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The focus of this article will appear at �rst to be a narrow, prescriptive little corner of the

methodological landscape. Data analysis is often dismissed as no more complicated than calculating

some means and comparing them with t tests or the like. Consequently, experiments and analyses

are ine�cient, requiring more data than necessary to show an e�ect; they waste data, failing to

show e�ects; and they sometimes induce hallucinations, suggesting e�ects that don't exist. I am

the last person to suggest that methodology boils down to statistics [2, p. x], but bad analysis can

spoil an entire research program, so warrants attention. I will discuss three common and easily

�xed problems:

1. Accepting the null hypothesis, a misuse of statistical machinery.

2. Inadequate attention to sources of variance, leading to insigni�cant results and failure to

notice interactions among factors.

3. Multiple pairwise comparisons, leading to nonexistent e�ects.

I have constructed a dataset to illustrate these problems. It contains hypothetical assessments

of con�dence for boys and girls in grades 4, 5, 6 and 7, and is called the gender dataset, henceforth.

(Real studies of these factors are described in [1]; for real examples from Arti�cial Intelligence, see

[2]; the gender dataset is available from cohen@cs.umass.edu).

mean std

boys 4.271 .531

girls 3.996 .888

Table 1: Hypothetical means and standard deviations for con�dence scores for boys and girls

averaged over students and grade levels.

1 Accepting the Null Hypothesis.

Suppose one has the hypothesis that girls and boys are equally con�dent. Mean con�dence, av-

eraged over grade levels, is shown in Table 1. A t test shows no e�ect of gender; boys' and girls'

con�dence levels are not signi�cantly di�erent; therefore, the hypothesis that boys and girls are

equally con�dent is accepted.

This line of reasoning makes nonsense of statistical hypothesis testing. The logic of hypothesis

testing is analogous to proof by contradiction: First, formulate a null hypothesis, denoted H0,

which is the complement of what you hope to show. Then, derive a sampling distribution of all

possible sample results, given H0. Then, if your sample result is very unlikely according to this

H0 sampling distribution, you may reject H0 and accept the alternative, complement hypothesis.
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The probability of incorrectly rejecting H0, denoted p, is bounded by a parameter denoted �.

Conventionally, researchers set � = :05, so they will not reject H0 unless the probability of an

observed result given H0 is p < :05.

Here's the catch: H0 must be an identity, such as, \boys' con�dence equals girls' con�dence,"

otherwise, it is impossible to derive the sampling distribution. This means that the alternative

hypothesis must be an inequality (e.g., boys are more con�dent, less con�dent, or simply not

equally con�dent). And so, you can only reject an identity hypothesis; you can never accept one.

Failure to reject an identityH0 does not make the identity true. As we will see, tests fail for reasons

that have nothing to do with the veracity of the null hypothesis, notably large sample variance or

small sample size.

So how is one supposed to demonstrate identities within the framework of statistical hypothesis

testing? For example, how can one show that boys and girls really are equally con�dent? You

cannot prove anything statistically, but if you fail to reject the null hypothesis, you can then try to

show that boys and girls are very unlikely to have di�erent con�dence levels. If you succeed, then

you have accrued support for the null hypothesis (in addition to failing to reject it) and you may

\accept" it.

One approach is to derive a con�dence interval for the di�erence between boys' and girls'

con�dence. In essence, one attempts to show that the true di�erence in con�dence falls in a narrow

range with high probability. For example, given the data in the gender dataset, we can say with

95% con�dence that the true di�erence between boys' and girls' con�dence lies in the interval

:275� :413 (see [2, ch. 4] for formulae, etc.) This con�dence interval is not centered around zero,

nor is it narrow: Con�dence scores in the in the gender dataset range from 2.0 to 5.0, and the width

of the interval around the di�erence of boys' and girls' scores is .826. So for the gender dataset,

we cannot �nd support for the identity hypothesis. Although we couldn't reject it, we also cannot

accept it.

A second way to demonstrate identities depends on the power of statistical tests. Power is the

probability that a test will reject the null hypothesis if it is false. Several factors a�ect power.

Some tests are intrinsically more powerful than others. For example, one might test whether the

means or the medians of two groups are signi�cantly di�erent, but a test of means will generally

be more powerful than a test of medians because the mean summarizes more information about a

group than the median. Power is also a�ected by the sample size and sample variance; in general,

as the former increases and the latter decreases, a given test is increasingly likely to reject the null

hypothesis correctly. Now, suppose an extremely powerful test fails to �nd a di�erence between

boys' con�dence and girls'. Then, you could argue that the test would have found a di�erence if

one exists, and it didn't, so you \accept" the null hypothesis that boys and girls are identical. On

the other hand, if the test is weak (which it is, in the gender dataset) then the failure to �nd a

di�erence between boys and girls does not mean they are identical. Computing the power of a test

is more involved than computing con�dence intervals; see [2, sec. 4.9] for details.

2 Inadequate Attention to Variance.

Suppose our null hypothesis, H0, is that boys and girls are equally con�dent, and our alternative

hypothesis, H1, is that boys are more con�dent. As noted above, a t test of the gender data fails

to reject H0, so we cannot conclude H1. Many analyses published in the AI literature stop here|

with the result of a t test|but in fact, this result is very misleading. To understand why, it will

help to review how t tests (indeed, all statistical tests) work. Test statistics such as t compare

the magnitude of an observed e�ect to the variance of the sampling distribution given H0. This
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Source dof Sum of Squares Mean Square F p

Gender 1 .907 .907 2.407 .1287

Grade 3 6.312 2.104 5.581 .0027

Interaction 3 3.247 1.082 2.871 .0482

Error 40 15.08 .377

Table 2: Analysis of variance showing a signi�cant main e�ect of grade level and a signi�cant

interaction e�ect.

Grade 4 5 6 7

Boys 4.467 4.450 4.167 4.000

Girls 3.750 4.650 4.450 3.133

Table 3: Mean con�dence for boys and girls at four grade levels.

variance is called the standard error. In general, increasing the sample size decreases the standard

error and makes the observed e�ect more signi�cant; whereas increasing sample variance increases

the standard error and decreases signi�cance. Thus, three factors a�ect whether an observed e�ect

is statistically signi�cant: the magnitude of the e�ect (e.g., a di�erence of .275 in mean con�dence),

sample size, and sample variance. The researcher controls sample size, and has indirect control over

sample variance. Obviously, if the researcher controlled all three factors, there would be no point

to running an experiment.

One may boost an observed e�ect to signi�cance by collecting a very large sample, but this

tactic is wasteful of data. More importantly, it neglects the most informative cause of insigni�cant

results, sample variance. Sometimes, sample variance is large and truly random, and nothing can

be done about it. But usually, sample variance reects the combined inuence of several factors. If

you can tease these inuences apart, you can get statistically signi�cant results with no additional

data, and a better understanding of the data, as well.

To illustrate, Table 2 shows a two-way analysis of variance of the gender dataset. Two-way

analysis of variance decomposes the sample variance into four parts: two represent the e�ects of

the factors (called main e�ects), one represents the interaction between the factors (called the

interaction e�ect), and one is due to random chance (called error). The mean square column

in Table 2 gives the relative magnitudes of these components of variance. (Mean squares are

just summed, squared deviations divided by degrees of freedom, both listed in Table 2, i.e., they

are variances.) F statistics are used to test whether the main e�ects and interaction e�ect are

large relative to the e�ect of random chance. The main e�ect of grade level is highly signi�cant

(p = :0027) whereas the main e�ect of gender is insigni�cant (p = :1287). There is a tantalizing

interaction e�ect (p = :0482): Apparently, the e�ect of grade-level on con�dence depends on gender,

or conversely, the e�ect of gender on con�dence depends on grade.

The means of each grade-gender combination complete the picture (Table 3). Boys' con�dence

decreases gradually from 4.467 in fourth grade to 4.0 in seventh grade (all children start out

overcon�dent), whereas girls' con�dence starts lower (3.75), peaks in �fth grade, and then drops.

In short, boys' con�dence follows a di�erent developmental pattern than girls'. The interaction

e�ect in Table 2 picks up this di�erence.

So, does gender have an e�ect on con�dence? The t test says no, but the analysis of variance,
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which decomposes sample variance further, says the e�ect of gender is felt through its interaction

with grade level. This interaction e�ect is invisible to the t test: it becomes clear only when

two factors are analyzed for their independent and joint e�ects. The additional main e�ect and

interaction e�ect \soak up" some of the sample variance that made the original t test insigni�cant.

By concentrating on sample variance, we see that the e�ect of gender on con�dence changes with

age. Had we attempted to boost the e�ect of gender in the original t test by collecting a larger

sample, we would have wasted data and missed this important dependency.

Multiple Comparisons. At this juncture in an analysis, researchers may be tempted to compare

individual mean scores. For example, to see whether boys have signi�cantly higher scores at each

grade level than girls, one would compare 4:467 to 3:750, 4:450 to 4:650, and so on, with individual

t tests. This tactic leads to the problem of multiple comparisons. Recall that every statistical

test has a probability, p < �, of incorrectly rejecting H0. Note that � refers to a single test; we'll

mark this fact by adding a subscript|\c" for \comparison"|to �. Suppose we conduct two tests

with �
c
= :05. What is the probability that at least one test incorrectly rejects H0? Clearly, it

is 1 � (1 � �
c
)2 = :0975. In general, if we conduct n tests, then the probability that at least one

incorrectly rejects H0 is

�
e
� 1� (1� �

c
)n:

This \experimentwise error," �
e
, is not precisely known because the tests are generally not inde-

pendent; see [2, p. 190]. If we compare boys and girls at all four grade levels, setting �
c
= :05,

then the probability of at least one error is approximately 1 � (1 � :05)4 = :185. In other words,

the probability of detecting a di�erence between boys and girls where none exists is roughly one

in �ve. I have reviewed papers in which authors report dozens of pairwise comparisons, virtually

guaranteeing that some apparently signi�cant results are spurious. Unfortunately, there is no way

to know which of the apparent results are wrong.

Clearly, any solution to the problem of multiple comparisons involves a tradeo� between �
e
and

�
c
. One can favor �

e
, but this requires reducing �

c
, making it harder to reject H0 on a given test,

which means that some weaker e�ects are no longer signi�cant. Or, one can favor �
c
, resulting in

elevated probabilities of one or more spurious tests. I recommend a hybrid approach, where one

conducts n tests with a stringent �
c
, designed to give �

e
� :05, and then one conducts all the tests

again with the usual �
c
= :05. Finally, one compares the results: Which tests were signi�cant with

�
c
= :05 but not with the more stringent �

c
? These are the tests that might be spurious, and if

one cares deeply about any of them, then one might attempt to reduce variance or increase sample

size to boost them to signi�cance (see [2, pp. 195-205] for details).

3 Summary.

I have described three errors in data analysis and how to �x or compensate for them. I selected

these three because they are common, easy to �x, and because they can ruin one's research. These

are not triing errors. You should not accept the null hypothesis simply because you cannot reject

it; you must provide additional support for it. If you fail to notice interactions between factors,

then you might conclude that a factor has no e�ect, when its e�ect is actually realized through

interactions with another factor. If you run multiple comparisons without correcting �
c
, then some

will probably be spurious. I have noticed that many AI researchers worry about relatively subtle

aspects of statistical practice but neglect the issues I have raised here. For instance, one colleague

ran scores of uncorrected pairwise comparisons because she thought she wasn't allowed to run an
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analysis of variance. True, the analysis of variance assumes normally-distributed populations (for

that matter, so does the t test that was used for the pairwise comparisons) but any errors that

might have been induced by violating this assumption are miniscule compared with the errors

almost certainly induced by multiple uncorrected comparisons.
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