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1 Introduction

Plans and schedules formulated to run in the real world will often fail due to the complexity and

unpredictability of the environment. An unexpected, high priority order may arrive at the job shop

or a piece of equipment used to process orders may break down. Existing methods to deal with

this problem include real time recovery from plan failures [1] [2] [7] and post-hoc plan repair based

on failures observed while executing the plan [6]. Failure recovery mechanisms, such as replanning,

can be expensive, and it may not be feasible to repair a plan by letting it repeatedly fail. An

alternative strategy is to monitor the execution of the plan, attempting to predict pathological

states that make it di�cult or impossible to achieve goals [5]. Doing so admits the possibility of

e�ecting plan modi�cations in real time to avoid pathological states.

Plan steering is a mixed-initiative approach to real time prediction and avoidance of plan failures

[3]. A plan steering system comprises a pathology demon that monitors the execution environment

to detect and predict pathological states, a plan steering agent that evaluates the demon's pre-

dictions and formulates plan modi�cations to avoid predicted pathologies, and a human user who

monitors the environment, the demon, and the agent. The human and the agent work together to

steer the plan away from potential problems by intervening before they develop. The bene�ts of

keeping computers in the loop are clear. For large, complex plans, involving hundreds or thousands

of events over time, determining whether events are unfolding according to plan and assessing the

impact of dynamic plan modi�cations are impossible for humans.

As a �rst step toward plan steering, we built a demon and an agent for the related task of

schedule maintenance in the transportation planning domain. The problems that we address in

this domain are closely related to common problems in scheduling of manufacturing processes. Ships

and cargo (orders) must ow through a series of ports (processing points) that have limited capacity

in a speci�c order and in a timely manner. The primary di�erence is that the \schedule" for a ship

orders the ports that must be visited but only speci�es the time at which the ship should begin

its journey. We experimentally assessed the performance of the system at its two primary tasks:

predicting schedule pathologies and formulating schedule modi�cations to avoid those pathologies.

We then assessed the performance of humans at the same task of schedule maintenance. We looked

at performance in three conditions: the human acting alone, the agent acting alone, and the human

and the agent working together.

2 The Schedule Maintenance System

The task for our system is management of schedules in a simulated shipping network called

TransSim. A TransSim scenario consists of ships, ports, cargo, and simple movement require-
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ments (SMRs) for each piece of cargo. An SMR speci�es the route that a piece of cargo is to take

through the network and when it is to begin its journey. The SMRs of a scenario constitute its

schedule and largely determine the behavior of the simulation. Ports are limited resources and

ships must queue for service when a port is being used to load or unload another ship's cargo. If

many SMRs reference any one port then it is likely that a bottleneck will develop at that port. The

schedule maintenance system attempts to maximize throughput by modifying SMRs while mini-

mizing the number of changes to preserve as much of the structure imposed by the initial SMRs as

possible. These two goals are often at odds with one another so an appropriate balance must be

found.

The function of detecting and predicting pathologies (bottlenecks) is performed by a pathology

demon that monitors the state of all ports in a scenario as it unfolds. The demon combines the

current state of a port with information about ships that are en route to the port to project

the port's state for each of several days into the future. Ship travel times are not deterministic

and the demon's knowledge of its environment is imperfect, so there is an error component to its

predictions. We experimentally evaluated the accuracy of the demon's predictions and the extent to

which accuracy was a�ected by three environmental factors: the horizon into the future for which

predictions are made, the amount of variance in the demon's ability to project ship arrival times,

and a threshold that controlled how aggressive/conservative the demon is when determining that a

given ship will be in port on a given day. We found signi�cant e�ects of these factors on prediction

performance and found that the demon's performance was good over a wide range of settings.

We have implemented a schedule maintenance agent that monitors the demon's predictions to

identify potential bottlenecks. It applies a simple heuristic to convert predicted queue lengths for

multiple future days into a boolean tag for each port: likely future bottleneck or unlikely future

bottleneck. When a port is identi�ed as a potential problem, the agent looks for an opportunity

to modify the scenario's SMRs to avoid or alleviate the bottleneck. Currently, the only action the

agent can take is to reroute cargo that is bound for the port in question. We ran several experiments

to determine what e�ects the agent's rerouting decisions would have on throughput and how those

e�ects changed with problem size and complexity. Each experiment involved recording various

cost measures related to throughput for multiple simulations in which the demon is generating and

following its own advice. We found that in a wide variety of conditions, the actions of the agent

reduced most simulation costs. That e�ect scaled nicely with pathology intensity, problem size,

and problem complexity. 1

3 Bringing Humans into the Loop

Part of the motivation for plan steering is the belief that humans �nd it extremely di�cult to per-

form tasks such as the one for which our agent was designed. Tracking hundreds of events over time

and understanding primary and secondary e�ects of schedule modi�cations is not something that

people do well. Therefore, we ran a series of experiments in which humans were asked to perform

the same task at which the agent was previously evaluated [4]. We provided a set of graphical dis-

plays that gave the human user essentially the same information and rerouting capabilities available

to the agent.

In one half of the trials the human works alone. In the other half the human has the aid of the

schedule steering agent. We call these the unassisted and assisted conditions respectively and refer

to this experimental factor as trial type. In the assisted condition the agent evaluates the state of

the network and generates advice for the user. Advice identi�es both a port that is thought to be

1The results described in this section are presented in detail in [3].
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a potential bottleneck and a piece of cargo bound for that port, and suggests an alternative route.

The human evaluates the agent's advice via the graphical interface and may decide to accept or

reject the advice. In either case the human may implement a rerouting decision of his/her own

construction.

We found that humans working with the help of the agent are able to obtain better performance

than humans working alone. All cost measures were lower in the assisted condition compared to

the unassisted condition, with many being signi�cantly so. However, this improved performance

comes at the expense of disrupting the scenario to a greater extent: on average, about six pieces of

cargo were rerouted without assistance, compared to about twelve pieces rerouted with assistance.

Since performance is better in the assisted condition, it is not the case that the agent's advice

makes things worse and therefore more intervention is required. Apparently, the agent is bringing

pathological states to the attention of the human user that they would otherwise have missed and

that the human believes require attention. The agent is serving its intended purpose of helping the

human track large numbers of events as they occur in a complex environment.

How does the human's performance in either condition compare to the agent's? The unassisted

human performs signi�cantly worse than the agent in all cost measures. However, the agent im-

plements almost three times as many changes to the scenario. Neither seems to be striking a good

balance between maximizing throughput and minimizing schedule disruption. The story is quite

di�erent in the assisted condition. The performance of the assisted human is indistinguishable from

the agent's performance; none of the cost measures are signi�cantly di�erent. This result alone is

interesting since the agent performs quite well. The di�erence is that the assisted human is able to

achieve this feat with signi�cantly fewer changes to the scenario: twelve reroutes for the assisted

human compared to more than eighteen for the agent. Apparently our mixed-initiative approach to

schedule maintenance in this particular domain is working. As noted before, the agent is probably

agging potential pathologies that the human would have otherwise missed. However, the human

is selectively �ltering the agent's suggestions to implement only those that seem most crucial and

that are not wasteful.

With indications in hand as to the utility of our approach, we attempted to determine why

performance in the assisted condition was so good. During an assisted trial, the user is constantly

evaluating the state of the network and deciding whether or not to act. We focus on three speci�c

decision points to assign credit for the assisted human's performance. They are (1) the agent o�ers

advice and it is accepted, (2) the agent o�ers advice and it is rejected, and (3) the human makes

a rerouting decision independent of the agent. Is good performance due to the intelligence of the

agent? Is it due to the human's ability to di�erentiate between good and bad advice? Or is it due to

the human's ability to formulate schedule modi�cations independently? The metric we have chosen

for this credit assignment task is daily queue length summed over all ports. Every time during the

course of a single simulation that the human makes one of the three decisions, we look at total queue

length over a window of �xed size in the future to determine if the decision was good or bad. This

is complicated by trend in queue length over the course of a simulation. We compensate for trend

by computing an expected queue length curve and comparing actual performance to expectations.

We analyzed one of the experimental scenarios and found that accepting the agent's advice

results in smaller than expected queue lengths, but the result is not signi�cant. Rejecting the

agent's advice led to signi�cantly larger than expected queues. It appears that in this scenario, the

agent's advice tends to stave o� potential pathologies and ignoring its advice is detrimental. In

terms of making bene�cial schedule modi�cations, the human fares quite well. When compared to

expectations, the results of the human's rerouting decisions are signi�cantly better. With the tools

that we provided, the human was able to evaluate the state of the transportation network, identify

potential trouble spots, and formulate a preventative plan. Therefore, poor human performance in
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the unassisted trials was not due to an inability to understand and manipulate the domain. 2

4 Future Work

We presented a mixed-initiative system for schedule maintenance in a simulated shipping network.

Simultaneously achieving the two goals of maximizing throughput and minimizing the number of

changes to the initial schedule proved to be di�cult for both the human and the agent. The human

rerouted few pieces of cargo at the expense of high simulation costs. The agent's simulation costs

were quite low but the number of pieces of cargo rerouted was high. In this domain, the optimal

balance was struck by the agent and the human working together.

The goal of this research is to arrive at a generalizable architecture for plan steering. We

want to be able to replace TransSim with the real world and have agents working with humans

to avoid pathologies in plans and schedules. To that end, we will continue to push on this system

by investigating pathologies other than bottlenecks, advice other than rerouting, and methods for

increasing predictive accuracy. We then hope to study other problem domains to understand how

they are di�erent from transportation planning and how those di�erences impact the e�cacy of

our architecture.

References

[1] Ambros-Ingerson, Jose A. and Steel, Sam. Integrating planning, execution and monitoring. In

Proceedings of the Fifth National Conference on Arti�cial Intelligence, pages 83-88, Minneapo-

lis, Minnesota, 1988.

[2] Lopez-Mellado, Ernesto and Alami, Rachid. A failure recovery scheme for assembly workcells.

In Proceedings of the IEEE International Conference on Robotics and Automation, volume 1,

pages 702-707, 1990.

[3] Oates, T. and Cohen, P.R. Toward a plan steering agent: experiments with schedule main-

tenance. To appear in Proceedings of the Second International Conference on AI Planning

Systems, 1994. Also Computer Science Department Technical Report 94-02, University of

Massachusetts at Amherst.

[4] Oates, T. and Cohen, Paul R. Mixed-Initiative Schedule Maintenance: a First Step Toward

Plan Steering. To appear in Proceedings of the ARPA/Rome Lab Planning Initiative Workshop,

Tucson, AZ, Feb. 1994. Also Computer Science Department Technical Report 94-31, University

of Massachusetts at Amherst.

[5] Sadeh, N. Micro-opportunistic scheduling: the Micro-Boss factory scheduler, to appear in

Intelligent Scheduling, edited by M. Zweben and M. Fox, Morgan Kaufmann, 1994.

[6] Simmons, Reid G. A theory of debugging plans and interpretations. In Proceedings of the

Seventh National Conference on Arti�cial Intelligence, pages 94-99, Minneapolis, Minnesota.

[7] Wilkins, David E. Recovering from execution errors in SIPE. Technical Report 346, Arti�cial

Intelligence Center, Computer Science and Technology Center, SRI International, 1985.

2The results described in this section are presented in detail in [4].

4


