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Abstract. Fluents are logical descriptions of situations that persist, and

composite uents are statistically signi�cant temporal relationships be-

tween uents. This paper presents an algorithm for learning composite
uents incrementally from categorical time series data. The algorithm

is tested with a large dataset of mobile robot episodes. It is given no

knowledge of the episodic structure of the dataset (i.e., it learns without
supervision) yet it discovers uents that correspond well with episodes.

1 Introduction

The problem addressed here is unsupervised learning of structures in time series.

When we make observations over time, we e�ortlessly chunk the observations into

episodes: I am driving to the store, stopping at the light, walking from the park-

ing lot into the store, browsing, purchasing, and so on. Episodes contain other

episodes; purchasing involves receiving the bill, writing a check, saying thank

you, and so on. What actually happens, of course, is a continuous, extraordinar-

ily dense, multivariate stream of sound, motion, and other sensor data, which

we somehow perceive as events and processes that start and end. This paper de-

scribes an incremental algorithm with which a robot learns to chunk processes

into episodes.

2 The Problem

Let xt be a vector of sensor values at time t. Suppose we have a long sequence

of such vectors S = x0;x1; : : :. Episodes are subsequences of S, and they can be

nested hierarchically; for example, a robot's approach-and-push-block episode

might contain an approach episode, a stop-in-contact episode, a push episode,

and so on. Suppose one does not know the boundaries of episodes and has only

the sequence S: How can S be chunked into episodes? A model-based approach

assumes we have models of episodes to help us interpret S. For example, most

people who see a robot approach a block, make contact, pause, and start to push

would interpret the observed sequence by matching it to models of approaching,

touching, and so on. Where do these models come from? The problem here is to

learn them. We wish to �nd subsequences of S that correspond to episodes, but

we do not wish to say (or do not know) what an episode is, or to provide any

other knowledge of the generator of S.



This problem arises in various domains. It is related to the problem of �nding

changepoints in time series and motifs in genomics (motifs are repeating, mean-

ingful patterns). In our version of the problem, a robot must learn the episodic

structure of its activities.

Note that episode is a semantic concept, one that refers not to the observed

sensor data S but to what is happening|to the interpretation of S. Thus,

episodes are not merely subsequences of S, they are subsequences that corre-

spond to qualitatively di�erent things that happen in a domain. To qualify as

an episode in S, a subsequence of S should span or cover one or more things

that happen, but it should not span part of one and part of another. Suppose

we know the processes Ps that generate S, labelled a,b,c,f, and we have two al-

gorithms, X and Y, that somehow induce models, labelled 1, 2, and 3, as shown

here:

Psaaaaabbbbbbaaaacccffffffffaaaaaffffffffffaaaa

X 111111222222211222233333333111113333333333111

Y 222111111111111133333111111122222222233333333

The �rst �ve ticks of S are generated by process a, the next six by b, and so on.

Algorithm X does a pretty good job: its models correspond to types of episodes.

When it labels a subsequence of S with 1, the subsequence was generated entirely

or mostly by process a. When it labels a subsequence with 2, the subsequence was

generated by process b or c. It's unfortunate that algorithm X doesn't induce

the distinction between processes of type b and c, but even so it does much

better than algorithm Y, whose model instances show no correspondence to the

processes that generate S.

3 Fluents and Temporal Relationships

In general, the vector xt contains real-valued sensor readings, such as distances,

RGB values, amplitudes, and so on. The algorithm described here works with bi-

nary vectors only. In practice, this is not a great limitation if one has a perceptual

system of some kind that takes real-valued sensor readings and produces propo-

sitions that are true or false. We did this in our experiments with the Pioneer 1

robot. Sensor readings such as translational and rotational velocity, the output

of a \blob vision" system, sonar values, and the states of gripper and bump

sensors, were inputs to a simple perceptual system that produced the follow-

ing nine propositions: stop, rotate-right, rotate-left, move-forward,

near-object, push, touch, move-backward, stall.

Nine propositions permit 29 = 512 world states, but many of these are impos-

sible (e.g., moving forward and backward at the same time) and only 35 unique

states were observed in the experiment, below. States are not static: the robot

can be in the state of moving forward. Moving forward near an object is a state

in the sense that it remains true that the robot is moving forward and near an

object.



States with persistence are called uents [4]. They have beginnings and ends.

Allen [1] gave a logic for relationships between the beginnings and ends of uents.

We use a nearly identical set of relationships:

sbeb X starts before Y, ends before Y; Allen's \overlap"

sweb Y starts with X, ends before X; Allen's \starts"

saew Y starts after X, ends with X; Allen's \�nishes"

saeb Y starts after X, ends before X; Allen's \during"

swew Y starts with X, ends with X; Allen's \equal"

se Y starts after X ends; amalgamating Allen's \meets" and \before"

In Allen's calculus, \meets" means the end of X coincides exactly with the be-

ginning of Y, while \before" means the former event precedes the latter by some

interval. In our work, the truth of a predicate such as se or sbeb depends on

whether start and end events happen within a window of brief duration; for ex-

ample, se(xy) is true if y starts within a few ticks of the end of x; these events

can coincide, but they needn't. Similarly, sbeb(xy) is true if y does not start

within a few ticks of the start of x; if it did, then the appropriate relationship

would be sweb. Said di�erently, \starts with" means \starts within a few ticks

of" and \starts before" means \starts more than a few ticks before" The reason

for this window is that on a real robot, it takes time for events to show up in

sensor data and be processed perceptually into propositions, so coinciding events

will not necessarily produce propositional representations at exactly the same

time.

4 Learning Composite Fluents

As noted, a uent is a state with persistence. A composite uent is a statistically

signi�cant temporal relationship between uents. Suppose that every time the

robot pushed an object, it eventually stalled. This relationship might look like

this:

touch ----------------------

push ----------

stall ----------

Three temporal relationships are here: sweb(touch,push), saew(touch,stall) and

se(stall,push). But there are other ways to represent these relationships, too; for

example, the relationship saew(stall,sweb(touch,push)) says, \the relationship

between touch and push begins before and ends with their relationship with

stall." In what follows, we describe how to learn representations like these that

correspond well to episodes in the life of a robot.

Let � 2[sbeb,sweb,saew,saeb,swew,se], and let f be a proposition (e.g.,

moving-forward). Composite uents have the form:

F  f or �(f; f)

CF  �(F; F )



That is, a uent F may be a proposition or a temporal relationship between

propositions, and a composite uent is a temporal relationship between uents.

As noted earlier, a situation has many alternative uent representations, we want

a method for choosing some over others. The method will be statistical: We will

only accept �(F; F ) as a representation if the constituent uents are statistically

associated, if they \go together."

An example will illustrate the idea. Suppose we are considering the composite

uent se(jitters,co�ee), that is, the start of the jitters begins after the end of

having co�ee. Four frequencies are relevant:

a b

c d

coffee

no coffee

jitters no jitters

Certainly, a should be bigger than b, that is, I should get the jitters more

often than not after drinking co�ee. Suppose this is true, so a = kb. If the relative

frequency of jitters is no di�erent after I drink, say, orange juice, or talk on the

phone (e.g., if c = kd) then clearly there's no special relationship between co�ee

and jitters. Thus, to accept se(jitters,co�ee), I'd want a = kb and c = md, and

k >> m. The chi-square test (among others) suÆces to test the hypothesis that

the start of the jitters uent is independent of the end of the drinking co�ee

uent.

It also serves to test hypotheses about the other �ve temporal relationships

between uents. Consider a composite uent like sbeb(brake,clutch): When I ap-

proach a stop light in my standard transmission car, I start to brake, then depress

the clutch to stop the car stalling; later I release the brake to start accelerating,

and then I release the clutch. To see whether this uent| sbeb(brake,clutch)|is

statistically signi�cant, we need two contingency tables, one for the relationship

\start braking then start to depress the clutch" and one for \end braking and

then end depressing the clutch":

a1 b1

c1

a2 b2

c2 d2d1

s(x=brake)

s(x!=brake)

e(x=brake)

e(x!=brake)

s(x=clutch)s(x!=clutch) e(x=clutch)e(x!=clutch)

Imagine some representative numbers in these tables: Only rarely do I start

something other than braking and then depress the clutch, so c1 is small. Only

rarely do I start braking and then start something other than depressing the

clutch (otherwise the car would stall), so b1 is also small. Clearly, a1 is relatively

large, and d1 bigger, still, so the �rst table has most of its frequencies on a

diagonal, and will produce a signi�cant statistic. Similar arguments hold for the



second table. When both tables are signi�cant, we say sbeb(brake,clutch) is a

signi�cant composite uent.

5 Fluent learning algorithm

The uent learning algorithm incrementally processes a time series of binary

vectors. At each tick, a bit in the vector xt is in one of four states:

Still o�: xt�1 = 0 ^ xt = 0

Still on: xt�1 = 1 ^ xt = 1

Just o�: xt�1 = 1 ^ xt = 0

Just on: xt�1 = 0 ^ xt = 1

The fourth case is called opening; the third case closing. Recall that the sim-

plest uents f are just propositions, i.e., bits in the vector xt, so we say a simple

uent f closes or opens when the third or fourth case, above, happens; and de-

note it open(f) or close(f). Things are slightly more complicated for composite

uents such as sbeb(f1,f2), because of the ambiguity about which uent opened.

Suppose we see open(f1) and then open(f2). It's unclear whether we have just ob-

served open(sbeb(f1,f2)), open(saeb(f1 ,f2)), or open(saew(f1 ,f2)). Only when

we see whether f2 closes after, before, or with f1 will we know which of the three

composite uents opened with the opening of f2.

The uent learning algorithm maintains contingency tables that count co-

occurrences of open and close events. For example, the tables for sbeb(f1,f2)

are just:

close(f=f 1,t)

close(f!=f 1,t)

close(f = f2,t+m) close(f != f2,t+m)

a2 b2

c2 d2

open(f=f 1,t)

open(f!=f 1,t)

open(f = f2,t+m) open(f != f2,t+m)

a1 b1

c1 d1

That is, f2 must open after f1 and close after it, too. We restrict the number

of ticks, m, by which one opening must happen after another: m must be bigger

than a few ticks, otherwise we treat the openings as simultaneous; and it must

be smaller than the length of a short-term memory. The short term memory has

two kinds of justi�cation. First, animals do not learn associations between events

that occur far apart in time. Second, if every open event could be paired with

every other (and every close event) over a long duration, then the uent learning

system would have to maintain an enormous number of contingency tables.

At each tick, the uent learning algorithm �rst decides which simple and com-

posite uents have closed. With this information, it can disambiguate which com-

posite uents opened at an earlier time (within the bounds of short term mem-

ory). Then, it �nds out which simple and composite uents have just opened, or

might have opened (recall, some openings are ambiguous). To do this, it consults



a list of accepted uents, which initially includes just the simple uents|the bits

in the time series of bit vectors| and later includes statistically-signi�cant com-

posite uents. This done, it can update the open and close contingency tables

for all uents that have just closed. Next, it updates the �2 statistic for each

table and it adds the newly signi�cant composite uents to the list of accepted

uents.

The algorithm is incremental because new composite uents become available

for inclusion in other uents as they become signi�cant.

6 An Experiment

The dataset is a time series of 22535 binary vectors of length 9, generated by

a Pioneer 1 mobile robot as it executed 48 replications of a simple approach-

and-push plan. In each trial, the robot visually located an object, oriented to it,

approached it rapidly for a while, slowed down to make contact, attempted to

push the object, and, after a variable period of time, stalled and backed up. In

one trial, the robot got wedged in a corner of its playpen.

Data from the robot's sensors were sampled at 10Hz and passed through

a simple perceptual system that returned values for nine propositions: stop,

rotate-right, rotate-left, move-forward, near-object, push, touch,

move-backward, stall. The robot's sensors are noisy and its perceptual sys-

tem makes mistakes, so some of the 35 observed states contained semantic

anomalies (e.g., 55 instances of states in which the robot is simultaneously stalled

and moving backward).

Because the robot collected data vectors at 10Hz and its actions and envi-

ronment did not change quickly, long runs of identical states are common. In

this application, it is an advantage that uent learning keys on temporal rela-

tionships between open and close events and does not attend to the durations

of the uents: A push uent ends as a stall event begins, and this relationship

is signi�cant irrespective of the durations of the push and stall.

Each tick in the time series of 22353 vectors was marked as belonging to

exactly one of seven episodes:

A : start a new episode, orientation and �nding target

B1 : forward movement

B2 : forward movement with turning or intruding periods of turning

C1 : B1 + an object is detected by sonars

C2 : B2 + an object is detected by sonars

D : robot is in contact with object (touching, pushing)

E : robot stalls, moves backwards or otherwise ends D

This markup was based on our knowledge of the robot's controllers (which we

wrote). The question is how well do the induced uents correspond to these

episodes.



7 Results

The composite uents involving three or more propositions discovered by the

uent learning system are shown below. (This is not the complete set of such

uents, but the others in the set are variants of those shown, e.g., versions of

uent 4, involving two and four repetitions of swew(push,move-forward)

respectively.) In addition, the system learned 23 composite uents involving two

propositions. Eleven of these involved temporal relationships between move-

forward, rotate-right and rotate-left. Let's begin with the uents shown

below. The �rst captures a strong regularity in how the robot approaches an

obstacle. Once the robot detects an object visually, it moves toward it quite

quickly, until the sonars detect the object. At that point, the robot immediately

stops, and then moves forward more slowly. Thus, we expect to see saeb(near-

object,stop), and we expect this uent to start before move-forward, as

shown in the �rst composite uent. This uent represents the bridge between

episodes of types B and C.

near-obstacle
move-forward
stop

touch
push
move-forward
stop

near-obstacle
push
move-forward

push
move-forward

touch
push
stop
move-backward
stall

push
move-forward
move-backward
stall

1.

2.

3.

4.

5.

6.

The second uent shows that the robot stops when it touches an object but

remains touching the object after the stop uent closes (sweb(touch,stop))

and this composite uent starts before and ends before another composite uent

in which the robot is simultaneously moving forward and pushing the object.

This is an exact description of episodes of type D, above.

The third uent is due to the noisiness of the Pioneer 1 sonars. When the

sonars lose contact with an object, the near-object uent closes, and when

contact is regained, the uent reopens. This happens frequently during the push-

ing phase of each trial because, when the robot is so close to a (relatively small)

box, the sonar signal o� the box is not so good.

The fourth uent represents episodes of type D, pushing the object. The robot

often stops and starts during a push activity, hence the se uents. The �fth u-

ent represents the sequence of episodes of type D and E: The robot pushes, then

after the pushing composite uent ends, the move-backward and stall u-

ents begin. It is unclear why this composite uent includes swew(stall,move-

backward), implying that the robot is moving while stalled, but the data do



indeed show this anomalous combination, suggesting a bug in the robot's per-

ceptual system.

The last uent is another representation of the sequence of episodes D and E.

It shows the robot stopping when it touches the object, then pushing the object,

and �nally moving backward and stalled.

At �rst glance, it is disappointing that the uent learning algorithm did

not �nd higher-order composite uents| involving two or more temporal rela-

tionships between uents|for episodes of type A and B. During episode A the

robot is trying to locate the object visually, which involves rotation; and during

episodes B1 and B2 it moves quickly toward the object. Unfortunately, a bug

in the robot controller resulted in a little \rotational kick" at the beginning of

each forward movement, and this often knocked the robot o� its chosen course,

and sometimes required it to visually reacquire the object. Consequently, during

episodes of type A and B2, we see many runs of combinations of moving forward,

rotating left, rotating right, and sometimes backing up. This is why 15 of 23 u-

ents of two propositions involve these propositions. For example, we have saeb,

saew, sweb, and sbeb uents relating move-forward and rotate-left.

None of these �fteen uents was eventually combined into higher order u-

ents. Why not? The reason is simply that during episodes of type A and B, it

is common to see two things happening simultaneously or sequentially, but it is

uncommon to see systematic associations between three or more things.

In sum, the uents above represent the episodic structure of episodes C, D

and E; while episodes of types A and B are represented by composite uents

of two propositions, typically moving forward, rotating left, and rotating right.

Qualitatively, then, these uents are not bad representations of episodes and

sequences of episodes in the robot data set. Results of a more quantitative nature

follow.

Recall that each of 22535 ticks of data belongs to one of seven episode types,

so we can obtain a time series of 22535 episode labels in the set A,B1, B2, C1,

C2, D, E. Similarly, we can \tile" the original dataset with a set of uents. Each

element in this uent tiling series will contain the labels of zero or more open

uents. Then, we can put the episode-label series next to the uent tiling series

and see which uents opened and closed near episode boundaries.

A particularly interesting result is that two uents occurred nowhere near

episode boundaries. They are saeb(swew(move-forward, pushing), near-

obstacle) and saeb(pushing, near-obstacle). Is this an error? Shouldn't

uent boundaries correspond to episode boundaries? In general, they should, but

recall from the previous section that these uents are due to sonar errors during

a pushing episode (i.e., episodes of type D). A related result is that these were

the only discovered uents that did not correlate with either the beginning or

the end of episodes.

When the uent tiling series and the episode-label series are lined up, tick-

by-tick, one can count how many unique episode labels occur, and with what

frequency, during each occurrence of a uent. Space precludes a detailed de-

scription of the results, but they tend to give quantitative support for the earlier



qualitative conclusions: The composite uents above generally span episodes of

type D and E. For example, the �fth uent in the �gure above spans 1417 ticks

labeled D and 456 labeled E (these are not contiguous, of course, but distributed

over the 48 trials in the dataset). And the sixth uent covers 583 ticks labeled

D and 33 ticks labeled E. The third uent, in which the robot loses and regains

sonar contact with the object, spans 402 ticks of episode D.

Not all the higher-order composite uents are so tightly associated with par-

ticular types of episodes. The �rst uent in the �gure above, in which the robot

stops and then begins to move forward, all while near an object, spans 405 ticks

of episodes labeled C1, 157 ticks of episodes labeled D, 128 ticks of episodes

labeled C2, and two ticks of episodes labeled B1. Although this uent is statis-

tically signi�cant, it is not a good predictor of any episode type.

This story is repeated for uents involving just two propositions from the set

moving-forward, moving- backward, rotate-left, rotate-right. Each

of these uents covers a range of episode types, mostly B2, B1, C2 and C1. These

uents evidently do not correspond well with episodes of particular types.

In sum, higher-order composite uents involving more than one temporal

relationship tend to be very strongly predictive of episodes of types D and E

(or the sequence D,E). Some low-order composite uents, involving just two

propositions, are also very strongly predictive of episodes (e.g., swew(rotate-

left,move-forward) occurs almost exclusively in episodes of type B2); but

other low-order composite uents are not strongly associated with a particu-

lar episode type. Finally, it appears that the corpus of uents learned by the

algorithm contained none that strongly predict episodes of type A.

8 Discussion

Fluent learning works for multivariate time series in which all the variables are

binary. It does not attend to the durations of uents, only the temporal re-

lationships between open and close events. This is an advantage in domains

where the same episode can take di�erent amounts of time, and a disadvantage

in domains where duration matters. Because it is a statistical technique, uent

learning �nds common patterns, not all patterns; it is easily biased to �nd more

or fewer patterns by adjusting the threshold value of the statistic and varying

the size of the uent short term memory. Fluent learning elucidates the hierar-

chical structure of episodes (i.e., episodes contain episodes) because uents are

themselves nested. We are not aware of any other algorithm that is unsupervised,

incremental, multivariate, and elucidates the hierarchical structure of episodes.

Fluent learning is based on the simple idea that random coincidences of

events are rare, so the episodic structure of a time series can be discovered

by counting these coincidences. Thus, it accords with psychological literature

on neonatal abilities to detect coincidences [9], and it has a strong statistical

connection to causal induction algorithms [6]; though we do not claim that the

algorithm discovers causal patterns. Our principal claim is that the algorithm

discovers patterns (a syntactic notion) that correspond with episodes (a semantic



notion) without knowledge of the latter. In discovering patterns|the \shape" of

episodes|it di�ers from techniques that elucidate only probabilistic structure,

such as autoregressive models [3], HMMs [2], and markov-chain methods such

as MBCD [7]. Clustering by dynamics and time-warping also discover patterns

[5,8], but require the user to �rst identify episode boundaries in time series.
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