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Abstract

Recent developments in philosophy, linguistics, devel-
opmental psychology and artificial intelligence make
it possible to envision a developmental path for an ar-
tificial agent, grounded in activity-based sensorimotor
representations. This paper describes how Neo, an ar-
tificial agent, learns concepts by interacting with its
simulated environment. Relatively little prior struc-
ture is required to learn fairly accurate representations
of objects, activities, locations and other aspects of
Neo’s experience. We show how classes (categories)
can be abstracted from these representations.

Introduction

Our goal is to build a baby, or rather, an artificial agent
who lives in a simulated environment and who even-
tually learns to think like a three year old. A virtual
infant, if you like. The abilities we want our agent,
which we call Neo (nee “Baby” (Cohen et al. 1995)),
to develop include learning, planning, language, an or-
ganized memory containing structured knowledge, at-
tention, emotion and consciousness. Central to these
abilities is a conceptual structure, an ontology, a way
to “carve the world at its joints.” Given a conceptual
structure, we can see a developmental path to more
advanced thought, including emotion and conscious-
ness (Cohen et al. 1995). As Neo develops, we expect
to learn much about the nature of accessible repre-
sentations, the functions of categories, and the rep-
resentation and roles of goals. We will elucidate the
relationship between activity, attention, memory and
learning. We hope to demonstrate that an agent can
develop sophisticated knowledge from minimal begin-
nings. The goal of this paper is more modest, however:
to show that Neo can acquire concepts and categories
from interacting with its environment.
Categorization, as Lakoff points out, is central to hu-
man thought (Lakoff 1984). It is also central to Lakoff
and Johnson’s challenge to Objectivism (Johnson 1987;
Lakoff & Johnson 1980; Lakoff 1984), the dominant
view in Western philosophy that there is an objective
way to represent the world and reason about it. In-
fluenced by Eleanor Rosch’s research on categoriza-

tion, Lakoff and Johnson argue that categories are
based less on objective features such as color, size,
and shape, than on interactional properties and rela-
tionships, such as “graspable” and “fits-in-my-mouth,”
which characterize how an agent interacts with its en-
vironment. At the same time, Al researchers such as
Agre (Agre 1988), Chapman (Chapman 1991), and
Ballard (Ballard, Hayhoe, & Pook ) have argued for
deictic or agent-centered representations. Develop-
mental psychologists such as Gibson (Gibson 1990),
Spelke (Spelke 1988), Baillargeon (Baillargeon, Spelke,
& Wasserman 1985), and Leslie (Leslie 1988) have
found evidence that infants as young as four months
know a surprising amount about relationships among
actions and objects in the physical environment—
force, containment, and the like—although it’s unclear
whether this knowledge is interactional, in the sense
of characterizing how the infant itself interacts with
its environment. In any case, Lakoff and Johnson
make a convincing case that adult conceptual struc-
tures are grounded in primitive interactional knowl-
edge that could very well be acquired by infants.
Thus, in contrast with Piaget’s theory of developmen-
tal stages (Ginsberg & Opper 1988), we can now envi-
sion a continuous developmental trajectory—for con-
ceptual knowledge, at least—beginning with simple,
interactional primitives in infancy and becoming more
elaborate through abstraction and metaphorical exten-
sion as the agent develops (Lakoff & Johnson 1980).
Indeed, Mandler’s work, to which we owe much, out-
lines such a developmental trajectory and the empirical
evidence for it (Mandler 1988; 1992). One contribution
of the current paper is to show that a simulated infant
can learn concepts in roughly the way Mandler sug-

gests real infants learn. . . .
There is a strong temptation to see in the infancy

literature evidence of nativism, the idea that infants
are born with conceptual structures. Obviously, ba-
bies’ minds have some structure at birth, but we are
anti-nativist, minimalist in our approach. We do not
agree that babies must be born with theories of the
physical world (Carey & Spelke 1994), and in fact we
show that Neo can learn concepts given very little prior
structure.



Baby World

Neo is a virtual agent who lives in a simulated en-
vironment. Babyworld implements Neo’s sensations,
mental representations, mental and physical activities,
and the behavior of objects and other agents that in-
teract with Neo. Babyworld has two parts: one, which
we call Neo, implements everything that Neo does, in-
cluding learning, moving, looking, crying, and so on.
The other part, called StreamsWorld, represents Neo’s
internal and external environment, and it implements
events that happen in and around Neo and in response
to Neo’s actions. Notably, StreamsWorld represents
Neo’s sensations of its external environment and also
internal states such as hunger. No distinction is made
between “inside” and “outside”; Neo must learn it.
Neo senses its environment through a collection of
streams, which are divided into discrete time steps. In
each time step ¢, a stream o; holds a token T; that is,
oi,+ = 7. Tokens represent sensations or processed per-
cepts. For example, one token is “rattle-shape,” and
it is placed in the appropriate stream whenever Neo’s
eyes point at an object that is shaped like a rattle;
that is, 0;ight—shape,t =Tattle-shape. The streams that
represent Neo’s internal sensations include an affect
stream that contains tokens such as happy and sad, a
pain stream, a hunger stream, and somatic and haptic
streams that are active when Neo moves and grasps.
The Babyworld simulator is simple and probabilistic.
For example, Neo gets hungry some time after eating,
it cries when it is unhappy or in pain; when Neo cries,
Mommy usually visits, unless she is angry at Neo for
crying, in which case she stays away. Neo falls asleep
intermittently; it can move its arm and head, and grasp
several objects, including three rattles, a bottle, a mo-
bile, a bunch of metallic keys, and a knife. The latter
causes pain. The rattles make noise when shaken.

How Neo Learns

What does Neo’s mind contain? Fluents, mostly. Flu-
ents represent things that don’t change, or that change
in highly regular, predictable ways. Fluents are a step
away from the state-based representations of AI plan-
ning research, such as situation calculus, toward script-
like representations. Fluents explicitly represent events
that have duration; in fact Neo learns the mean and
variance of the duration of each fluent. The sound
made by a rattle is a fluent, so is the sensation of hold-
ing the rattle, and so are the visual sensations of the
shape and color of the rattle. Of course, the concept
“rattle” has all these components, so somehow, flu-
ents for the color, shape, sound and texture of a rattle
must be linked up in a single fluent. Neo accomplishes
this, building larger fluents from smaller ones, with two
simple learning rules that count cooccurrences. First,
if Neo notices that two fluents often start and stop si-
multaneously, it infers that the fluents are parts of a
larger one. This rule learns fluents that represent ob-
jects and states. Second, if Neo notices that one fluent

often follows another, it infers that both are parts of
a larger fluent that represents an activity. The word
“often” in these rules hides a statistical inference that
fluents cooccur more frequently than one would expect
by chance if they were independent.

The important features of fluents as representations
are that they represent states or processes with tem-
poral extent (even objects are represented as things
that exist over time), they are composable, and they
are learned by counting cooccurrences. Although the
simplest fluents represent sensations, it’s important to
recognize that fluents are not identical with sensations.
Sensations are tokens in streams; fluents are represen-
tations stored in memory. Streams are the locus of
Neo’s sensory experience, fluents are the locus of Neo’s
knowledge. And although Neo’s earliest fluents are just
copies of its sensations, they soon become aggregated
and abstracted.

All the examples in this paper are from a single
“run” of Neo, lasting 30,000 time steps (roughly eight
hours of Neo’s life.) Fluents are learned gradually: It
might take hundreds or thousands of time steps to find
enough cooccurrences to create a fluent, and composite
fluents are obviously learned after their components.

Scopes

Having said Neo combines small fluents into larger
ones, we should say where the small fluents come from.
The first things Neo learns are not fluents, but rather,
pairs of streams in which to look for fluents. These
pairs are called scopes. A stream o; is said to change
state at time ¢, denoted A(%,t), when o, ;1 # 0iy;
that is, o; changes state at time ¢ when it contains a
different token at time ¢ than it did at time ¢ — 1. Con-

versely, Z(i, t) means the stream doesn’t change state:
oit—1 = 05t. Neo learns a scope, s;j, when streams
o; and o; change together often. Said differently, Neo

learns s;; when the joint event A(%,t) & A(j,t) occurs
frequently relative to the joint events A(%,t) & A(j, 1)

and A(z,t) & A(j,t). To assess the relative frequencies
of these events, Neo uses contingency tables like this
one:
A(sight-color,t) A(sight-color,t) total
A(sight-shape,t) 2996 945 3941
A(sight-shape,t) 826 25232 26058
total 3822 26177 29999

This says that the streams sight-shape and sight-
color changed state simultaneously 2996 times, and
one changed when the other didn’t 945 + 826 = 1771
times. To assess the strength of association between
sight-shape and sight-color we square the frequency
in the first cell of the contingency table (2996) and
divide by the product of the first row and first column
margins (3941 and 3822, respectively). The maximum
value for this statistic is 1.0, and for the table above it
is 29962 /(3941 x 3822) = .596.

Neo maintains contingency tables for all pairs of
streams. When the measure of association for a ta-
ble exceeds a threshold, a scope is created. Table 1



shows the top ten scopes learned by Neo in a run
of 30,000 timesteps (i.e., the scopes with the high-
est measures of association), and also the ten worst
scopes. Notice that the sight-shape and sight-color
streams are more highly associated than any except
do-sleep and sleep. Other high-ranking scopes are
(sound voice), which makes sense because changes
in the sound stream are often produced by changes
in the voice stream; and (tactile-mouth mouth),
which captures the fact that when Neo starts to mouth
(i.e., chew on) an object, it gets tactile sensations in
its mouth. The worst scopes represent pairs of streams
that are not associated. For example, there is no as-
sociation between sleeping and eating, and none be-
tween moving the arm (do-arm) and hunger. Note
that many scopes include do-x streams; for example,
(do-voice voice). These are the components of Neo’s
actions: the do-voice part represents the sensation of
attempting to use the voice, and the voice part rep-
resents the sensory feedback from actually using the
voice. Sometimes, Neo will experience do-voice but
not voice; for example, Neo might try to make a sound
(do-voice) but be unable because it has an object in
its mouth.

Before Neo learns any scopes, its world is a “bloom-
ing, buzzing confusion” of changing token values in 26
streams. Scopes “chunk” streams into covarying pairs.
Without scopes, Neo has to learn fluents by search-
ing for associated token values across all 26 streams.
For example, Neo has to consider associations between
(sight-color red) and, for instance, (sleep asleep),
(hunger full) and (voice screaming). With scopes,
Neo can limit its search for associations. Suppose
Neo learns the scope (sight-color sight-shape) but
it learns no other scopes relating sight-color to any
other stream. Then, it should look for associations
between (sight-color red) and tokens in the (sight-
shape) stream, but it needn’t look for associations in
any other streams. Empirically, scopes make an enor-
mous difference in the number and quality of the asso-
ciations Neo learns. Without scopes, Neo learns many
thousands of meaningless associations between token
values; with them, Neo learns a few hundreds of asso-
ciations that correspond to objects and activities in its
environment.

Base Fluents

Whereas scopes represent the tendency of streams to
change state simultaneously, Neo’s smallest fluents,
called base fluents, represent cooccurring tokens within
scopes. Suppose stream o; contains a at timet—1 and b
at time ¢. Then we say token a stopsin stream ¢ at time
t — 1, denoted -(i,a,t-1), and token b starts in stream
1 at time ¢, denoted +(i,b,t). Now suppose Neo turns
its head and its eyes alight on a red rattle. Neo will
detect two simultaneous events, H(sight-color,red,t)
and (sight-shape,rattle-shape,t). Sometime later,
Neo might look somewhere else, which will gener-

ate two simultaneous stop events, -i(sight-color,red,v)
and -(sight-shape, rattle-shape,v). Simultaneous start
events and stop events are evidence that a single
object—in this case a red rattle—or a single activity,
is making its presence felt in two streams. Of course,
two unrelated events could occur simultaneously in two
streams, but this sort of coincidence is less likely than
the coincidence of related events.

Neo looks for associations between start and stop
events within scopes. For example, having the scope
(sight-color sight-shape), Neo can try to associate
red and rattle-shape. But if Neo lacks a scope for,
say, sight-color and arm-speed, then it will never try
to associate red with fast. Thus scopes prevent Neo
from even considering many meaningless base fluents.

Contingency tables count the cooccurrences of start
and stop events, and assess whether start and stop
events happen simultaneously significantly often. For
example:

F(color, red,t) F(color,red,t) total
27

k- (shape, rattle,t) 65 92
I (shape,rattle,t) 237 1931 2168
total 302 1958 2260

Of the 2260 times sight-color and sight-shape
changed together, rattle-shape became active 92
times, both rattle-shape and red became active 65
times, and red became active but rattle-shape didn’t
237 times. The conditional probability of rattle-
shape starting clearly depends on whether something
red or non-red started; these probabilities are 65/92 =
.71 and 27/92 = .29, respectively. Conversely, the con-
ditional probability of something red starting depends
on whether something rattle-shaped started. In short,
red and rattle-shape are associated. The strength
of their association can be measured many ways; one
was described in the previous section. Here, we use a
modified G statistic. Because G is sensitive to sample
size, all contingency tables are first scaled to maintain
their proportions but have their totals equal 100. To
scale the table above, each cell value and marginal to-
tal would be divided by 226. Then the G statistic is
calculated for the scaled table in the usual way.

Neo accepts a base fluent when its contingency ta-
ble is significant, as measured by the G statistic. Ac-
tually, the table above tells us only that red and
rattle-shape often start simultaneously, we also need
to establish that they often end simultaneously. For
this, Neo maintains another table like the previous one
for the events —(sight-shape,rattle-shape,t), (sight-
color,red,t), and their complements. When Neo has ev-
idence that red and rattle-shape both start and stop
together in their respective streams, and do so more
often than would be expected by chance if they were
independent, then it forms the base fluent ((sight-
shape rattle-shape)(sight-color red)).

To summarize the story to this point, Neo learns
scopes, or pairs of streams that often change together.
As soon as it has learned a scope, Neo can use it to



Table 1: The ten best and ten worst scopes learned by Neo in 30,000 timesteps.

10 Best Scopes Measure of 10 Worst Scopes Measure of
Association Association
do-sleep sleep 1.0 sleep arm-x-angle ~ 0
sight-color sight-shape .596 arm-x-angle arm-y-angle ~0
sound voice .533 do-sleep arm-x-angle ~0
arm arm-speed 453 do-sleep eat ~ 0
do-mouth mouth .326 sleep eat ~ 0
do-voice voice .325 tactile-skin tiredness ~0
tactile-mouth mouth .315 do-arm hunger ~0
sound do-voice .276 do-sleep arm-y-angle ~ 0
tactile-mouth do-mouth 274 sleep arm-y-angle ~ 0
do-head head .254 tactile-mouth hunger ~0

learn base fluents, which are scopes instantiated with
particular token values, such as ((sight-shape rattle-
shape)(sight-color red)). And as soon as Neo has
learned some base fluents, it starts combining them
into larger structures called composite fluents.

Composite Fluents

Whereas base fluents represent associations between
cooccurring token values in streams, composite flu-
ents represent cooccurring fluents. Neo currently forms
two kinds of composite fluents. Conjunctive fluents
are generated when fluents F; and F, start together
significantly often, and they also end together signifi-
cantly often. Clearly, conjunctive fluents are like base
fluents. However, base fluents combine token values
into fluents, whereas conjunctive fluents combine other
fluents; and conjunctive fluents are not constrained
by scopes. Contingency tables, like those described
earlier, tabulate the frequencies of the joint events
(FFL & FFR),(FF& FFR),FF & FF)
and (- F; & F F,). The modified G statistic, de-
scribed above, tells Neo whether the association be-
tween Fy and Fj is significant. If so, Neo forms the
fluent (AND F, F»).

The second kind of composite fluent is formed when
one fluent starts in the context of another one. Sup-
pose Neo is holding a rattle, and then it starts to chew
on the rattle (called “mouthing”). While it is hold-
ing the rattle, the fluent ((tactile-hand wood)(hand
close)) is active, and when it starts mouthing, the
fluent ((tactile-mouth wood)(do-mouth mouth))
will become active. The latter fluent starts in the con-
text of the former. If this happens significantly often
then Neo will form the contezt fluent

(CONTEXT
((tactile-hand wood) (hand close))
((tactile-mouth wood) (do—mouth mouth)))

The contingency tables for context fluents are up-
dated in a slightly different way from previous tables.
When fluent F, starts at time ¢ + 4, Neo checks to see

whether fluent F; is active, and if so, it updates the
first cell of the contingency table, (- Fi,t & F Fa,t+1).
If F, starts and F; isn’t active, then Neo updates the
third cell of the table, (- Fi,t & - Fa,t 4+ 4). If Fy is
active but F, doesn’t start within a window of 7 time
steps, then Neo increments the second cell of the table,
(- Fi,t & F F3,t + ). The modified G statistic tells
Neo whether F, starts in the context of F; more often
than would be expected by chance if F; and Fs were
independent.

Chains

Context fluents can be chained together to form multi-
fluent sequences. Consider the previous context fluent
and the following one:

(CONTEXT
((tactile-mouth none) (voice cry))
((tactile-hand wood) (hand close))

These fluents share a common fluent, ((tactile-hand
wood) (hand close)), so may be composed into a
chain:

(CHAIN
((tactile-mouth none) (voice cry))
((tactile-hand wood) (hand close))
((tactile-mouth wood) (do-mouth mouth)))

In words, Neo had nothing in its mouth and was crying,
then it grabbed something wooden, then it started to
mouth something wooden. ! Now consider another,
very similar, chain:

(CHAIN
((tactile-mouth none) (voice cry))
((tactile-hand plastic) (hand close))
((tactile-mouth plastic) (do-mouth mouth)))

!Whereas Neo learns all scopes, base fluents and com-
posite fluents incrementally (in a trial of 30,000 time steps,
as described earlier), it builds chains with a batch process
at the end of the trial. Eventually, chains will be learned
incrementally, also.



The only difference between these chains is the ob-
ject that Neo grabs and mouths: in the first case it is
wooden, in the second, plastic. We may form a class
of things that Neo can grab and mouth. The chains
don’t say exactly which objects are in the class, but
we know they are either wood or plastic, and they are
graspable, and mouthable.

Classes

Note that “graspable” and “mouthable” are interac-
tional properties (Lakoff & Johnson 1980) that char-
acterize Neo’s activities in its environment. Unlike
“texture”—wood or plastic—they are fundamentally
subjective. What’s graspable by one agent isn’t nec-
essarily graspable by another. Whereas texture is an
inherent property of an object, graspable is a property
of the object and the agent who may try to grasp it.
Objective features such as texture have gotten a bad
name because they appear inadequate for conceptual
activities such as forming classes and judging similar-
ity; for instance, it is difficult, perhaps impossible, to
define a category in terms of necessary and sufficient
objective features. One is tempted by the conjecture
that categories might be defined in terms of necessary
and sufficient interactional features, instead. However,
we will try to show that categories are best defined in
terms of activities, and the apparent superiority of in-
teractional features is due to them describing activities
better than objective features.

Although Neo learns chains, we are responsible for
using these chains to identify features and form classes.
This is how we do it: We match up chains that have
the same stream names in the same order, creating an
abstract chain then form classes of the token values.
Consider these chains:

(CHAIN
((do-arm resting) (arm resting))
((do-hand close) (hand close))
((tactile-mouth wood) (mouth mouthing)))

(CHAIN
((do-arm resting) (arm resting))
((do-hand close) (hand close))
((tactile-mouth plastic) (mouth mouthing)))

(CHAIN
((do—arm move-rt) (arm move-rt))
((do-hand close) (hand close))
((tactile-mouth wood) (mouth mouthing)))

(CHAIN
((do—arm move-rt) (arm move-rt))
((do-hand close) (hand close))
((tactile-mouth plastic) (mouth mouthing)))

Looking only at stream names (e.g., do-arm, arm,
do-hand, ...) we see that all these chains are instances
of this abstract chain: (do-arm arm) — (do-hand

hand) — (tactile-mouth mouth). What we’re see-
ing in the four chains, above, is two activities:

resting arm — closing hand — mouthing something
right-moving arm — closing hand — mouthing something

and the “something” in each activity is either wood
or plastic. It may not be immediately apparent how
these activities identify classes of objects, but in fact
the objects that can participate in these activities are
Jjust those objects that can be grasped, mouthed, and
are either wood or plastic. We know, because we built
the Neo simulator, that these objects include Neo’s
rattles and bottles, but not the mobile, Mommy, or
Neo’s own hand. (Incidentally, if Neo had run for more
than 30,000 time steps, it might have learned that its
keys can also participate in the abstract chain, above,
in which case the instantiated chains would have in-
cluded a fluent ((tactile-mouth metallic)(mouth
mouthing)).) The point is that the class of objects
that can participate in an activity is identified by inter-
actional and objective features—graspable, mouthable,
wooden, plastic or metallic.

What Neo Knew and What It Learned

It is sometimes argued that real babies are born with
“faculties” for physical and spatial reasoning (Carey &
Spelke 1994), language (Pinker 1995), even reasoning
about living things (Keil 1994). Nobody believes that
much can be learned without constraints from percep-
tual systems, effectors, and prior mental structures, so
the question is not “whether” but “how much.” Al-
though we eventually expect to show that Neo can ac-
quire a rich conceptual structure from minimal begin-
nings, at present, we can show no such thing, because
Neo’s conceptual structure is quite poor—Neo learned
hundreds of fluents and chains but these produced very
few classes of objects and activities—and Neo’s prior
structure is not insignificant. Let us review what Neo
was born knowing, and what it learned.

Neo experiences its world through streams, and
streams contain tokens such as red and hungry. Neo’s
learning methods all focus on start (F) and stop ()
events, and thus a notion of events is built in. Neo is
born with a method to find correlations among start
and stop events in streams. The resulting structures,
called scopes, constrain the simplest fluents Neo learns.
Neo is born with methods, based on contingency ta-
bles, for learning base fluents from scopes and for learn-
ing conjunctive and context fluents from both base and
composite fluents.

It is further assumed that Neo can maintain con-
tingency tables for all possible scopes, and maintain
counts in all its tables. This is a lot of bookkeeping
but we believe much of it can be avoided. For exam-
ple, the G statistic requires us to maintain counts for
all four cells of contingency tables, but the measure
of association introduced in the section on scopes re-



quires only the first cell and the first row and column
margins, considerably less bookkeeping.

Now consider what Neo learned: It learned that
most of the regularity in its environment takes place in
30 pairs of streams, less than 10% of the (26 x 25)/2 =
325 pairs of streams that it might have focused on.
It learned base fluents corresponding to the shape and
color of most objects in its environment. It learned the
permanent locations of the green mobile (directly over-
head) and the crib bars (to the extreme left and right
of its field of view). It learned activities, such as grasp-
ing an object and mouthing it, or moving its arm and
seeing its arm move. It almost learned conditions. For
example, it learned a chain that includes ...((do-hand
open)(hand open))((tactile-mouth skin)(mouth
mouthing)), but it has no way to learn that the first
fluent is a condition for the second—that the hand
must be open to be mouthed. It learned chains from
which we abstracted classes that make sense in Neo’s
environment, such as the class of objects that can be
grasped and mouthed, and the class of activities that
end in seeing the arm moving fast.

Keep in mind that Neo’s actions are largely random:
when it grabs an object it can mouth it, but it’s just
as likely to drop it, or move its head. The only struc-
ture in Neo’s actions is provided by conditions (e.g., it
cannot mouth an object it hasn’t grasped, and it can-
not mouth its hand unless the hand is open) and by
a handful of simple behavioral dependencies built into
the simulator (e.g., it sometimes grabs what it looks
at, and it cries if it gets hungry). Keeping in mind also
that Neo ran for only 30,000 time steps, it seems to us
that it learned quite a lot.

Conclusion

The goal of the Neo project is to build a virtual infant
that learns many of the cognitive skills that we ex-
pect from a three-year old. Underlying these skills is a
conceptual structure, an ontology, a way to “carve the
world at its joints.” This conceptual structure identi-
fies classes, and supports judgments of similarity. Fol-
lowing Lakoff, Johnson, Mandler and others, our po-
sition is that concepts are based in activities. Neo’s
fluents represent objects, states, dependencies and ac-
tivities. We were able to identify classes by examining
Neo’s learned activities, thus providing the first evi-
dence from this project that conceptual structure can
be learned by interacting with the environment.
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