
Voting Experts. Cohen and Adams.

1

An Algorithm for Segmenting Categorical Time Series into
Meaningful Episodes

Paul Cohen. Department of Computer Science. University of Massachusetts. cohen@cs.umass.edu
Niall Adams. Department of Mathematics. Imperial College, London. n.adams@ic.ac.uk

Abstract. This paper describes an unsupervised algorithm for segmenting categorical time series.

The algorithm first collects statistics about the frequency and boundary entropy of ngrams, then
passes a window over the series and has two “expert methods” decide where in the window
boundaries should be drawn. The algorithm segments text into words successfully, and has also
been tested with a data set of mobile robot activities. We claim that the algorithm finds

meaningful episodes in categorical time series, because it exploits two statistical characteristics of
meaningful episodes.

Introduction
Most English speakers will segment the 29 characters in “itwasabrightcolddayinapriland”

into nine words. We draw segment boundaries in eight of the 28 possible locations so that
the sequences of characters between the boundaries are meaningful. In general, there is
an exponential number of ways to draw segment boundaries in ways that produce

meaningless segments (e.g., “itw” “asab” “rig” …) but we somehow manage to find the
“right” segmentation, the one that corresponds to meaningful segments. It seems likely
that we do it by recognizing words in the sequence: The task is more difficult if the

characters constitute words in an unknown language, or if they are transliterations of
roman characters into a new font. For example, “itwasabrightcolddayinapriland”
is formally (statistically) identical with “itwasabrightcolddayinapriland”; the two

sequences have the same ascii representation but are rendered in different fonts. One is
easily segmented, the other is not.

This paper asks whether there is a way to find meaningful units in time series other than
recognizing them. It proposes two statistical characteristics of meaningful units, and
reports experiments with an unsupervised segmentation algorithm based on these

characteristics. We offer the conjecture that these characteristics are domain-
independent, and we illustrate the point by segmenting text in two languages, and also
time series of perceptual data produced by a mobile robot.

The Segmentation Problem

Suppose we remove all the spaces and punctuation from a text, can an algorithm figure
out where the word boundaries should go? To illustrate the difficulty of the task, here are

Voting Experts. Cohen and Adams.

2

the first 500 characters of George Orwell’s 1984, spaces and punctuation removed,

translated into a strange font, so you cannot use your knowledge of English to identify
words:

I t w a s a b r i g h t c o l d d a y i n A p r i l a n
 d t h e c l o c k s w e r e s t r i k i n g t h i r t
 e e n W i n s t o n S m i t h h i s c h i n n u z z l e
 d i n t o h i s b r e a s t i n a n e f f o r t t o e
s c a p e t h e v i l e w i n d s l i p p e d q u i c k
 l y t h r o u g h t h e g l a s s d o o r s o f V i c
 t o r y M a n s i o n s t h o u g h n o t q u i c k l
 y e n o u g h t o p r e v e n t a s w i r l o f g r i
 t t y d u s t f r o m e n t e r i n g a l o n g w i t
h h i m T h e h a l l w a y s m e l t o f b o i l e d
c a b b a g e a n d o l d r a g m a t s A t o n e e n
 d o f i t a c o l o u r e d p o s t e r t o o l a r g
 e f o r i n d o o r d i s p l a y h a d b e e n t a
c k e d t o t h e w a l l I t d e p i c t e d s i m p
l y a n e n o r m o u s f a c e m o r e t h a n a m e
 t r e w i d e t h e f a c e o f a m a n o f a b o u
t f o r t y f i v e w i t h a h e a v y b l a c k m o
 u s t a c h e a n d r u g g e d l y h a n d s o m e
f e a t u r e s W i n s t o

To an algorithm that doesn’t know English, the actual characters of Orwell’s text are no
more meaningful than the symbols above are to you1. Nevertheless, it can insert
boundaries between the characters that are meaningful. Here is the result of running the

algorithm on the first 500 characters of 1984. The ❂ symbols are induced boundaries:

Itwas ❂ a ❂ bright ❂ cold ❂ day ❂ in ❂ April ❂ andthe ❂ clockswere ❂ st
❂ ri ❂ king ❂ thi ❂ rteen ❂ Winston ❂ Smith ❂ his ❂ chin ❂ nuzzl ❂

edinto ❂ his ❂ brea ❂ st ❂ in ❂ aneffort ❂ to ❂ escape ❂ the ❂ vilewind
❂ slipped ❂ quickly ❂ through ❂ the ❂ glass ❂ door ❂ sof ❂ Victory ❂

Mansions ❂ though ❂ not ❂ quickly ❂ en ❂ ought ❂ oprevent ❂ aswirl ❂

ofgrit ❂ tydust ❂ from ❂ ent ❂ er ❂ inga ❂ long ❂ with ❂ himThe ❂ hall
❂ ways ❂ meltof ❂ boiled ❂ cabbage ❂ and ❂ old ❂ ragmatsA ❂ tone ❂ endof
❂ it ❂ acoloured ❂ poster ❂ too ❂ large ❂ for ❂ indoor ❂ dis ❂ play ❂

hadbeen ❂ tack ❂ ed ❂ tothe ❂ wall ❂ It ❂ depicted ❂ simplya ❂ n ❂

enormous ❂ face ❂ more ❂ than ❂ ametre ❂ widethe ❂ faceof ❂ aman ❂ of ❂

about ❂ fortyfive ❂ witha ❂ heavy ❂ black ❂ moustache ❂ and ❂ rugged ❂

ly ❂ handsome ❂ featur

The segmentation clearly is not perfect: Words are run together (Itwas, aneffort) and
broken apart (st ❂ ri ❂ king). More seriously, some words are split between segments
(“to” in en ❂ ought ❂ oprevent), although the algorithm loses only a small fraction of

words this way.

To define the segmentation problem, we must first distinguish patterns from episodes.

An episode is a pattern that means something in a domain. This definition holds for any
notion of pattern and any domain. Thus, “black” and “un” are patterns and also episodes

1 The sense in which the algorithm knows and does not know English is described in the following section.

Obviously, it knows something, otherwise its segmentation would be random, but we argue that what it
knows is not specific to English or even to human languages, and is, in any case, acquired from the data.

Voting Experts. Cohen and Adams.

3

(both are morphemes), whereas “bla” is a pattern but not an episode. In computer vision,

induced lines are patterns, and some of them are also episodes by merit of corresponding
to edges in the scene. In chess, sixteen pawns arranged neatly in a square in the center of
the board doubtless constitute a pattern, but the arrangement is meaningless in the

domain, so it is not an episode. The segmentation problem is: Given a time series of

categorical data that contains episodes but no episode boundary markers (e.g., spaces,

punctuation) insert boundary markers so that the subsequences between the markers are

episodes, i.e., meaningful.

It is not difficult to write algorithms to find patterns in time series of categorical data, but

the majority of these patterns will not be episodes. For example, the following
subsequences are the 100 most frequently-occurring patterns in the first 10,000 characters
of Orwell’s text, but most are not morphemes, that is, meaningful units:

th in the re an en as ed to ou it er of at ing was or st
on ar and es ic el al om ad ac is wh le ow ld ly ere he wi
ab im ver be for had ent itwas with ir win gh po se id ch ot
ton ap str his ro li all et fr andthe ould min il ay un ut
ur ve whic dow which si pl am ul res that were ethe wins not
winston sh oo up ack ter ough from ce ag pos bl by tel ain

Related work
Many methods have been developed for segmenting time series. Of these, many deal

with continuous time series, and so are not directly comparable to the problem we are
considering here. Some methods for categorical series are based on compression (e.g.,
[5,8]), but as we just saw, compression finds common, not necessarily meaningful

subsequences. Some methods are trained to find instances of patterns or templates (e.g.,
[2,4]) but we wanted an unsupervised method. There is some work on segmentation in
the natural language and information retrieval literature, for instance, techniques for

segmenting Chinese, which has no word boundaries in its orthography. The method in
[8], is similar to ours, though it requires training on very large corpora. Magerman and
Marcus’ [3] approach to parsing based on mutual information statistics is similar to our

notion of boundary entropy (see below). We know of no related research on
characteristics of meaningful subsequences, that is, statistical markers of boundaries of
meaning-carrying subsequences.

Characteristics of Episodes

Although we are far from a theory of episodes – a theory to tell us which subsequences of
a series are meaningful – we have observed four empirical characteristics of episodes.

Voting Experts. Cohen and Adams.

4

Two of them are not implemented in the current algorithm: one of these relies on the fact

that random coincidences are rare, so coincidences often mark episode boundaries [1];
the other exploits the idea that adjacent episodes are often generated by processes that
have different underlying probability distributions, so one can infer episode boundaries

by looking for points at which the sequences to the left and right of the boundary have
different estimated distributions [6,7]. The two characteristics of episodes that we have
implemented here are called boundary entropy and frequency:

Boundary entropy. Every unique subsequence is characterized by the distribution of
subsequences that follow it; for example, the subsequence “en” in this sentence repeats
five times and is followed by tokens c and ”. This distribution has an entropy value

(0.72, as it happens). In general, every subsequence of length n has a boundary entropy,
which is the entropy of the distribution of subsequences of length m that follow it. If a
subsequence S is an episode, then the boundary entropies of subsequences of S will have

an interesting profile: They will start relatively high, then sometimes drop, then peak at
the last element of S. The reasons for this seem to be, first, that the predictability of
elements within an episode increases as the episode extends over time; and, second, that

the element that immediately follows an episode is relatively uncertain. Said differently,
within episodes, we know roughly what will happen, but at episode boundaries we
become uncertain.

Frequency. Episodes, recall, are meaningful sequences, they are patterns in a domain
that we call out as special, important, valuable, worth committing to memory, worth
naming, etc. One reason to consider a pattern meaningful is that one can use it for

something, like prediction. (Predictiveness is another characteristic of episodes nicely
summarized by entropy.) Rare patterns are less useful than common ones simply because
they arise infrequently, so all human and animal learning places a premium on frequency.

In general, episodes are common patterns, but not all common patterns are episodes, as
we saw earlier.

The Voting Experts Algorithm
The voting experts algorithm includes experts that attend to boundary entropy and
frequency, and is easily extensible to include experts that attend to other characteristics of
episodes. The algorithm simply moves a window across a time series and asks, for each
location in the window, whether to “cut” the series at that location. Each expert casts a

vote. Each location takes n steps to traverse a window of size n, and is seen by the
experts in n different contexts, and may accrue up to n votes from each expert. Given the

Voting Experts. Cohen and Adams.

5

results of voting, it is a simple matter to cut the series at locations with high vote counts.

Here are the steps of the algorithm:

Build an ngram tree of depth n+1. Nodes at level i of an ngram tree represent ngrams

of length i. The children of a node represent the extensions of the ngram represented by
the node. For example, a b c a b d produces the following ngram tree of depth 2:

Every ngram of length 2 or less in the sequence a b c a b d is represented by a node in

this tree. The numbers in parentheses represent the frequencies of the subsequences. For
example, the subsequence ab occurs twice, and every occurrence of a is followed by b.

For the first 10,000 characters in Orwell’s text, an ngram tree of depth 7 includes 33774
nodes, of which 9109 are leaf nodes. That is, there are over nine thousand unique
subsequences of length 7 in this sample of text, although the average frequency of these

subsequences is 1.1 – most occur exactly once. The average frequencies of subsequences
of length 1 to 7 are 384.4, 23.1, 3.9, 1.8, 1.3, 1.2, and 1.1.

Calculate boundary entropy. The boundary entropy of an ngram is the entropy of the
distribution of tokens that can extend the ngram. The entropy of a distribution of a
random variable x is just − p(x)log p(x)∑ . Boundary entropy is easily calculated from the

ngram tree. For example, the node a has entropy equal to zero because it has only one
child, ab, so log p(ab) = log1.0 = 0 whereas the entropy of node b is 1.0 because it has two

equiprobable children, bc and bd. Clearly, only the first n levels of the ngram tree of

depth n+1 can have node entropy scores.

Standardize frequencies and boundary entropies. In most domains, there is a

systematic relationship between the length and frequency of patterns; in general, short
patterns are more common than long ones (e.g., on average, for subsets of 10,000
characters from Orwell’s text, 64 of the 100 most frequent patterns are of length 2; 23

are of length 3, and so on). Our algorithm will compare the frequencies and boundary
entropies of ngrams of different lengths, but in all cases we will be comparing how
unusual these frequencies and entropies are, relative to other ngrams of the same length.

a b c d

ab bc bd ca

(2) (2) (1) (1)

(1)(1)(1)(2)

Voting Experts. Cohen and Adams.

6

To illustrate, consider the words “a” and “an”. In the first 10000 characters of Orwell’s

text, “a” occurs 743 times, “an” 124 times, but “a” occurs only a little more frequently
than other one-letter ngrams, whereas “an” occurs much more often than other two-letter
ngrams. In this sense, “a” is ordinary, “an” is unusual. Although “a” is much more

common than “an” it is much less unusual relative to other ngrams of the same length.
To capture this notion, we standardize the frequencies and boundary entropies of the
ngrams. To standardize a value in a sample, subtract the sample mean from the value and

divide by the sample standard deviation: zi = xi − x () s x . This has the effect of expressing

the value xi as the number zi of standard deviations s x it is away from the sample mean

x . Standardized, the frequency of “a” is 1.1, whereas the frequency of “an” is 20.4. In

other words, the frequency of “an” is 20.4 standard deviations above the mean frequency
for sequences of the same length. We standardize boundary entropies in the same way,
and for the same reason.

Score potential segment boundaries. In a sequence of length k there are k −1 places to
draw boundaries between segments, and, thus, there are 2 k −1 ways to divide the sequence

into segments. Our algorithm is greedy in the sense that it considers just k −1, not 2 k −1 ,
ways to divide the sequence. It considers each possible boundary in order, starting at the
beginning of the sequence. The algorithm passes a window of length n over the

sequence, halting at each possible boundary. All of the locations within the window are
considered, and each garners zero or one vote from each expert. Because we have two
experts, for boundary-entropy and frequency, respectively, each possible boundary may

garner up to 2n votes. This is illustrated below. A window of length 3 is passed along
the sequence itwasacold….

Initially, the window covers itw. The entropy and frequency experts each decide where

they could best insert a boundary within the window (more on this, below). The entropy

i t w a s a c o l d ...

i t w a s a c o l d ...

i t w a s a c o l d ...

i t w a s a c o l d ...

i t w a s a c o l d ...

i t w a s a c o l d ...

i t w a s a c o l d ...

0 0 3 1 0 2

frequency

entropy

frequency

entropy

frequency

entropy

Voting Experts. Cohen and Adams.

7

expert favors the boundary between t and w, while the frequency expert favors the

boundary between w and whatever comes next. Then the window moves one location to
the right and the process repeats. This time, both experts decide to place the boundary
between t and w. The window moves again and both experts decide to place the

boundary after s, the last token in the window. Note that each potential boundary
location (e.g., between t and w) is seen n times for a window of size n, but it is considered
in a slightly different context each time the window moves. The first time the experts

consider the boundary between w and a, they are looking at the window itw, and the last
time, they are looking at was.

In this way, each boundary gets up to 2n votes, or n votes from each of two experts, for a
window of size n. The wa boundary gets one vote, the tw boundary, three votes, and the
sa boundary, two votes.

The experts use slightly different methods to evaluate boundaries and assign votes.
Consider the window itw from the viewpoint of the boundary entropy expert. Each

location in the window bounds an ngram to the left of the location; the ngrams are i, it,
and itw, respectively. Each ngram has a standardized boundary entropy. The boundary
entropy expert votes for the location that produces the ngram with the highest

standardized boundary entropy. As it happens, for the ngram tree produced from
Orwell’s text, the standardized boundary entropies for i, it, and itw are 0.2, 1.39 and
–0.02, so the boundary entropy expert opts to put a boundary after the ngram it.

The frequency expert places a boundary so as to maximize the sum of the standardized
frequencies of the ngrams to the left and the right of the boundary. Consider the window

itw again. If the boundary is placed after i, then (for Orwell’s text) the standardized
frequencies of i and tw sum to 1.73; if the boundary is placed after it, then the
standardized frequencies of it and w sum to 2.9; finally, if it is placed after itw, the

algorithm has only the standardized frequency of itw to work with; it is 4.0. Thus, the
frequency expert opts to put a boundary after itw.

Segment the sequence. Each potential boundary in a sequence accrues votes, as
described above, and now we must evaluate the boundaries in terms of the votes and
decide where to segment the sequence. Our method is a familiar “zero crossing” rule: If
a potential boundary has a locally maximum number of votes, split the sequence at that

boundary. In the example above, this rule causes the sequence itwasacold… to be split
after it and was. We confess to one embellishment on the rule: The number of votes for a
boundary must exceed a threshold, and be a local maximum. We found that the

algorithm splits too often without this qualification. In the experiments reported below,

Voting Experts. Cohen and Adams.

8

the threshold was always set to n, the window size. This means that a location must

garner half the available votes (for two voting experts) and be a local maximum to
qualify for splitting the sequence.

Let us review how the design of the experts and the segmentation rule, to see how they
test the characteristics of episodes described earlier. The boundary entropy expert
assigns votes to locations where the boundary entropy peaks, locally, implementing the

idea that entropy increases at episode boundaries. The frequency expert tries to find a
“maximum likelihood tiling” of the sequence, a placement of boundaries that makes the
ngrams to the left and right of the boundary as likely as possible. When both experts vote

for a boundary, and especially when they vote repeatedly for the same boundary, it is
likely to get a locally-maximum number of votes, and the algorithm is apt to split the
sequence at that location.

Evaluation

We removed spaces and punctuation from text and assessed how well the voting experts
algorithm could induce word boundaries. In these experiments, boundaries stand in six
relationships to episodes. To illustrate these relationships, let us adopt the convention

that a horizontal line denotes an episode, and vertical lines denote induced boundaries.
The relationships are:

|______| Case 1: The boundaries coincide with the beginning
and end of the episode

| ____| or |_____ | Case 2: The episode falls entirely within the
boundaries and begins or ends at one boundary.

| ________ | Case 3: The episode falls entirely within the
boundaries but neither the beginning nor the end of
the episode correspond to a boundary.

|_____|_____| or |_____|_____|…|_____| Case 4: One or more boundaries splits an episode,
but the beginning and end of the episode coincide
with boundaries.

|_____|_____ | or |_____|_____|…|_____ | or

| _____|_____| or | _____|_____|…|_____|

Case 5: Like case 4, in that boundaries split an

episode, but only one end of the episode coincides
with a boundary.

| _____|_____ | or | _____|_____|…|_____ | Case 6: The episode is split by one or more
boundaries and neither end of the episode coincides

with a boundary.

The cases can be divided into three groups. In cases 1 and 4, boundaries correspond to

both ends of the episode; in cases 2 and 5, they correspond to one end of the episode; and
in cases 3 and 6, they correspond to neither end. We call these cases exact, dangling, and

Voting Experts. Cohen and Adams.

9

lost to evoke the idea of episodes located exactly, dangling from a single boundary, or

lost in the region between boundaries.

We ran the voting experts algorithm on the first 50,000 characters in Orwell’s 1984,

spaces and punctuation removed. The window length was 6. The algorithm induced
11210 boundaries, for a mean episode length of 4.46. The mean word length in the text
was 4.49. The algorithm induced boundaries at 74.9% of the true word boundaries (the

hit rate) missing 25.1% of the word boundaries. 25.4% of the induced boundaries did not
correspond to word boundaries (the false positive rate). Exact cases, described above,
constitute 55.2% of all cases; that is, 55.2% of the words were bounded at both ends by

induced boundaries. Dangling and lost cases constitute 39.5% and 5.3% of all cases,
respectively. Said differently, only 5.3% of all words in the text got lost between episode
boundaries. These tend to be short words, in fact, 58% of the “lost” words are of length 3

or shorter. In contrast, all of the words for which the algorithm found exact boundaries
are of length 3 or longer.

It is easy to ensure that all word boundaries are found, and no word is lost: Induce a
boundary between each letter. However, this strategy would induce a mean episode
length of 1.0, much shorter than the mean word length, and the false-positive rate would

approach 100%. In contrast, the voting experts algorithm finds roughly the same number
of episodes as there are words in the text, and loses very few words between boundaries.

The effects of the corpus size and the window length are shown in the following graph.
The proportion of “lost” words (cases 3 and 6, above) is plotted on the vertical axis, and
the corpus length is plotted on the horizontal axis. Each curve in the graph corresponds

to a window length, n. The proportion of lost words becomes roughly constant for
corpora of length 10,000 and higher.

0.1

0.2

0.3

10000 20000 30000 40000 50000

"lost" rate

n = 3

n = 4

n = 5

n = 6

corpus length (number of characters)

Voting Experts. Cohen and Adams.

10

Said differently, corpora of this length seem to be required for the algorithm to estimate
boundary entropies and frequencies accurately. As to window length, recall that a
window of length n means each potential boundary is considered n times by each expert,

in n different contexts. Clearly, it helps to increase the window size, but the benefit
diminishes.

The appropriate control conditions for this experiment were run and yielded the expected
results: The algorithm performs very poorly given texts of random words, that is,
subsequences of random letters. The algorithm performs marginally less well when it is

required to segment text it has not seen. For example, if the first 10,000 of Orwell’s text
are used to build the ngram tree, and then the algorithm is required to segment the next
10,000 characters, there is a very slight decrement in performance.

As one test of the generality of the algorithm, we ran it on corpora of Roma-ji text and a
segment of Franz Kafka’s The Castle in the original German. Roma-ji is a transliteration

of Japanese into roman characters. The corpus was a set of Anime lyrics, comprising
19163 roman characters2. For comparison purposes we selected the first 19163
characters of Kafka’s text and the same number of characters from Orwell’s text. As

always, we stripped away spaces and punctuation, and the algorithm induced word
boundaries. Here are the results:

Hit rate False positive rate Exact Dangling Lost

English .71 .28 .49 .44 .07

German .79 .31 .61 .35 .04

Roma-ji .64 .34 .37 .53 .10

Clearly, the algorithm is not biased to do well on English, in particular, as it actually
performs best on Kafka’s text, losing only 4% of the words and identifying 61% exactly.

The algorithm performs less well with the Roma-ji text; it identifies fewer boundaries
accurately (i.e., places 34% of its boundaries within words) and identifies fewer words
exactly. The explanation for these results has to do with the lengths of words in the

corpora. We know that the algorithm loses disproportionately many short words. Words
of length 2 make up 32% of the Roma-ji corpus, 17% of the Orwell corpus, and 10% of
the Kafka corpus, so it is not surprising that the algorithm performs worst on the Roma-ji

corpus and best on the Kafka corpus.

2 We are grateful to Ms. Sara Nishi for compiling this corpus.

Voting Experts. Cohen and Adams.

11

As a further test of the generality of the algorithm, we gave it a time series of 22535

consecutive states of a mobile robot, generated as the robot engaged repeatedly in a
simple “locate an object, move to it, push it” activity. Each of 18 unique states of the
robot (e.g., (near-obstacle moving-forward pushing)) was assigned a

number, and the algorithm was run on the sequence of numbers. The dataset includes
355 episodes. Unlike text, in which words are relatively short, the mean episode length
in the robot data set was 63.33. We were interested to learn whether the voting experts

algorithm would successfully find the boundaries in this data set even with window sizes
far smaller than 63. With a window size of 14, the algorithm induced 956 boundaries,
and correctly identified 58% of the 355 episode boundaries, for a false positive rate of

nearly 80%. This is probably not acceptable performance for most applications: While
the algorithm lost only 20% of the episodes, identifying the boundary of one end or
another 80% of the time, the false positive rate means that 4 out of 5 boundaries are not

true episode boundaries.

Hit rate False positive rate Exact Dangling Lost

Robot dataset .58 .79 .31 .49 .2

The mean length of induced episodes was 23.54, less than half the size of true episodes,

which explains the high false-positive rate. One might expect performance to improve as
the window size gets bigger, but the improvement is bounded by the amount of available
data: Long ngrams are uncommon, so if we build an ngram tree for ngrams of length, say,
30, then the frequencies (and thus boundary entropies) of nodes lower in the tree become

miniscule. Interestingly, the algorithm does not perform much worse with a smaller
window size, despite the length of episodes.

Conclusion
The voting experts algorithm segments characters into words with some accuracy, given

that it is a greedy, unsupervised algorithm that requires relatively little data. It performs
less well identifying long episodes in robot data. In future work, the algorithm will be
augmented with other experts besides the two described here, and we are hopeful that

these will improve performance on datasets like those generated by our robot. In
particular, we have identified two other features of episodes, meaning-carrying
subsequences, and we are building experts to detect these features. The idea that

meaningful subsequences differ from meaningless ones in some formal characteristics –
that syntactic criteria might help us identify semantic units – has practical as well as
philosophical implications.

Voting Experts. Cohen and Adams.

12

References
1. Cohen, Paul. Fluent learning: Elucidating the structure of episodes. Submitted to

IDA2001.
2. M. Garofalakis, R. Rastogi, and K. Shim. Spirit: sequential pattern mining with regular

expression constraints. In Proc. of the VLDB Conference, Edinburgh, Scotland,

September 1999.
3. Magerman D. and Marcus, M. 1990. Parsing a natural language using mutual

information statistics. In Proceedings of AAAI-90, Eighth National Conference on

Artificial Intelligence, 984—989
4. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event

sequences. Data Mining and Knowledge Discovery, 1(3), 1997.

5. Nevill-Manning, C.G. and Witten, I.H. (1997) Identifying Hierarchical Structure in
Sequences: A linear-time algorithm, Volume 7, pages 67-82.

6. Tim Oates, Laura Firoiu, Paul Cohen. Using Dynamic Time Warping to Bootstrap

HMM-Based Clustering of Time Series. In Sequence Learning: Paradigms,
Algorithms and Applications. Ron Sun and C. L. Giles (Eds.) Springer-Verlag: LNAI
1828. 2001

7. Paola Sebastiani, Marco Ramoni, Paul Cohen. Sequence Learning via Bayesian
Clustering by Dynamics. In Sequence Learning: Paradigms, Algorithms and
Applications. Ron Sun and C. L. Giles (Eds.) Springer-Verlag: LNAI 1828. 2001

8. Teahan, W.J., Y. Wen, R. McNab and I.H. Witten. A compression-based algorithm for
Chinese word segmentation. Computational Linguistics, v 26, no 3, September, 2000,
p 375-393.

9. Weiss, G. M., and Hirsh, H. 1998. Learning to Predict Rare Events in Categorical
Time-Series Data, Proceedings of the 1998 AAAI/ICML Workshop on Time-Series
Analysis, Madison, Wisconsin.

