results from
this algorithm will give the theoretical maximum average
payoff possible, if the social network and team formation
algorithm were not constraints. Simulation results can then
be evaluated relative to this maximum.

As shown in Figure 4, all configurations lose about 30%
relative to the theoretical maximum as they converge to local
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Number of connections (n=500)
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Figure 5. Average earnings increase with number of local connections in
small-world graphs.

maxima. Even though the optimal teams should be able to
form on the complete graph due to lack of social network
constraints, the team formation algorithm is a local, greedy
process, and is likely to find sub-optimal solutions. Short
convergence time correlates strongly with reduced earnings
on the complete graph (see top-left box in Figure 9).

Comparison of the complete graph with other topologies
shows that small-world networks are competitive in average
earnings, even though the restricted set of edges could
prevent optimal solutions from being possible. From the
results, it appears that the Watts-Strogatz and grid topologies
suffer most from the reduced number of links.

Breaking down results by model parameters reveals that
all of the random graphs achieve higher average payoffs
with additional local connections (Figure 5). For the Watts-
Strogatz graph, the connections parameter refers to the
number of connections to adjacent neighbors in the initial
ring structure. For the Barabási-Albert graph, this refers to
the number of connections made when adding a new node
to the graph. The Erdős-Rényi graph does not control local
connections, so the results for each connection value are
from an Erdős-Rényi graph with number of edges equivalent
to a Watts-Strogatz graph of that connection value.

3) Efficiency: The next results deal with the efficiency
of the random graphs. Every graph can be thought of as a
complete graph with some edges removed. Efficiency is a
measure of how much payoff the new graph can achieve with
its reduced number of edges; essentially, if some percentage
of the edges are removed, by what percentage is the payoff
reduced? The next results will deal with this ratio of percent
of maximum edges (if the graph were fully connected)
to percent of maximum pay (theoretically possible on a
complete graph) (Equation 1).

The earlier results have already made clear that random
graphs achieved earnings comparable to a complete graph.
Even more striking is that random graphs achieve these
earnings with less than 15% of the edges of a complete
graph, even down to 5% as many edges. Figure 6 shows the
ratio of percent of full connectivity to percent of maximum
earnings (essentially, the earnings-per-edge ratio), illustrat-
ing that random graphs are up to 90 times more efficient
with their edges than complete graphs.

Ratio of percent of max earnings to
percent of edges of complete graph
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●
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Figure 6. Small world graphs achieve a high percentage of theoretical
earnings with a low percentage of connectivity (a high earnings-per-edge
ratio).

ratio =
% of earnings

% of edges
=

(earnings)
(theoretical max earnings)

(# of edges)
(# of edges on complete graph))

(1)

This result is also due to the local structure of the problem.
The number of agents required per task does not scale
with number of agents total, and since skills are randomly
distributed through the population, agents need only the
𝑔 closest neighbors to them to form a successful group,
where 𝑔 is proportional to the number of agents required to
complete a task. Agents do not need additional connections
across the network; rather, these connections only slow down
the team formation process, and can even lead to reduced
earnings (compare with complete graph results in Figure 4).

In addition, the Watts-Strogatz graph and rewired grid
graph use a parameter that controls the probability of ran-
domly rewiring each edge during graph formation, but this
parameter showed no significant effect on average earnings.
This is because skills are uniformly distributed throughout
the network, so rewiring an edge from one part of the
network to another merely connects it to a region with the
same distribution of skills, with no real effect.

4) Equality: Equality in a population can be described
by the Gini coefficient [12], as defined in Equation 2, where
𝑋𝑖 are the per-agent payoffs sorted in descending order. This
function varies from 0 to 1, where 0 indicates total equality,
and 1 indicates that a single agent has the entire payoff. This
measure will indicate in these simulations whether all agents
are receiving a payoff, or whether some are not successful in
building a team, as well as whether some teams are paying
their agents better than others.

𝐺 =
𝑁 + 1

𝑁 − 1
−
(

𝑛∑
𝑖=1

𝑖 ⋅𝑋𝑖

)
2

𝑁(𝑁 − 1)�̄�
(2)

In this simulation, there are two possible factors that
influence equality. The first factor is the percent of agents
who successfully form teams that receive some payoff. This
is the most important factor in both Gini inequality and
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Figure 7. Equality is similar among topologies.

Proportion of successful groups that are mixed (n=500)
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Figure 8. With fewer local connections, agents are more likely to be in a
mixed group.

average earnings, as agents receiving zero payoff will skew
average earnings and contribute to inequality. The second
factor is the Gini inequality among agents that did receive
payoffs. This is an important metric for the “equality” task
(Table II). If all agents formed mixed groups, Gini inequality
should be zero, but if agents segregated into groups by
skill, inequality should be much higher, since some skills
are worth more than others. Since overall inequality is so
tightly correlated with average earnings, and earnings have
been discussed already, this section will focus on equality
among successful agents.

Figure 7 shows that equality is similar among the topolo-
gies, with the complete graph showing the greatest variance.
For comparison, the maximum Gini coefficient if all agents
are successful and completely segregate into groups by skill
is approximately 0.20-0.25. Figure 8 shows the proportion of
mixed groups (not segregated by skill). One notable feature
of this graph is that, among Watts-Strogatz topologies, the
proportion of mixed groups increases as number of local
connections decreases. With fewer neighbors to choose from,
an agent is more likely to be happy with any group that
receives a payoff, even if the agent has a more valuable
skill.

5) Summary: Overall, these results show that the greedy
team-building search algorithm performs at a large fraction
of optimal efficiency, but still converges to suboptimal local
maxima. Results for small-world graphs depend mostly
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Figure 9. Earnings by iterations on the complete graph. Simulations that
converge early reach suboptimal solutions. Group merging reduces variance
in convergence time; expelling agents forms better groups.

on local structure, rather than total number of agents. As
the number of local connections increases, earnings also
increase. Small-world graphs are efficient in that they can
achieve a large fraction of the optimal earnings with only a
small fraction of the possible edges. There appears to be little
significant difference in equality between the topologies,
though the percent of mixed groups increases with fewer
local connections.

B. Group merging

After exploring the baseline behavior of the simulation,
several variations were evaluated for their impact on conver-
gence time, efficiency, and equality. In the first, entire groups
are allowed to merge together. At the application phase of
the simulation, not only agents, but also entire groups can
submit applications to other groups. As before, the other
group accepts the application that increased average payoff
for all of its members the most.

On a complete graph, when agents join groups individ-
ually, convergence time varies greatly. When groups are
allowed to merge, convergence takes slightly longer, but the
variance is greatly reduced (Figure 9). Convergence time is
highly left-skewed for individual joining, with many outliers
finishing unusually early. This affects the resulting earnings.
Average earnings are highly correlated with number of itera-
tions to convergence; a longer convergence time often results
in a better configuration of teams. Joining individually often
finds slightly better solutions than merging groups, but it also
often converges early to an inferior solution, while merging
groups is more consistent. This indicates that the search
process of joining individually tends to find worse local
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Figure 10. Group merging speeds up convergence and reduces variance
(for the complete graph)
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Figure 11. Average earnings are slightly higher with group merging, due
to more agents being included in a successful group.

maxima more commonly than merging groups together.
One likely reason for this is that, as soon as a group can

successfully complete a task, it has little reason to add more
members. In the individual-joining case on the complete
graph, groups are able to select specifically the agents that
will complete their task, and no more, potentially stranding
the remaining agents in groups that are unable to complete
any task. In contrast, with group merging, these leftover
groups would be able to merge together, allowing them
to complete some task at least, even though the individual
payoff is lower.

On random graphs, group merging converges slightly
faster (Figure 10). This could be simply due to the fact that
groups can grow in size more quickly by merging than by
adding one agent at a time.

Group merging also leads to higher average earnings on
the random graphs (Figure 11), though it does not reduce the
variance in earnings and convergence time as significantly
as on the complete graph. In addition, Figure 12 shows that
group merging reduces inequality; this is due to a larger
percentage of the agents being in mixed groups (Figure 13).
When groups are allowed to merge, it is more likely that two
adjacent groups of two agents will be mixed than segregated.
When these groups merge and the resulting group of four
receives a payoff, the group will be more likely to stay this
way rather than to try to segregate. However, in the agent-
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Figure 12. Inequality is reduced among successful agents when teams
form by group merging.
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Figure 13. More groups are mixed when teams form by group merging.
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Figure 14. If the task structure is set so a group of twice the size receives
four times the pay, group merging achieves much higher earnings.

by-agent case, groups may be more selective about accepting
only agents of the same type to achieve a higher payoff.

The behavior of the group-merging team formation strat-
egy was validated on another task designed to show a
situation in which group merging is advantageous. The task
payoffs were set so groups of size 𝑛 receive some payoff, but
groups of size 2𝑛 receive four times the payoff (Table III).
When agents join individually, they quickly form a small
group that receives some payoff. At this point, the group has
no incentive to add another member, since it would then need
to split the same payoff among more members. However,
when groups are allowed to merge, two adjacent groups can
join together and receive a superior payoff for all of their
members. As predicted, average payoffs were significantly
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Table III
GROUP MERGING TEST TASK

Number of each skill Payoff

1 1 1 1 100

2 2 2 2 400

4 4 4 4 1600

2 2 0 0 60

4 4 0 0 240

0 0 2 2 140

0 0 4 4 560

higher when groups were allowed to merge (Figure 14).
This result further illustrates the dynamics of the search

process. Essentially, this team formation strategy is a greedy,
hill-climbing search – at each iteration, the agent or group
considers all of the possible moves, and chooses the one that
increases payoff the most, stopping when no action increases
payoff. Group merging is equivalent to taking a larger step
size in that it can allow an agent or group to escape one
local maximum and jump to a better one. However, the
more fine-grained approach of forming teams agent-by-agent
avoids adding more agents than necessary, and can therefore
sometimes find slightly better solutions.

C. Expelling agents

Group merging tends to distribute the wealth more evenly
across agents in the simulation: most agents are able to
be part of a successful group. However, the groups are
inefficient in that they have more members than necessary
to accomplish their respective tasks. The next variation of
the simulation, therefore, allows groups to eject members.
Each iteration, each group iterates through its members, and
analyzes what its payoff would be without each member. If
the group can achieve the same payoff without one of its
agents, that agent is ejected from the group.

Results on the complete graph are immediately striking
(Figure 9). Expelling agents leads to the much higher
average earnings, approaching optimal solutions on some
topologies. Variance in convergence time and earnings on
the agent-by-agent case, though still higher than with group
merging, is also greatly reduced. These benefits come with
only a modest increase in convergence time.

Expelling agents leads to more efficient teams, since each
team will have only exactly as many agents as necessary to
receive the payoff (Figure 15). This mechanism helps correct
the “hasty mistakes” of the greedy team formation algorithm,
as unnecessary agents that cause suboptimal solutions are
pruned out. In addition, the expelled agents are then allowed
to form new teams, and with more groups receiving payoffs,
average earnings increase. However, in random and small-
world graphs, many expelled agents are left stranded, unable
to connect with other free agents to form a successful team
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Figure 16. Expelling agents decreases equality in the system, as expelled
agents are unable to form successful teams.
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Figure 17. Expelling agents increases equality among successful agents
in the agent-only formation model.
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Figure 18. Fully-connecting groups often achieves earnings approaching
the optimal solution.

(Figure 16). Therefore, equality globally decreases, even as
equality among successful agents increases (Figure 17).

D. Fully-connected groups

The final variation attempted to reduce the number of
stranded agents by allowing agents to retain their social
connections from previous groups. This scenario models the
effect of social networks like LinkedIn, which allow users
to retain past social connections that they can later leverage
during a job search.

In this variation, when an agent joins a group, it is
immediately given direct connections to all of the other
agents in the group. When an agent leaves or is ejected from
a group, these connections remain. This allows agents that
have been expelled to more easily find a new group to join,
which affects the overall earnings of the system (Figures 18
and 19). In fact, the combination of group merging, expelling
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Figure 15. Expelling agents increases efficiency on all topologies.
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Figure 19. Fully connecting group members increases earnings at the
expense of longer convergence time. (+ indicates fully-connecting, o
indicates without)

agents, and fully connecting groups generates the highest
average earnings of any configuration, even approaching
the optimal solution. Almost all of the agents are able
to join successful groups (Figure 20). However, inequality
also increases among successful agents in this configuration
(Figures 21 and 22); it may be that increasing the number of
connections allows agents to be more selective in the groups
they join and segregate by skill.

VI. CONCLUSION

This research explored the performance of a simple,
agent-based team-formation strategy in a variety of graph
topologies and task structures. Even though they do not
achieve optimal performance, small-world graph topologies,
which reflect characteristics of real social networks, are
efficient structures for team formation. Because they have
a limited number of local connections, convergence is very
fast, but because of the small-world structure, agents have

quick access to a majority of the other agents, leading to
efficient use of these few connections in finding effective
solutions. When groups of agents shortsightedly look to
maximize the payoff for agents in the group, as in the
individual-joining examples, solutions are often sub-optimal,
as the group will stick with a lower-payoff task rather
than temporarily reduce their pay by adding more agents
to pursue a more valuable task. However, when groups are
willing to look ahead and cooperate, they are able to merge
to complete tasks they could not handle on their own. The
overall outcome is better when every agent has a job, even
if some of the teams have more members than necessary.
To reduce the inefficency caused by group merging, groups
can expel members. However, in this situation, equality
drops, as expelled agents are often unable to connect with
a new successful group. This problem can be alleviated by
forming connections between agents and their previous team
members so that agents can more easily find a new team after
being expelled.

Future work will look at the effects of multiple agent
personalities, where not every agent follows the same strat-
egy in applying to groups and considering acceptances.
Other modifications could include cases where payoff is
not split evenly between group members, and simulations
where multiple tasks are offered sequentially, and only one
group is awarded the payoff for each task. Also, instead of
using random graphs, the simulation could form the graph
structure based on the skills of the agents, as in [6].
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Figure 20. Fully connecting group members enables more agents to find a successful group.
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Figure 21. Fully connecting group members reduces equality among successful agents.
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Figure 22. Fewer agents are in mixed groups when groups are fully connected.
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