
Tools for Experiments in Planning

Scott D. Anderson

Adam Carlson

David L. Westbrook

David M. Hart

Paul R. Cohen

fanderson, carlson, westy, dhart, coheng@cs.umass.edu

Experimental Knowledge Systems Laboratory

Computer Science Department, LGRC

University of Massachusetts

PO Box 34610

Amherst, MA 01003-4610
413-545-3638

Abstract

The paper describes two separate but synergistic tools for running experiments on large Lisp

systems such as Arti�cial Intelligence planning systems, by which we mean systems that produce

plans and execute them in some kind of simulator. The �rst tool, called Clip (Common Lisp

Instrumentation Package), allows the researcher to de�ne and run experiments, including exper-

imental conditions (parameter values of the planner or simulator) and data to be collected. The

data are written out to data �les that can be analyzed by statistics software. The second tool,

called Clasp (Common Lisp Analytical Statistics Package), allows the researcher to analyze

data from experiments by using graphics, statistical tests, and various kinds of data manipula-

tion. Clasp has a graphical user interface (using CLIM, the Common Lisp Interface Manager)

and also allows data to be directly processed by Lisp functions.

This work was supported by ARPA/Rome Laboratory under contracts #F30602-91-C-0076 and #F30602-93-C-

0100.

1



1 Introduction

As planning problems become more complex, involving hundreds of objects and thousands of re-

sources (e.g., ships, planes, tanks, satellites), researchers will need to turn to simulators, controlled

experiments, and statistics to study the behavior of their systems. We will briey describe one such

simulator, called TransSim, and a controlled experiment that the Experimental Knowledge Sys-

tems Laboratory (EKSL) ran using it, but our real purpose in this description is to introduce two

tools that EKSL has developed to aid in running and analyzing experiments of this sort: Clip and

Clasp (Common Lisp Instrumentation Package and Common Lisp Analytical Statistics Package).

Clip enables researchers to de�ne experiments in terms of the conditions under which the

simulator is to be run and the data to be collected. Clip also helps with the running of the

experiment, by looping over all the experimental conditions, running the simulator, and writing

the data to �les. At that point, a researcher will want to analyze the data using statistical software.

While the data �les that Clip writes can be analyzed by any statistical package, Clip is especially

well integrated with Clasp, which is a statistical package that EKSL has implemented. Clasp has

many of the standard descriptive and inferential statistics, together with a convenient graphical user

interface, and a Lisp interaction window that researchers can use for doing statistical operations

that we have not anticipated.

This paper describes TransSim, Clip and Clasp, and presents an example of their use in an

experiment, from initial description to �nal analysis.

2 Transportation Simulator

TransSim simulates the execution of transportation plans in a problem domain where the goal

is to get cargo through a shipping network from a number of starting locations to a number of

2



destination ports. The problem, de�ned as part of the ARPA/RL Planning Initiative, involves

many di�erent kinds of cargo and ships, and many, many pieces of cargo. TransSim allows the

user to con�gure an arbitrary shipping network by specifying ports, a set of cargo inputs, and a

list of available ships. Input to the scenario is a list of Simple Movement Requirements (SMRs).

SMRs specify a port of embarkation, various intermediate ports, and a port of debarkation. A

unit of cargo appears at its port of embarkation at times determined by the scenario, and then

travels through the network along the route speci�ed by its SMR. The actual time it takes a ship

to travel between ports is a Gaussian random variable computed by the simulator and controlled

by user-speci�able parameters giving the mean and variance of the ship's speed.

TransSim also supports Interactive Plan Steering, where a human user or a software agent

notices problems (pathologies) in the execution of a plan and intervenes in an attempt to get the

plan back on course. Currently, our Plan Steering Agent works without reference to a plan or

schedule. It attempts to control the shipping tra�c by using limited look-ahead for prediction, and

it reacts to pathologies as they are detected. One important kind of pathology is when the number

of ships arriving at a port exceeds the capacity of the port (the number of docks), so that the ships

must wait until docks are available before they can unload.

We have developed a \pathology demon" to try to predict this pathology. Its prediction is

for some speci�ed number of days into the future, say four days. The demon looks at each ship

heading towards a particular port and uses the mean and variance on the ship's speed to estimate

the probability that the ship will arrive on the day in question. If that probability exceeds some

threshold, the demon assumes that the ship arrives. The demon also predicts how many ships will

leave the port, using heuristic estimates about the time it takes to unload and load a ship. All this

information is compiled into an estimate of how many ships will be in port on the day in question.

If the estimate is higher than the port capacity, the pathology demon can alert the Plan Steering

3



Agent (who may be human); the Plan Steering Agent can then decide what to do, which might

include re-routing some of the ships or ignoring the problem because of global considerations. The

pathology, of course, is only a local problem, and may be no great hindrance to the overall plan. To

study the extent to which local problems a�ect plan performance, or whether the pathology demon

is good at predicting the number of ships in port, or any of myriad other questions, we will need

to run experiments, collect statistics, and analyze them. To do that, we will use Clip and Clasp.

3 Running Experiments

A great many experiment designs are used in science, but most of them can be viewed as sets of

trials, each with a number of independent variables, representing the conditions under which the

trial is run, and a number of dependent variables, which are the objects of scienti�c scrutiny. This

is the simplest of the kinds of experiment designs that Clip supports.

One common kind of experiment within this paradigm is called a \fully factorial" design, in

which there are one or more factors, each of which has a small number of discrete levels. For

example, factor A might be the number of days in advance that the pathology demon tries to

predict the number of ships in port, with three values (levels)|2, 4 and 6 days. Factor B might

be the probability threshold, above which the demon assumes that the ship will be in port, say

with levels 0.25, 0.5 and 0.75. A fully factorial experiment design will test all combinations of

levels; in this example, there are nine experiment conditions. Because of random variance in the

outcome of each trial, the experimenter will usually want multiple trials in each condition and will

probably analyze the data using the statistical technique of Analysis of Variance. It's easy to do

this kind of experiment using Clip and Clasp: we tell Clip how to modify the parameters of the

pathology demon and it takes care of iterating through all the conditions, setting the parameters,

and collecting the data. Later, Clasp can analyze the data, using just a few mouse clicks, since

4



the Analysis of Variance is built in.

Another common kind of experiment looks at the relationship of two or more continuous vari-

ables, such as the correlation between them. For example, the independent variables (variables

controlled by the experimenter) might be the number of cargo units to be shipped and the amount

of variance in ship speed, while the dependent variable (a variable measured by the experimenter)

might be the amount that the plan is late or the number of missed deadlines. We expect that as

the scenario becomes more di�cult (when the values of the independent variables increase), the

plan lateness and missed deadlines will go up|but will this relationship be linear or non-linear?

To answer such questions, we will want to run many trials, choosing values for the continuous inde-

pendent variables and measuring the dependent variables. Clip can help us do this, while Clasp

can graphically display the data and transformations of it, together with regression lines, if desired.

3.1 Instrumentation

Adding code to extract information from a system is called instrumentation, hence Clip's name.

Most of Clip's functionality is directed towards extracting di�erent kinds of information from

your system|information that is calculated afterwards, collected periodically during execution, or

possibly collected whenever some event occurs. This aspect of Clip is deferred to section 3.2. First,

we present an overview of how Clip works and what you need to do to use it.1

To use Clip to run an experiment, Clip �rst needs to know how to run your simulator. Es-

sentially, this is a single function or piece of code that Clip can call to start a trial and which will

return when the trial is over. Clip also works with simulators that run in multi-threaded (multiple

process) Lisps, but it nevertheless treats the simulator as a single piece of code.2 Between trials,

1This article is no substitute for the Clip/Clasp manual [1], where everything is rigorously explained.
2This requirement may be lifted in future versions of Clip, but the impact is minor. Most multi-threaded Lisps

provide a process-wait function, which can be used to make the simulator seem like a single piece of code.

5



Clip will need to reset your system, although this might be unnecessary if the simulator is purely

functional (few are). If your simulator has a notion of time, such as having a clock, and you want

Clip to schedule events for particular times, Clip will need to know how to interact with the

scheduler and the clock. For example, you might want to collect data every day of the simulation,

with the average being written to the data �le. TO describe how to run and control your simulator,

there is a single Clip macro, called define-simulator.

Next, you will de�ne your experiment, which is again done with a single Clip macro, called

define-experiment. The heart of an experiment is the set of independent and dependent variables,

which are speci�ed with the macro. The independent variables are described with a simple syntax

much like the Common Lisp loop macro. The names of dependent variables are simply listed; the

de�nition of how to collect and report the data is separately de�ned as objects called \clips," which

will be discussed in the next subsection. The define-experiment macro also provides ways for

the user to run code during the experiment, at four distinct times:

Before the Experiment: When the experiment gets started, you may want, for example, to load

special knowledge-bases or set scenario parameters. This is also a chance to do more mundane

things, such as allocating data structures or turning o� the screen-saver.

Before Each Trial: At each trial, you may want to reinitialize parameters and data structures.

One important thing to do is to con�gure your simulator for the current experimental con-

dition. For example, if you are running a two-factor experiment, Clip will have two local

variables bound to the correct values of those two factors. You may then use those vari-

ables to, perhaps, set parameters of your simulator or use them as arguments to initialization

functions. After all, only you know the semantics of your factors.

After Each Trial: The most important thing that is typically done after each trial is to call the

6



function write-current-experiment-data, the Clip function that writes all the data for

this trial. This is also a good time to run the garbage collector, if you want to minimize

garbage collection during trials.

After the Experiment: Typically, code run after the experiment undoes the code run before the

experiment, such as deleting data structures or turning on the screen saver.

Of course, any arbitrary code can be executed at these times, for whatever purposes you want.

The key idea is that the before- and after-trial code surrounds every trial and runs many times,

while the before- and after-experiment code surrounds the whole experiment and runs only once.

This ability to run arbitrary code is more than just an opportunity for hacks|it is a clear and

precise record of the exact experimental conditions. Records are important as a memory aid and

as a means for replicating experiments.

When the experiment has been de�ned, you start it running with the function run-experiment.

This function takes arguments, which you can refer to in the before/after code, so that the �nal

speci�cation of the experimental conditions can be deferred until run-time. (For the sake of record-

keeping, these arguments should be written to the data �le, by using the Clip function append-

extra-header in the before-experiment code.) The run-experiment function also allows you to

specify the output �le for the data, the number of trials, the length of the trial, and other such

information.

De�ning the simulator and the experiment, and then running the experiment is fairly straight-

forward and is only a fraction of what must be done to run an experiment. The bulk of the

e�ort is in de�ning \clips"|functions that measure the dependent variables of your experiment.

Fortunately, they are modular and reusable.

7



3.2 Clips

Clips are named by analogy with the \alligator clips" that connect diagnostic meters to electrical

devices. They measure and record aspects of your system (the values need not be numerical).

Essentially, they are Lisp functions that you de�ne and which Clip runs if they are included in

the de�nition of the experiment. Once written, they can be mentioned in any number of exper-

iments. Indeed, it's common to build up �les of clips, so that a new experiment can be quickly

de�ned by writing a define-experiment form (or editing an old one) and listing the clips in the

instrumentation argument to define-experiment.

Clips are de�ned with the defclip macro, which is very much like defun, except that informa-

tion added before the body is read by Clip. The central issue in de�ning a clip is the time that it

is run. (The code that is run is written in the defclip body and is entirely up to the user.) Most

clips simply measure values after a trial is �nished, for variables such as \�nish date," \number

of bottlenecks," and \total waiting time for ships." More complicated clips may need to run peri-

odically, which only makes sense for simulators that have a clock of some sort; Clip will schedule

the clip using the schedule-function speci�ed in the define-simulator form. Other clips may

need to run when some event occurs; this is accomplished by tying the clip to a function in your

simulator, using a mechanism like the \advise" facility found in many Lisp implementations. The

defclip form has syntax for tying the clip to a function. When a clip is run many times during a

trial, it can either report the mean of the values or it can report all the values (or some function of

them), as time series data (see section 3.3).

Clip implements several features to make clips more useful and powerful. The �rst feature

allows a clip to report several values to the data �le. In other words, if we think of the data �le

as a large table, with a row for every trial and a column for each variable, a clip may report the

values for several columns. For example, a clip that interrogates a port might want to report the

8



minimum, maximum, and mean queue length. The user can de�ne a clip called queue-info to

report all three of these values during an experiment. The second feature allows users to report

a value for each of several objects. For example, they might want to report the maximum queue

length at each port, or the tons of cargo carried by each ship. Given a clip to report the value

for a single object, another clip can be de�ned that maps over the objects, calling the simpler

clip for each object. These two features can be combined, yielding one clip that reports a lot of

information about many objects, all in one powerful step. An important restriction is that the

number of values must be consistent, because the data �les need to have the same number of values

(columns) reported for every trial. This is not a requirement of Clip so much as a requirement of

the statistical package, whether Clasp or any other package. Missing values are a headache for any

statistical operation, and so it is better to always produce the same number of values. Typically,

this is easy to accomplish. For example, the number of ports should be the same in every trial; if

they are not, you will probably be comparing average behavior (since you cannot compare them

pairwise), in which case the average can be reported, rather than data for each port.

3.3 Time Series Data

So far, we have described di�erent kinds of data that can be extracted into a \snapshot" of the

scenario. We can also collect data that is a \movie" of the system: a series of snapshots at di�erent

points in time. Data like this is called time series data. For example, we could report the queue

length at a port each day, allowing us to see bottlenecks arise and subside as the tra�c ebbs and

ows. We can statistically analyze such data to see if there are temporal correlations. For example,

we could see whether a bottleneck truly subsides or merely moves to another port at a later time.

We just cannot answer such questions by looking at mean values after a trial is over.

One trouble with time series data is that it is incompatible with the data collected after the

9



trial. Di�erent kinds of data are collected by time series clips: individual values during a trial

versus means and totals afterwards. Usually, a di�erent number of values are produced. It doesn't

make sense to mix the two. Therefore, time series data are written to a di�erent �le than the main

data �le. In fact, you can collect several di�erent kinds of time series data in one experiment. For

example, you can collect information on port queues every day and collect information every time

a ship is loaded. Again because of incompatibility of the data, these two di�erent time series would

be written to di�erent �les. Someone with such a complex experiment often makes a directory into

which all of the data �les will go.

As with simple end-of-trial clips, clips for time series can be scheduled to run periodically, as

with our once-a-day collection of information on queues, or can be triggered by events, as with our

collection of information whenever a ship is loaded. The syntax of defclip makes all this relatively

easy.

3.4 Summary

The capabilities of Clip have been driven by the needs of experimenters. There are a great many

features, all of which have proven useful to someone. Nevertheless, the essence is fairly straightfor-

ward. To run an experiment using Clip, you must do the following:

De�ne the Simulator You tell Clip how to run your system via the define-simulator macro.

De�ne the Clips You de�ne a bunch of functions to report the data you want to collect. Most

clips will simply return one value, which Clip will write to the main data �le, but you can

also de�ne clips that return multiple values, map over multiple objects, run multiple times,

or any combination of these features.

10



De�ne the Experiment You put the pieces all together by specifying the simulator to run,

the experimental conditions (particularly the independent variables), special initialization/

parameterization code, and the list of data values to be collected. A call to write-current-

experiment-data is put here.

Run the Experiment Very little else needs to be speci�ed when the experiment is �nally run;

usually only the output �le, possibly the number of repetitions, and maybe one or two argu-

ments that are referred to in the user's experiment code (:before-experiment and the other

clauses).

Clip has other features to support experimentation, such as aborting a trial but continuing the

experiment, say when some intermittent error has occurred|very common in stochastic simula-

tions. Clip also lets you run only part of the experiment, which facilitates breaking the experiment

into parts to run on di�erent machines. These are all explained at length in the Clip/Clasp

documentation [1].

An alternative to Clip is the METERS system, developed by Bolt, Beranek and Newman,

Inc., for use in the ARPA/RL Planning Initiative's Common Prototyping Environment (CPE) [2].

METERS is particularly useful for collecting and �ltering time-series data from distributed systems.

4 Data Analysis

The idea of Clasp began when we wanted to run a t-test on some experiment data without

having to write out the data to a �le in some tab-delimited format, move the code to another

machine, run a statistics program, and load the data. From this small beginning, we have added

most of the workhorse statistical functions, data manipulation (regrouping, selecting subsets), data

transformation (such as log transforms), graphing software (now replaced by SciGraph, by Bolt,

11



Beranek and Newman, Inc.). We have a convenient graphical user interface implemented in CLIM,

and a programmatic interface so that the Clasp functions can be called by the user if the desired

data manipulation isn't already on a menu. Ideally, everything can be accomplished by menus in

the graphical user interface.

Clasp's screen interface, an example of which is shown later in �gure 1, comprises four areas:

the menus, the datasets, the results, and the notebook:

Menus The Clasp menus will appear across the top of the window. The menus, which will be

discussed below, are: File, Graph, Describe, Test, Manipulate, Transform and Sample.

Datasets When you load a �le of data into Clasp, such as a �le written by Clip, it becomes

a Clasp dataset and appears on this menu. The name of the dataset is the name of the

experiment. Each column of data is called a variable; the name of the variable is usually

the name of the clip that returned that variable, unless you specify a di�erent name in the

defclip. When analyzing the main data �le (as opposed to a �le of time series data), there

will be as many variables as there were clip values, and each variable will have as many

elements as there were trials, since each clip reports once at the end of each trial. (Clip has

a naming scheme to handle clips that produce multiple values.)

Most operations in Clasp take either datasets or variables as arguments, and the items in

this pane become mouse-sensitive under those circumstances. For example, if you want to

�nd the mean number of days cargo spends in transit (and you had a clip that reported that

value), you would just select the \Mean" item from the \Describe" menu, whereupon all the

variables would become mouse sensitive, and you could select the one you want. Similarly,

when you want to partition a dataset, say to separate trials where the Plan Steering Agent

was used from those where it wasn't, you would �rst selecte the \partition" command from

12



the \Manipulate" menu item, and then click on your dataset.

Results Display When a Clasp operation yields a complex result, such as a table or graph,

that object goes into a menu of results. The most common use for this menu is to bring

up two results side-by-side, so they can be compared. Graphs can often be overlaid, so

that similarities are obvious. There are also Clasp commands to delete, print, display, and

otherwise operate on results, whereupon they become mouse sensitive.

Notebook The notebook is by far the largest part of the Clasp window because most of the

action goes on here. It is a complete Lisp read-eval-print loop, except that Clasp commands

are also accepted. Having Lisp available is important and powerful, because users can operate

on the data in ways we have not yet implemented or even thought of.

Clasp commands can be typed instead of using the menus; indeed the menus just type the

appropriate thing into the notebook. When the command is fully entered, it's executed and

its results are printed to the notebook. Clasp output in the notebook is also mouse-sensitive

when appropriate.

One of the nice features of the notebook is that it provides a record of the statistical operations

on the data. This record can be saved to a PostScriptR �le and printed.

Clasp uses a pre�x command syntax, very much like Lisp, in that you give the command name

�rst, such as :T Test Two Samples X Y, where X and Y are variables. Using the features of

CLIM, Clasp allows command completion and prompts for arguments. Clasp also allows certain

arguments to be \mapped," which means that when a list of arguments is given where one is

expected, the command is executed for each element of that list. For example, to �nd the means

of three variables, (X Y Z), you can use the following syntax:

:Mean X,Y,Z

13



Clasp groups related commands in the main menu. The following are the categories and the

kinds of commands found in each. This description is just a few highlights, but everything is

completely described in the Clip/Clasp manual.

File This menu allows you to load Clasp datasets from �les and to save them to �les, say if

you've made changes or created new datasets. It also allows you to read and write datasets

in formats understood by other statistical packages. A number of other utilities are on this

menu, such as printing objects (such as graphs or tables) to PostScript �les.3

Graph Being able to look at your data in various ways is important in exploratory analysis.

You may �nd discontinuous or skewed distributions, non-linearities in trend, or peculiar

clusters of data. Looking at the data will suggest new hypotheses and statistical operations,

such as smoothing or correlation. This menu allows a number of displays of data, including

histograms, scatter plots, line plots, and regression plots. The grapher, BBN's SciGraph,

allows graphs to be overlaid for ease of comparison. It also allows the objects (points or lines)

in a plot to be colored based on some other property, another important tool for exploratory

data analysis.

Describe Statistics are often divided into descriptive statistics and inferential statistics. The for-

mer are functions that capture some property of one or more samples, such as location (mean,

median), spread (variance, interquartile range) or other properties (correlation between two

variables). The latter are functions that test hypotheses about the populations that the sam-

ples were drawn from. This menu contains many of the descriptive statistics, including all the

ones just mentioned, and a few others, such as modes, trimmed means, arbitrary quantiles,

cross-correlations, and auto-correlations. There is also a \statistical summary" operation that

3Currently, Clasp uses CLIM 1.1, which does not produce encapsulated PostScript (EPS). We will soon complete

an implementation using CLIM 2.0, which will produce EPS, making it easy to insert graphs into other documents.

14



prints most of the interesting one-sample statistics in one convenient table.

Test This menu contains the inferential statistics that were omitted from the previous menu.

Most of these commands, such as the t-test, con�dence intervals, Analysis of Variance, Chi-

square and Regression, are described in any statistics textbook. One other, called the d-test

may be unfamiliar, since it is a bootstrap statistic to compete with the t-test. Bootstrap

statistics [3, 4] replace the parametric and distributional assumptions of statistics like the t-

test with an empirical approach using computerized resampling of the data. The d-test is used

just like the t-test, especially when the data don't satisfy the normality and equal-variance

assumptions of the t-test. In the near future, we hope to implement bootstrap variants on

most common statistical functions.

Manipulate An experiment usually produces lots of data, which must be broken into pieces to

be looked at and understood. Therefore, Clasp provides several ways to extract subsets

from a dataset. One example is partitioning, where you select a dataset and a categorial

variable from that data. A categorial variable has a few discrete values: for instance, in the

shipping domain used in TransSim, the variable ship-type might have discrete values like

container, tanker, and Roll-on/Roll-off. The partition operation produces new datasets

(which appear in the dataset window), one for each distinct value of the categorial variable.

You can then select one of these datasets if you want to look just at one value of the variable,

say, the \Roll-on/Roll-o�" data. Similar operations allow you to partition datasets by an

arbitrary predicate (one that you type in).

Other operations on this menu allow you to create new datasets. The values for these new

datasets may be cobbled together from existing datasets or come from Lisp functions you

executed in the notebook.

15



When new datasets are produced, whether by partitioning or other operations, a new name

is generated, by combining the old name with the operation. This means you can often

remember what a dataset is just by looking at its generated name. For example, a dataset

SHIPS that has been partition by its TYPE variable, which has a TANKER value, will result in

a new dataset named SHIPS (TYPE = TANKER).

Transform This menu has commands that produce new variables from old ones. A trivial example

is just to sort the variable. A more interesting one is a logarithmic transformation that might

be used prior to linear regression, resulting in an exponential model of the data. Another

example is smoothing the data, which might be used prior to autocorrelation in order to �nd

cyclical patterns in time-series data. As with datasets, when a new variable is produced,

a new name is generated by combining the old name with the operation. For example, a

variable named QUEUE-LENGTH that has been smoothed will result in a new variable named

SMOOTH-OF-QUEUE-LENGTH.

Sample This menu contains commands that produce arti�cial data by sampling from a given

probability distribution. These commands would rarely be used in ordinary data analysis,

but they are pedagogically important, to see how various graphing options and statistical tests

work on data with known properties. The commands can draw numbers from the uniform,

normal, binomial, Poisson, and gamma distributions.

5 Example

Rather than try to describe in detail how Clip and Clasp work, we will present an example of

using them to run and analyze an experiment in the Transportation Planning domain. The example

will use the TransSim simulator, and is based on a preliminary experiment that Tim Oates used

16



in designing his Plan Steering Agent [5, 6, 7]. The purpose of the experiment is to assess the error

rate of a demon that predicts the queue length at a port d days in advance, as a function of the

variability of ship speed and the time delay, d.

The following de�nes the TransSim simulator. It's quite simple because we won't be using any

time-series collection in this experiment.

(clip:define-simulator transsim

:system-name "TransSim"

:start-system (simulate nil)

:reset-system initialize-simulation)

The following de�nes the simple experiment we will run, called \pred-accuracy," since it will

measure the accuracy of the demon that predicts queue lengths at ports. It has three clips for

the dependent variables, mentioned in the :instrumentation clause; in this experiment, we are

interested in the error rate of the demons in predicting queue length, and in their misses and

false positives in predicting bottlenecks. The :ivs clause speci�es two independent variables|the

variance in ship arrival time and the number of days in the future to predict the queue length. In

this experiment, the only thing to do before each trial is to transfer the values of the independent

variables to the appropriate global variables of the simulator. After each trial, the trial number

and the values of independent variables and the clips are written to the data �le.

(clip:define-experiment pred-accuracy ()

:simulator transsim

:instrumentation (err-rate fp misses)

:ivs ((eta-var in '(0.05 0.15 0.25))

(pred-pt in '(2 4 6)))

:before-trial (setf *eta-variance-multiplier* eta-var

*prediction-points* (list pred-pt))

:after-trial (write-current-experiment-data))

The following is the code for one of the clips in the experiment. It looks just like a Lisp defun,

except for the () before the code. That list is used for specifying additional information such as

17



whether this is a time series clip (by default, clips are not time series), whether it maps over several

objects, and so forth. The information is speci�ed in property-list style. Since each port has its

own prediction demon, this clip reports the mean error rate over all the demons.

(defclip err-rate () ()

(loop for p in *ports*

sum (demon-error-rate (port-demon p)) into total

finally (return (/ total (length *ports*)))))

The experiment is run by executing the following code. The :repetitions clause says how

many trials to run under each condition (combination of levels of the independent variables). In

this case, we will run each condition thirty times.

(run-experiment 'pred-accuracy

:output-file "~/data/demon-summary.clasp"

:repetitions 30)

When the experiment is complete, we will want to analyze the data using Clasp. We are

interested in whether either independent variable a�ects the demon's error rate, and, if so, whether

those e�ects interact. Therefore, we will analyze the data with a two-way Analysis of Variance

(Anova). Obviously, we cannot show the sequence of mouse-clicks that did the analysis, but Figure 1

shows the Clasp screen afterwards. The data show that there is a signi�cant interaction between

the two factors (F = 10:09; p = 0:0), because increasing variance didn't a�ect the error rate much

when predicting two and four days in advance, but greatly increased the error rate when predicting

six days in advance. We have superimposed a Clasp-generated graph to depict the interaction;

note that one of the lines slopes upward, while the other two decline slightly. The data also show

that, overall, the point of prediction was highly signi�cant (F = 144:9; p = 0:0), but the amount of

variance in the ship speed was not (F = 1:6; p = 0:2).

18



Figure 1: Excerpt from sample interaction with Clasp

6 Current Status

Clip and Clasp may be obtained by anonymous ftp from ftp.cs.umass.edu. Clip can be found

under the directory pub/eksl/clip, Clasp under pub/eksl/clasp; manuals are included in both these

directories. A tutorial on Clasp is available under pub/eksl/clasp-tutorial.

Development of CLIP/CLASP continues, and is largely driven by user demand. We will continue

to add useful statistical tests and data manipulation functions. Known limitations include prob-

lems with encapsulated PostScript output from Clasp due to CLIM 1.1 and cosmetic glitches

in display and input editing, which are due in part to CLIM 1.1. Clip could use a graphical

user interface for de�ning experiments. Comments, bugs and new feature requests can be sent

to clasp-support@cs.umass.edu. For more information about Clip/Clasp, contact David Hart

19



(dhart@cs.umass.edu, 413-545-3278).

7 Acknowledgments

This research is supported by ARPA/Rome Laboratory under contract #F30602-91-C-0076 and

#F30602-93-C-0100. The US Government is authorized to reproduce and distribute reprints for

governmental purposes notwithstanding any copyright notation hereon. We thank Tim Oates for

the use of his code and data, and Rob St. Amant for a helpful reading of the paper.

8 Conclusion

The purpose of this paper is to demonstrate how Clip and Clasp can help in doing experimental

studies in Arti�cial Intelligence generally, using an example grounded in transportation planning.

Clip works directly with a user's simulator, helping the experimenter de�ne the dependent mea-

sures, control the independent variables and run the experiment. Clasp is a statistics package and

as such competes with many good statistics packages on the market. Its advantages are that it is

implemented in Common Lisp and CLIM, so that it can easily be combined with your simulator

and with Clip, allowing for a completely integrated experimental environment. We believe that

such support for empirical science will be of signi�cant bene�t to the AI community.

References

[1] Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and Paul R. Co-

hen. Clasp/Clip: Common Lisp Analytical Statistics Package/Common Lisp Instrumentation

Package. Computer Science Department Technical Report 93-55, University of Massachusetts

at Amherst, 1993.

20



[2] Bolt Beranek and Newman, Inc. and ISX Corporation. Common prototyping environment

testbed release 1.0: User's guide, 1993. BBN Systems and Technologies, 10 Moulton Street,

Cambridge, MA 02138.

[3] Bradley Efron and Gail Gong. A leisurely look at the bootstrap, the jackknife, and cross-

validation. The American Statistician, 37(1):36{48, February 1983.

[4] Bradley Efron and Robert Tibshirani. Statistical data analysis in the computer age. Science,

253:390{395, July 1991.

[5] Tim Oates and Paul R. Cohen. Humans plus agents maintain schedules better than either alone.

Computer Science Department Technical Report 94-03, University of Massachusetts, Amherst,

Massachusetts, 1994.

[6] Tim Oates and Paul R. Cohen. Mixed-initiative schedule maintenance: A �rst step toward

plan steering. In Mark Burstein, editor, Proceedings of the ARPA/Rome Labs Knowledge Based

Planning and Scheduling Initiative Workshop. Advanced Research Projects Agency and Rome

Laboratories, February 1994.

[7] Tim Oates and Paul R. Cohen. Toward a plan steering agent: Experiments with schedule

maintenance. In Proceedings of the Second International Conference on Arti�cial Intelligence

Planning Systems, 1994. (to appear) Also available as University of Massachusetts, Computer

Science Department Technical Report 94-02.

21


