
546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 3, MAY/JUNE 19x9

A Declarative Representation
of Control Knowledge

PAUL R. COHEN, JEFFERSON DELISIO, AND DAVID HART

Ahstroct -An explicit representation of control called strategy frames is
described. The control of several well-known expert systems can be
described in terms of strategy frames, although their control is actually
encoded in an interpreter. One advantage of strategy frames is that
complex control strategies emerge from their interaction, U) complex
interpreters are not necessary. This idea is illustrated in the context of a
process control problem.

I. INTRODUCTION

ONTROL is an important problem in artificial intel- C ligence (AI): knowledge systems are getting very large
and difficult to control [I], [2] and, because efficiency is a
concern in these systems, control strategies must be flexi-
ble enough to balance various costs, especially time [l],
[3]-191. Independent of efficiency concerns, we are begin-
ning to work on tasks such as design [lo]-[12], process
control [13], and knowledge-based planning [l], in whch
“how to” knowledge is important. In these tasks, problem
solvers do not use a single fixed strategy but instead
change strategies as the situation demands, keeping “ trim”
to the current situation.

AI researchers are beginning to recognize control knowl-
edge as a kind of expertise and are developing tools to help
knowledge engineers acquire it [14]-[I 91. Previous work by
Thomas Gruber in our laboratory has addressed the prob-
lem of acquiring and generalizing strategic “meta-rules”
[20], [21] similar to those discussed by Davis [22] and
Clancey [23], [24]. Meta-rules give control a “one step at a
time” or reactive flavor that, when implemented in a
medical expert system [25], [26] failed to capture some
aspects of diagnostic expertise [27]. For example, it was
difficult to formulate meta-rules that had contingent ac-
tions on their right sides-to, for example, “do test A and
if the answer is positive do test B otherwise do test C.”
The current work was initiated to develop representations
for these little contingency plans, but it swiftly became an
exploration of representations for the range of knowledge
one needs to control complex AI systems. Throughout, we
have required these representations to be declarative, so

Manuscript received April 30, 1988; revised August 15, 1988. This
work was supported by ONR contract AFOSR 4331690-01 and
DARPA/RADC contract F30602-85-C0014.

The authors are with the Department of Computer and Information
Science, University of Massachusetts, Amherst, MA 01003.

IEEE Log Number 8927049.

that they might be accessible to knowledge engneers, and
also to be knowledge acquisition tools.

This paper represents a snapshot of our current work on
control. It represents work in progress and so poses prob-
lems that it does not solve. We thnk it is essential that as
AI researchers explore more realistic environments, they
report where they are, how they got there, and where they
are going; even if they still have a long way to go [28], [29].
In this spirit, we have organized the paper into six sections
that correspond roughly to aspects of a journey.

We begin with an analysis of the control literature that
led us to the idea of strategy frames-declarative struc-
tures that represent problem-solving strategies (Section 11).
Next, we discuss the purpose of the journey, our intent
being to empirically test some hypotheses about local and
global control via strategy frames (Section 111). In the next
two sections we describe a process control task and an
implementation in terms of strategy frames which together
provide the environment for our empirical work (Sections
IV and V). Preliminary results are described in Section VI.

11. STRATEGY FRAMES: A VIEW OF CONTROL

Our view of control is motivated by the following obser-
vations, which are based on analyses of the control strate-
gies of Casnet [30], [31], Pip [32], Hearsay-I1 [2], [33], Mum
[25], MDX [34], [35], Neomycin [23], [36], Dominic, and
Dominic-I1 [lo], [12].

Observation 1: The control strategies of many knowl-
edge systems can be viewed as the inter-
action of a small number of simpler
strategies. We call these strategy frames.

The structure of the strategy frames will be discussed in
Section V. For now, one can imagine them controlling
inference within and between levels of hypothesis spaces.
For example, Casnet’s hypothesis space had three levels,
for data, pathophysiological states, and disease hypotheses,
respectively (Fig. 1). Its control strategy can be viewed in
terms of the interaction of three strategy frames: bottom-up
inference from data to pathophysiological states, lateral
inferences along causal pathways between pathophysiolog-
ical states, and bottom-up inferences between pathophysic-
logical states and disease hypotheses. The tails and heads
of the arrows in Fig. 1 are different regions of the hypothe-

001 8-9472/89/0500-0546SO1.00 01989 IEEE

C O H t N el U/. : A 1)ECI.ARATIVE REPUSENTATION OF CONTROL KNOWLEDGE 547

C.4SNET:Three levels plus time (etiology)
Fixed, explicit search space

(Patient data)

’111 in causally
nterrnediate states.
’ossibly verifi- top do\%n

Data-driren
,nferences

Fig. 1. Schematic representation of control in Casnet. showing levels of
hypothesis space and strategy frames represented as vectors.

sis space and are the domain and range, respectively, of
strategy frames.

Observation 2: Strategy frames do not relinquish control
after every inference, nor do they keep
control throughout problem solving.

A strategy frame says, for instance, “I’m in control, and
we’re going to do some bottom-up processing until it
appears that some other kind of processing would be more
useful.” For example, Mum was controlled by strategic
phases that changed relatively infrequently. A control cy-
cle in Mum begins by looking at the state of the hypothesis
space to determine whether the applicability conditions of
the current strategic phase are still in effect. If not, a new
strategic phase is invoked. In either case, the next step is to
select a focus of attention, and then to select evidence for
or against that focus. The evidence is solicited and the
state of the hypothesis space is updated. Then the cycle
begins again. The system can stay in a strategic phase (i.e.,
under the control of a single strategy frame) for many
cycles. For example, one strategic phase-called “Deal-
with-Critical-Possibilities”-was active as long as critical
dangerous hypotheses (e.g., heart attack) had some degree
of support. Within this phase, Mum selected the hypothe-
ses for its focus of attention in order of their criticality; it
first sought low-cost evidence against the focus of atten-
tion, but had no prohibition against high-cost evidence,
pro or con the focus. Unlike other strategic phases, the
Deal-with-Critical-Possibilities strategy gave Mum’s prob-
lem solving a distinct “this is important, so hang the cost”
flavor for the duration of time that critical hypotheses
were active.

One is tempted to equate knowledge sources in Hearsay-
I1 with strategy frames. But although the stimulus and
response frames of knowledge sources (KS’s) in Hearsay-I1
are analogous to the domain and range of strategy frames,
the latter take control of processing for intervals that can

involve many inferences whereas KS’s generate knowledge-
source instantiations (KSI’s) for each possible inference
and relinquish control to the scheduler after every infer-
ence.

In fact, the designers of many systems have found it
desirable to give them something like the functionality of
strategy frames, even when they were initially designed to
have opportunistic control, or at the other extreme, com-
pletely fixed control. Hearsay-I1 was designed to have
opportunistic control, but was later modified to have two
phases-a bottom-up phase followed by an opportunistic
one. Even Mycin, which is commonly thought to be an
exhaustive backward-chaining production system, switched
to limited forward chaining when it was presented with
particular kinds of data [37].

Observation 3: Strategy frames are nested structures in
whch there are tactical instantiations of
the components of a strategy.

All strategic phases in Mum have the same nested struc-
ture:

1) applicability conditions,
2) criteria for selecting focus of attention,
3) criteria for selecting evidence,

but they differ in how the components or slots of the
strategies are instantiated. For example, the criterion
for selecting focus of attention in the “Discriminate-
Strongest-Hypotheses” strategic phase is plausibility; this
phase focuses on hypotheses that are likely given the
evidence. In contrast, the Deal-with-Critical-Possibilities
phase focuses on hypotheses that are dangerous and have
some level of support; these hypotheses may actually have
a low plausibility.

A similar view is found in Dominic-11, a program for
iterative redesign of mechanical devices. The program has a
five-step basic control cycle:

1) select an aspect of the design to improve,
2) determine how much improvement is desired,
3) select a design variable that, when changed, is ex-

pected to improve the design,
4) determine how much to change the design variable,
5) decide whether or not to change the design variable.

For example, Dominic-I1 may want to improve the ex-
pected life of the pulley system (step l), from “short life”
to “medium life” (step 2), by changing the diameter of the
drive pulley (step 3), from four to five inches (step 4). If
this change is predicted to have the desired effect, and it
improves the overall evaluation of the design, then it will
be adopted. Then the redesign cycle starts again. Roughly,
redesign in Dominic-I1 is hill-climbing because each change
to a design improves its overall evaluation. But it is not
strict hll-climbing because, depending on the tactical in-
stantiations of the five steps in the redesign cycle,
Dominic-I1 can actually allow a design to get worse before
it gets better. For example, one tactical instantiation of
Dominic-11’s basic design strategy is as follows.

I 1 . M TKANSACIIONS ON SYSI1:YS. \(AN. A N D CYBtKNETICS. VOL. 19. NO. 3 , MAY/JUNE 1989

Select an aspect of the design to improve: Select the
aspect that has the largest negative effect on the
overall evaluation of the design.
Determine how much improvement is desired: Re-
quire an improvement sufficient to ensure that the
aspect no longer has a negative effect on the overall
evaluation of the design.
Select a design variable that, when changed, is ex-
pected to improve the design: Select any design vari-
able that has not been changed in the last two
cycles.
Determine how much to change the design Variable:
Change the value of the design variable “a lot.”
Decide whether or not to change the design variable:
Even if the overall quality of the design decreases,
accept the change if it improves the specific aspect
of the design as desired.

Dominic-I1 monitors the current state of its design, look-
ing for pathological situations. When it finds one, it typi-
cally switches from one tactical instantiation of the basic
redesign strategy to another, more appropriate one. For
example, a common problem in hill-climbing is the mesa
effect: instead of moving steadily up a hill, a system gets
trapped in a relatively flat area, making many small changes
but not improving overall performance. When Dominic-I1
detects this situation, it adopts a tactical instantiation of
the redesign strategy that makes very large changes to a
design variable even if they reduce the quality of the
design. This is like talung large steps instead of little ones
to get off the plateau onto a hill-even if one lands on the
hill below one’s current altitude. In a series of experiments
we found that Dominic-11, which could select among tacti-
cal instantiations, always outperformed an earlier system,
Dominic-I, which could not select [12].

Observation 4 : The same strategy frames show up in
many knowledge systems, though these
systems differ parametrically.

In the last few years there has been a sense that many AI
tasks are very similar. This sense was given voice by
Clancey’s characterization of diagnostic reasoning [38],
[39] and by Chandrasekaran’s evolving taxonomy of AI
tasks [40]-[42]. It has been argued that task-level architec-
tures more general than particular knowledge systems but
less general than weak methods, such as generate and test,
[43], [44] can be designed. What makes AI tasks similar is
not the facts and heuristics we use to solve them, for these
vary from one domain to another, but rather the general
kinds of knowledge they require and, most important from
our perspective, how they are solved. In our analysis of
many knowledge systems, we believed we repeatedly saw
the same strategies. For example, all the diagnostic systems
made some distinction in their control strategies between
data that “trigger” hypotheses and those that cannot trig-
ger hypotheses but can support previously triggered ones.
Most of these systems also made their control strategies

sensitive to data that could categorically rule out hypothe-
ses. The basic control strategy for diagnosis, though slightly
different in each of the several systems, was to first use a
subset of the data to generate a small set of hypotheses
(using all the data would create an unmanageable combi-
nation set), then to try to rule out or rule in these hypothe-
ses, typically in an order that reflects the importance of the
hypotheses.

The advantage of identifying general strategies is that
they become part of the knowledge engineer’s toolbox. We
imagine providing task-level architectures complete with a
variety of declarative strategy frames, each easily parame-
terized for the particular application, much as knowledge-
engineering tools currently provide declarative representa-
tions to be filled with domain-specific facts and heuristics.
Several steps have already been taken in this direction [14],
[16], [18]-[20].

Observation 5: Control strategies can depend intimately
on the structure of the hypothesis space.

Casnet’s control strategy exploited causal associations
among pathophysiological states, and MDX’s strategy ex-
ploited hierarchical associations in a taxonomy of dis-
eases. It seems that the diversity of control strategies
depends on how many types of relations exist among
objects in the hypothesis space. For example, if the only
possible relation in the hypothesis space is “evidence-for,’’
then a system is limited to blind data-directed or goal-
directed control. It cannot focus on hypotheses that are
causally related to other likely hypotheses unless causal
relations are explicit in the hypothesis space. In Neomycin,
Clancey describes many relations that are needed to sup-
port a wide range of diagnostic subtasks. These include
binary relations (e.g., causal and hierarchical) relations,
and also unary relations or properties of the objects in the
hypothesis space. A similar approach was taken in Mum
and the subsequent MU project. In MU, one defines sets
of objects based on their relations with other objects, such
as the set of all tests that potentially confirm any object in the
differential and are inexpensive. Here, potentially-confirm is
a binary relation and object in the differential, test and
inexpensive are unary ones. Sets in MU can function either
as foci of attention or, as in this example, as sets of
potential evidence.

In Pip, the relationship between control-specifically
focus of attention-and the structure of the hypothesis
space is extremely tight. The hypothesis space is a network
of associated frames, most of which represent diseases.
These frames are “activated” or “illuminated” when their
associated symptoms are found in the patient. Hypotheses
become active (i.e., part of the focus of attention) when
activation spreads over relations in the hypothesis space.
For example, Pip has triggering relations between data and
hypotheses that make hypotheses active if the data are
present. A more complex role is played by relations such
as mqy be caused by: i f two frames are associated by this
relation, and one becomes active, then the other becomes

COHEN Pi 01.: A DECLARATIVE REPRESEN1ATlON OF CONTROL KNOWLEDGE 549

semiuctiue, which means, roughly, that it will have a greater
propensity to become active as more data become avail-
able.

It is easy to see the importance of the structure of the
hypothesis space when that structure is explicit, as it is in
Casnet, MDX, Neomycin, and Mum. By explicit we mean
that all data, intermediate hypotheses, and conclusions are
known in advance before the system is ever run. In con-
trast, objects in implicit hypothesis spaces are generated by
search during execution. For example, in the Dominic
systems we do not traverse an explicit space of thousands
of designs, but rather we generate the space by iteratively
modifying each design to produce the next. In such cases,
objects in the hypothesis space are not associated by
explicit relations, as they are in explicit hypothesis spaces.
Consequently, control strategies are designed for the im-
plicit structure of implicit hypothesis spaces. In Dominic
this structure was assumed to be a hill, and so design was
viewed as hill climbing. In fact, Dominic-I1 is able to
detect the local topology of the hill and, if it is a plateau,
modify its control strategy appropriately. In Hearsay-I1
the implicit structure of the space of interpretations was
assumed to contain many constraints-often referred to as
redundancy in the speech signal-so that partial interpre-
tations of one part of the signal could help the system
interpret other parts. Like Dominic-11, Hearsay-I1 could
detect where it was in the space and could extend relatively
certain regions into less-certain areas. This was called
island-driving.

111. MOTIVATIONS

Although AI researchers have been building control
structures and problem-solving strategies for years, one of
the basic questions about control remains unanswered:
Under what conditions can you achieve a sequence of
actions that look like they were selected by a global
strategy, when in fact they were selected by one or more
local strategies? Both global and local are vague and, at
best, relative terms: one strategy relies on “more global”
information than another. Informally, local means “based
on a subset of the available information.” In terms of
performance, because local strategies require less informa-
tion and less integration of information, they are valuable
when the cost of obtaining and processing relatively global
information is prohibitive. On the other hand, perfor-
mance is typically better when informed by global infor-
mation. For example, imagine picking out a route across a
city; a relatively local strategy determines the route given
the global goal and the immediate environment, whereas a
more global strategy considers the environment further
away. The local strategy requires less information and less
planning, but may take us away from our goal and into
“blind alleys”; the more global strategy can avoid these
problems because it has access to more global information,
such as a map. In terms of this example, we want to know
under what conditions one can traverse a route that up-
pears to be guided by a map when it is not.

Our research poses this question not in terms of actions
such as traversing a route, but in terms of strategies
(implemented by strategy frames) that select actions: Un-
der what conditions can a sequence of strategies appear to
be guided by global information when, in fact, it is not?
The question is important because AI is working in task
domains that seem to require multiple strategies (or, at
least, multiple tactical instantiations of strategies). Exam-
ples include Dominic-I1 and Mum (Section II), as well as
recent work suggesting that alternative strategies should be
selected by resource demands and availability [3], [13], [45].
We want to know the conditions in which a system with
multiple strategies needs global information to select them
and, conversely, when relatively local information will
suffice. Under what conditions does the computational
cost of global information outweigh the benefit of having
it? Under what conditions does relatively local selection of
strategies result in inefficiency, incoherence, or other pit-
falls analogous to “ blind alleys” in the example above?

Our research is designed to explore these questions.
Initially, we thought about reimplementing some of the
systems discussed earlier-Casnet, Pip, Mum, and so
on-with strategy frames. But on reflection it seemed
uninteresting to demonstrate yet another architecture for
diagnosis. Instead, we have used strategy frames to control
a system that solves a relatively new and uncommon kind
of task: Process control tasks require a system to monitor
and adjust to variations in an ongoing process, many or all
of which are unpredictable.

IV. THE McD PROBLEM

McD is a simplified model of a fast-food restaurant.
Orders are presented at varying rates over time. McD tries
to fill all orders as quickly as possible without building up
large surpluses of items. It does this by changing the rates
at which it produces items-by shifting employees from
one activity to another. For example, if McD has a surplus
of hamburgers but a shortage of shakes, an employee may
be moved from the grill to the beverage station.

The McD problem has these characteristics.

Dynamic demands: the problem solver must respond
dynamically to changing de-
mands; for example, changes in
the rate at which orders are placed.

Resource allocation: problems are solved by dynami-
cally shifting resources from one
activity to another, thereby chang-
ing the configuration of the prob-
lem solver; for example, by moving
employees to different stations.
even if a system has the resources
to handle any level of demand, it
should not want them to be com-
mitted when demand is slack,
since they would be largely un-
productive. There is a tradeoff be-

Tradeoffs:

550 IEEE TKANSACTIONS ON SYSTEMS, MAN, A N D CYBERNETICS, VOL. 19, NO. 3, MAY/JUNE 1989

tween the costs associated with
the failure to meet demand and
those associated with excess sup-
ply. And this is but one of many
tradeoffs that together determine
the efficiency of a system.

In McD, resources are employees and products are menu
items (hamburgers, fries, soda, shakes, apple pies) and
service items (cashiers, clean tables, and condiments). The
number of employees is variable, but in our experiments is
initially seven. Employees work at stations. There are two
grills (each with space for two employees), two fryer sta-
tions (one employee tends each), one drinks and dessert
station (tended by one employee), two busing stations that
clean tables and manage condiments and utensils (tended
by one employee each), and four cashier stations (each
tended by one employee). Obviously, more than seven
employees are needed to fully staff all the stations in McD.
Successful management of McD involves shifting employ-
ees from one station to another in response to demands.
McD can also call in additional employees and send
surplus employees home.

McD is presented with blocks of orders at varying rates.
A block includes the number of people in a group, whether
they require tables, and how many of each menu item are
desired.

Since cashiers take orders in McD, and the number of
cashiers is limited, some orders will not be processed
immediately. Moreover, not all menu items are available
all the time, so some orders will not be filled immediately.
Two components of McD’s performance are the average
time waited for a cashier and average time waited for food.

McD recognizes three special situations: shortages, sur-
pluses, and breakdowns. A shortage is indicated when the
expected demand for an item significantly exceeds the
number on hand (minor disparities between demand and
supply are ignored). Conversely, a surplus is indicated
when the expected demand is significantly less than the
number on hand. (Expected demand is just the average
demand over the last few time segments.) Breakdowns
remove stations from commission until resources are allo-
cated to fix them. For example, one of the two grills may
go down and may result in a shortage if demand is high
and it is not fixed quickly.

McD has strategies for each of these situations. All
involve moving people from one station to another. A
shortage of hamburgers, for example, is handled by search-
ing for an employee who can stop what he is doing and
move to a grill. Of course, if the capacity of the grills is
exceeded (i.e., more than four people are already working
them) then McD can do nothing to reduce the shortage.
Thus shortages of beverages and desserts cannot be over-
come unless these stations are unmanned, because each of
these items is produced at a station that has a capacity of
one employee. Breakdowns are fixed by moving an em-
ployee to the broken station to fix it. Surpluses, conversely,
are rectified by removing an employee from a station.

W-cpmPnt:
fl s t ra tegy frdne f o r ob ta ln lng resources for shortages of
nenu i t ens ’

--of: strategies
Agpkatditycu: is-there-a-food-shortage

F m a ~ u : hanburger-shortage apple-ple-shortage
kitial-relevamy (U: 2
Last-irrtantiatiancu: 5
Measise-of-wess‘u: yes
--tactics tu: uhen-inproued
mu: resource-shuf f le

tarn in at ion^: no
Tarninatim-tactics (U: uhen-restored

F-hre-kt 1u:

+
Suggestanslu:

1’ I

Fig. 2. Strategy frame for moving resources to cover shortages of menu
items.

We must digress briefly to explain what is strategic
about problem solving in McD. Colloquially, strategies
select actions and remain in effect longer than individual
actions. By strategy, we mean a configuration of the prob-
lem-solving system (McD) that remains in effect over
many problem-solving actions. For example, McD may fill
many customer orders with just two employees working at
a grill, but eventually a shortage may require a change in
t h s configuration. Adding another person to a grill will
change McD’s behavior: i t may now produce a surplus of
hamburgers, or experience shortages of other items, or the
waiting period for food may decrease, or it may increase
due to a bottleneck introduced by removing the employee
from his previous station. The strategy frames described
below change McD’s behavior by changing its configura-
tions. A similar notion of strategy is found in, say,
Dominic-I1 (see preceding), where different strategies pro-
duced different hill-climbing behaviors.

In sum, the McD problem is to dynamically monitor
and alter configurations, that is, allocations of resources to
stations, so that shortages and surpluses are avoided. McD
detects shortages, surpluses, and breakdowns, and selects
among strategies for rectifying these situations.

V. STRATEGY FRAMES

Strategies are represented by strategy frames. Fig. 2 is a
strategy frame called “shuffle-resource-to-menu” (“shuf-
fle,” for short). The figure shows an instance of shuffle
that was invoked somewhere in the middle of a run of
McD .

Shuffle is invoked to fix shortages in menu items, which
include shortages of hamburgers, fries, soda, shakes, and
apple pies. Shuffle has an applicability slot that contains a
lisp function called “ is-there-a-food-shortage,” which the
interpreter runs to determine whether there is a shortage of
any food items. If the applicability condition is met, the
interpreter adds shuffle to the list of applicable strategies.
Typically, this list contains several strategies, ranked by
their relevance slots. Relevance can be calculated many
ways, that is, the relevance slot can have many tactical

C O H I N Cf U / . : A I>LCl,AKATIVL KEPKI:SENTATION Ob CONTKOI. KNOWI.k.I>GE 551

instantiations. But in shuffle and other strategy frames
that deal with shortages, only one tactical instantiation is
currently used (others are planned but not yet iniple-
mented). I t ranks strategy frames by the number of known
shortages they can potentially fix and by the severity of
those shortages. For example, if McD is currently suffering
shortages of hamburgers and fries, then shuffle can poten-
tially fix two problems, and so is more relevant than, e.g., a
strategy for correcting service item shortages if only one
kind of service item-e.g., tables-is in short supply.

The initial-relevance slot of a strategy frame is used to
bias whether McD attends to a situation. Shuffle’s initial
relevance is zero, which means that McD will not attend to
it before other strategy frames with higher initial relevance.
We have used this mechanism to configure McD to attend
to shortages before surpluses and vice versa. Once a strat-
egy is selected, its focus slot ranks the problems it will deal
with. The order of elements in shuffle’s focus slot dictates
that hamburger shortages should be fixed before fries
shortages. This order is determined dynamically, based in
part on the severity of the shortages.

The recipe slot of a strategy frame contains a series of
actions- typically a reallocation of resources. For exam-
ple, shuffle’s recipe is a lisp function called resource-shuf-
fle that attempts to obtain a resource from somewhere else
in the system to assign to the shortage. It has two tactics
for doing this. One favors obtaining employees who are
not assigned to any station. The other looks for employees
on stations that are producing surpluses. In either case, if
shuffle fails to get resources, it returns control to the
interpreter.

Sometimes McD’s strategy is appropriate but not ag-
gressive enough. For example, a shortage strategy may
move one employee to a new station, but two or more
employees are needed to correct the shortage in a reason-
able time. In such cases, McD may reinvoke that strategy;
if shuffle moves one employee but is ineffectual, then McD
may reinvoke shuffle to move another employee.

This raises the question of how we keep track of whether
a strategy is having the desired effect. Shuffle has a mea-
sure-of-progress slot that contains a function-currently
binary-that tells the strategy whether it is progressing. If
the system notices no progress, or if the situation is actu-
ally getting worse, the strategy may be reinvoked as de-
scribed earlier to obtain more resources. McD can measure
progress in one of three ways, specified in the mop-tactics
slot of a strategy frame. Shuffle’s mop-tactics are “when-
improving,” which means that progress is being made so
long as the situation (in this case, a shortage) continues to
improve. The measure-of-progress slot in shuffle says that
progress is indeed being made.

Finally, the strategy has terminuting-conditions that
specify when to quit work. Tactical instantiations of this
slot determine exactly when the strategy quits. Three in-
stantiations are

when-restored -stay in effect until the problem is
solved (e.g., until there is no more shortage),

Ihit-nnment:
Menba-of :
Active-hypotheres~~: hanburger-shortage soda-surplus

Active-pbmcu: (plar-2 plan-6 plan-7)
Ertinatd-resarce-dndcu: increasing

Gbbd-denund-ktory(u: (1 i g h t l i g h t noderate)
Gbbd-denrand-level#u: noderate
Lkten-interval IU: 4
Patch-tineru: 3

wple-pie-shortage

Feahre-Srt (U :

R e s o w c e - ~ t m ; h i ? o r y l u :
((2 ‘Cashier Free’) (5 ‘Bus’ ’ G r i l l ’))

Resaroe-danandcu: inprove
Resowce-demand-ktoryw: (I r e s t o r e)
Resowce-p-eferencescu: deternine-dynanical l y

Resarrz-shtrtage-kwelevelu: 0
Responre-prefaencesiu: quick
Situatm-pref-w: surplus

surplus-enployees-first f ree-enployees-f i rst

S t n t e g y - k t a y 11,:

Syrtem-dock(u: 8
ClrtilssigN?d-arpbyee-histay,u: (I 2 I)

&date-evabaVrn-mea- 111: yes

(I nonitor 2 seruice-surplus surplus 3 l i s t e n 4
update-denand 5 ...)

Fig. 3. State frame. which represents McD’s global state.

when-improved -stay in effect until the situation
improves (even if the problem is not solved),
time-stay in effect for N cycles.

Shuffle has a when-restored termination tactic, and its
termination slot contains no, which means that the termi-
nation criterion has not been achieved yet.

A . State

One special frame, called State, maintains a global view
of McD and is accessible to all strategies. Fig. 3 shows the
state of McD at a particular time during a run (in this
case, at time = 8, as seen in the system-clock slot).

State contains some global information that strategies
may need to select appropriate tactics. Strategy frames do
not maintain global views of McD’s world. They are
“egocentric” in the sense that they attempt to solve prob-
lems as well as possible, irrespective of the global ramifica-
tions. For example, a strategy might want to allocate
several people to a shortage for as long as necessary to
reduce it, irrespective of other shortages. But because
strategies compete for resources, a global State must tell
strategies what they need to know to resolve these con-
flicts. In particular, strategies consult the resource-demand
slot (Fig. 3) , which contains the overall level of demand for
resources, when they decide which tactical instantiations to
prefer. This slot contains a recommended termination tac-
tic, which may be restore, improve, or time, as discussed in
the preceding. McD determines which termination tactic is
appropriate by considering known shortages, surpluses,
breakdowns, available resources, and rough estimates of
trends in the values of these parameters. If the demand for
resources is high, then State recommends conservative
termination tactics-strategies run for N time units and
then quit (the patch-time slot sets N .) Conversely, if the

552 i i i t t TRANSACTIONS ON SYSIEMS. MAN, A N I) c \ I H I . K N I . I I C S . VOL. 19. NO. 3. MAY/JUNI. 1989

level is low, then State recommends termination tactics
that permit strategies to run until they solve their prob-
lems. Intermediate levels result in tactics that terminate
strategies after some improvement.

State also maintains a list-called active-hypotheses -of
problems (i.e., surpluses, shortages, and breakdowns) and
a list of active-plans, which are the problems McD has
responded to in the past. The strategy-history is simply a
list of strategies in the order they are called, so McD can
see when strategies were last called. The list in Fig. 3
shows that in addition to surplus and shortage strategies,
McD has strategies to listen for incoming orders to update
demand and other statistics, and to monitor measures of
progress and termination conditions.

McD maintains a projection of resource demands, called
estimated-resource-demand that contains a moving average
of resource-demand. In Fig. 3, estimated demand is in-
creasing. Obviously, estimated demand can be calculated
in many ways: for example, we know that demand for
food (and thus resources) increases during breakfast, lunch,
and dinner hours, and so might include the time of day in
the calculation of estimated resource demands.

The purpose of the other slots in State will be described
later, when we present examples of McD.

B. How McD Works

McD has a basic control cycle in which the interpreter
first polls strategies to find those that are applicable, then
ranks the applicable strategies, and then gives control to
the top-ranked strategy. That strategy will attempt to
change McD’s configuration (i.e., the allocation of re-
sources to stations) and will then return control to the
interpreter. If the strategy succeeds-and it may not if
resources are unavailable-the new configuration will re-
main in effect until the strategy terminates it. We now
describe these steps in more detail.

C. Polling and Ranking Strategies

At each cycle, the interpreter asks each strategy whether
i t is applicable and thereby discovers whether McD has
surpluses, shortages, or breakdowns at any stations. A
frame-like structure is created for each problem situation,
and a pointer to it is added to the active-hypotheses list in
State. Sometimes, several instances of the same situation
arise (e.g., several shortages), and a strategy will be appli-
cable to each. This and other factors are combined by a
function in the relevance slot of each strategy. Relevance
represents the strategy’s own assessment of how much it
can contribute to keeping McD running smoothly. In
general, the more situations to which a strategy applies
(and the greater their severity), the higher its relevance
score. The strategy with the highest relevance is selected
for execution unless another with equal relevance was
invoked less recently. Note that, except for this last clause,
the selection of strategies is based on information local to
the strategy frames. The interpreter then turns control over
to the selected strategy.

D. Executing U Strategh,

When a strategy gains control, i t instantiates itself with
tactics. The first thing a strategy such as shuffle (Fig. 2)
does is to determine its focus, which in this case is a
shortage of hamburgers and fries. Currently, shuffle can
select only a single problem (e.g., hamburgers), but eventu-
ally it will be able to address multiple problems from
State’s active hypotheses list-if the problems are on its
focus list and if State permits it the resources. After
selecting a problem, shuffle selects the most appropriate
measure of progress and also the most appropriate termi-
nating conditions, given the resource-demand slot of State.

Shuffle then tries to run its recipe. Since it is an instance
of a “menu-item-shortage’’ strategy, it will try to find
additional resources-in this case, an employee to move to
a hamburger grill. This is also a tactical issue. As men-
tioned earlier, the two tactics for finding employees are to
favor unassigned people and to favor those on stations
producing surpluses. State tells strategies which of these
tactics to select; the resource-preferences slot in Fig. 3 says
to take free employees before those on surplus stations.

E. When Strategies Fail

If a strategy like shuffle cannot find an employee, it will
return control to the interpreter without taking any action,
and record its failure in the resource-shortage-level slot of
State. Another kind of failure happens when a shortage
plan successfully finds an additional employee but cannot
use him because the station that is producing the shortage
is already staffed to capacity. Lastly, a plan can fail i f it
attempts to take an employee off a station that is produc-
ing a surplus, but nobody is working at the station (i.e., the
surplus is residual).

F. Termination of Strategies

Assuming shuffle succeeds, it will move an employee to
a grill and mark that employee as busy. This means that no
other plan can grab that employee until shuffle’s termina-
tion condition is satisfied, at which time the employee is
marked as free. Recall that when a strategy is executed, it
looks at State to determine one of three terminating condi-
tions: the strategy is allowed to work until the problem is
fixed, or until progress has been made, or for N time units.
One tactical issue is whether the terminating conditions of
a strategy should be set once or whether they should be
updated on every cycle. The argument for the latter is that
if resource levels were very tight initially, but relax over
time, then the strategy ought to be allowed additional
resources; and, conversely, if resources were plentiful im-
mediately but now are tight, the strategy ought to be
allowed fewer resources. Clearly, there are many tactical
possibilities for terminating strategies, but currently McD
allows just two:

static-terminution-conditions - termination condi-
tions are set once when the strategy is created and
not changed,

COHtN et U / ' A DtCIARATIVE KtPKtSENlATION OF CONTROI KNOWLtDGk

.

C d S h ' i E R tl.A;T "
T > . X , ~ E R S - H A ~ : P L F P

.

. , . . ,

. , . . ,
X X P Y X c I 0 n n c c c , , "

S ! W p

. r i . - i . 1 r , ~ B p r e f o r r n c r s

n 5 I O 15 XI 25 30 35 4 0 45 5R 55 60 65 i n 75 Rn 85 ?n ?F. inn

re-evaluate termination YES resource-p SUnPLUS response-p QUICK situation-p SURPLUS

-
Fig. 4. Graph of initial performance of McD

dynamic-termination-conditions -termination condi-
tions are updated dynamically on every cycle.

These tactics are selected by the update-eualuation-mea-
sures slot of State.

In special cases, McD needs resources more rapidly than
they are provided by the mechanism just described, It then
invokes a strategy called the "terminator." This strategy is
always applicable, but its relevance is related to the re-
source-shortage-level slot of State, so that it is selected for
execution only when this level is high. This, recall, is
determined by the number of shortage strategies that fail.
Once invoked, the terminator will mark resources as free
even if their termination conditions have not been met.
Three tactics determine how aggressively it does this.

Benign: Find a resource on a station that has just a
small problem (i.e., a small surplus or
shortage) and that has already made some
progress toward solving the problem.
Like benign, except the problem can be
moderate.
First look for resources on stations where
there has been progress, and mark a re-
source at the station that has the least
serious problem; otherwise mark a re-

Edgy:

Aggressive:

source at the station with the least serious
problem; but if all stations have equally
serious problems, mark the resource that
has been assigned longest.

These tactics are currently selected by the resource-
demand slot of State. It takes one of three values-restore.
improve, and time-depending on the degree of resource
demand (restore is the least demand). Resource demand is
calculated from historical, current, and anticipated aspects
of State.

VI. EXAMPLES

In the following examples, we will show how we tuned
the McD system by adjusting the values in slots of strategy
frames so it would maintain a fairly "trim" configuration.
Although this will not demonstrate the necessity of the
slots in question, it will demonstrate their sufficiency. We
found that we could quickly improve McD's performance
to a point using relatively local information. However,
once the system achieved a certain level of performance it
became impossible to predict whether further changes
would improve or detract from performance, whch raises
questions about the utility of global information.

554 mli IKANSACI‘IONS ON SYSTEMS, MAN, ANI) C Y B I I K N I . I I C S , VOI.. 19, NO. 3, MAY/JUNI: 19x9

I

15 2
I

25

n
36 35 46 45

Order Set for AU Fxwnnles

55 EO 6 5 i o
I

85

Fig. 5 . Order set used for all examples.

We evaluate McD’s performance by several metrics. One
is a graph, over time, of the supply and demand for
various items. Fig. 4 shows a graph in which McD’s
performance is poor. Although it does not have large
shortages or surpluses of food items initially, by time = 20
it develops a shortage of hamburgers, then a little later a
surplus of fries. Around time = 40, McD begins to develop
a massive shortage of sodas, and around time= 50 a
slightly smaller shortage of hamburgers, and then a short-
age of fries. As these shortages develop, one can see a
corresponding increase in the length of time that cus-
tomers must wait. This is due almost entirely to waiting for
food from the kitchen, although around time = 65 cus-
tomers must wait a short time for cashiers.

Each movement of an employee is represented in the
graph by a vertical dotted line, grounded at a pair of
characters that represent the initial and final location of
the employee. For example, shortly before time = 40, McD
takes an employee from a cashier station (C) and moves it
to the drinks station (D), probably to correct the slight
shortage of sodas. In fact, the shortage disappears around
time = 40, and shortly thereafter McD moves the employee
from the drinks station to the list of unassigned employees
(X). This, i t turns out, was a bad move, since the drinks
shortage immediately becomes very serious.

These moves are proposed by strategy frames based on
relatively local information. A frame sees a shortage, sur-
plus, or breakdown, and proposes itself to the interpreter.
The choice by the interpreter among strategy frames is also
based on relatively local information: it selects the strategy
frame that is most relevant, that is, the one that potentially
fixes the most problems of greatest severity. It does not
predict the effects of the resource allocations suggested by
each relevant strategy, and in particular does not predict
the interactions between these resource allocations and the
ones that are already in effect,

McD’s performance on each run is summarized with a
table of statistics (e.g., Fig. 6 presents the statistics that
correspond with Fig. 4). We record the mean surplus,
shortage, and total supply of each food item, the standard

deviation, and the number of each situation. In Fig. 6 there
are 33 situations in which we had a surplus of hamburgers,
in which the mean surplus was 30.18 with a standard
deviation of 17.98. More significant, of course, is the 65
shortage situations, in which the mean shortage was a
distressing -86.31! Overall, the mean level of supply for
all 98 cases (including shortage and surpluses) was - 47.08.
We have a similar pattern of results for the other food
items. A summary of these figures is found in the row
called “Totals,” which contains the weighted means of
surpluses, shortages, and overall supply for all the food
items. The weighting reflects the rate at which food items
can be produced and are typically consumed. Thus big
shortages of hamburgers “count the same” as smaller
shortages of apple pies, because the latter are produced
more slowly. Fig. 6 also includes the average wait for a
cashier, and for food once an order has been placed; these
figures are 0.27 and 12.20, respectively, indicating that a
customer can expect to order in about one-quarter of a
time unit, but wait 12 time units for food! Lastly, Fig. 6
includes information about the efficiency with which McD
uses its employees. We record the total number of units
worked by all employees and the number of those units in
which they were productive (not idle). The ratio, or utility
mean, is just the ratio of these statistics. In this case, the
employees were not particularly efficient (71 percent).

McD’s performance in Figs. 4 and 6 is fairly poor. Now
we will show how, by modifying the slot values of McD’s
strategy frames, we improved performance. The previous
example and all the subsequent ones use the order set
shown in Fig. 5. It contains 100 blocks of orders. Each
block contains between zero and eight orders (distributed
around a mean of four orders), and each order includes
zero to seven orders of pies, burgers, fries, sodas, and
shakes.

The performance illustrated in Figs. 4 and 6 is poor for
several reasons. First, the mean wait for food is over 12
units-much too long. This is due in part to the enormous
mean shortage (-53.9): McD is out of everything most of
the time, so customers have to wait. Indeed, there are 308

C O H ~ N el ul.: A DECLARATIVE REPNS~NTATION OF CONTROL KNOWLEDGL

number

555

33.00

Surplus
I HAMBURGERS 1

25.94
17.28

s t . dev 4.71
number I 41.00 ___-

19.11
s t . dev
number

SODA

-~
TOTALS (weighted)

number 176.00

Short age

-86.31
75.92
65.00

-41.66
30.73
50.00

-19.63
14.99
51 00

-27 55
20.78
53.00

-154.92
120.10

89.00

Total ___

-47.08
83.44
98.00

-8.82
41.90
98.00

~

-5.91
18.26
98.00

-11.63
23.31
98.00

138.94
125 04

98.00

__

~

Avg. Wait all Customers:
Cashirr wait 0 27

S t Deviation
1.37

Kitchen wait 12.20 1 7 95

Employee Stats.
Total Product ive time uni ts
Total On Duty t ime uni ts
Utility mean
Utility s t . dev

478.00
678.00

0.71
0 19

Fig. 6 . Statistics for production and utilization from initial run.

shortage situations and 176 surplus situations. Our imme-
diate goals were to reduce these shortages and reduce the
waiting time for food.

By changing the values of slots in strategy frames, we
were able to affect the following aspects of McD’s behav-
ior.

0

0

0

0

Preference among situations. McD can react more
quickly to surpluses, or more quickly to shortages, or
equally to both, as determined by the situation-pref-
erences slot of State.
Where to get resources. McD can either favor talung
resources from stations that are producing a surplus,
or it can favor talung the resources from a list of free
resources. In the first case, if no stations are produc-
ing surpluses, McD will look to the free list; in the
second case, conversely, if there are no free employ-
ees, McD will look at stations producing surpluses.
This choice is dictated by the resource-preferences
slot of State.
Speed of response. McD can react quickly or slowly
to situations, as dictated by the response-preferences
slot of State.
Whether to re-evaluate termination conditions. McD
can allow strategy frames to re-evaluate their termi-
nating conditions dynamically, or it can set terminat-
ing conditions once for each strategy as it is invoked.

This is determined by the updute-euuluution-meusures
slot of State.

The version of McD discussed earlier was configured to
respond to surpluses before shortages, to get employees
from surplus stations before free employees. to respond
quickly, and to re-evaluate its terminating conditions. Since
this version generates huge shortages, it makes little sense
to attend to surpluses before shortages. Thus we ran the
system again with it attending to shortages first. The
results were much better: The mean surplus was 24.7, up
from 17.1; but the mean shortage was -32.2, down con-
siderably from -53.9; and the total mean supply was
-4.9, down from -27.4. Moreover, the cashier wait
dropped from 0.27 to 0.08; and more importantly, the
kitchen wait dropped from 12.2 to 6.5. There was no
improvement in the efficiency with which McD used its
resources. Clearly, attending to shortages before surpluses
improves McD’s performance.

Still, it is awkward to wait 6.5 time units for one’s food.
We also noted that cashier wait was almost nonexistent. If
cashier wait was increased slightly, then it might delay
some orders being placed and reduce the shortages, and
thus the kitchen wait time. In our next run we changed the
applicability conditions for cashier shortages and sur-
pluses, to register a shortage less quickly and to register a
surplus more quickly. (Although these functions are not
shown in any of the figures in this paper, they too are
explicit and easy to modify.) The net result, we hoped,
would be to free up cashiers and make them easier to
reassign. At the same time, we changed the resource-pref-
erences slot in State so McD would look for resources on
the free list before surplus stations. The net result was to
improve performance slightly. The cashier wait increased
slightly (from 0.08 to 0.42) and the kitchen wait decreased
slightly (from 6.5 to 5.8). At the same time the mean
surplus decreased a little and the mean shortage improved
a little.

Beyond this, we had little success improving McD’s
performance. This is a story that has repeated itself many
times. We can get performance to some reasonable level by
a small number of configuration changes, all of which rely
on relatively local information. After that, improvements
in performance seem to require relatively global informa-
tion that is difficult and sometimes impossible to acquire.
For example, in the aforementioned we tried changing the
applicability conditions for cashier shortages in the hope
that, by making it harder to get to a cashier, fewer orders
would be placed, and so the wait for food would be
decreased. This argument, based on nonlocal interactions
of assignments of resources, suggests that relatively global
information could improve McD’s performance; but as
noted above, t h s strategy had only a small effect. In fact,
most of our attempts to predict the effects of interactions
of resources, and so improve overall performance, failed.
Beyond the effects of the really big changes, which can be
selected based on local information, the other effects are
too susceptible to the global interactions of many vari-

55h IEl% TRANSACTIONS O N SYSTEMS, MAN, A N D CYRI~RNLTICS. VOL. 19. NO. 3, MAY/JUNE 1989

ables, and levels of shortages and surpluses, and other
dynamic factors, for us to predict them.

VII. CONCLUSION

Starting from the position that complex control strate-
gies can be viewed as the interaction of smaller strategic
units, we developed a representation for these units and
showed how their tactical instantiations could be adjusted
to tune control strategies. We showed that particular slots
of strategy frames are sufficient to control McD in a
dynamic environment, but we did not show their necessity.
Nor were we able to predict the effects of changes to all
slots. Clearly then, research with strategy frames is nascent.

Future research with strategy frames will emphasize the
subtle interactions between how strategy frames are instan-
tiated with tactics and the dynamic environment in which
they are used. That is, we want better predictability. This
is essential if we are to study the tradeoffs between the
costs and benefits of relatively local and global informa-
tion. Currently, we have no reliable methods to predict the
global interactions of strategies’ allocations of resources, so
we cannot guess at the utility of this knowledge. This is
our priority for work in the future.

Strategy frames were motivated by the need for declara-
tive representations of strategy, and by the observation
that, in many systems, devices with similar functionality
had been implemented in an ad hoc way. Ideally, strategy
frames will become part of the AI programmer’s toolbox,
complete with tactical instantiations for various tasks and
interpreters capable of dynamically selecting the most ap-
propriate instantiations. Before that, there is much work to
be done. Strategy frames imply “emergent” control, that is,
control strategies that arise from interactions of individual
control decisions. In McD, and in general, these decisions
allocate computational and other resources. The basic
question is whether the global interactions between these
decisions must be examined before they are taken, or
whether acceptable control can be based on relatively local
information. Our preliminary experiments suggest that lo-
cal information is sufficient to replace grossly inefficient
configurations of McD with more efficient ones, but be-
yond that, performance depends on currently unpre-
dictable global interactions among resource allocations.
Further progress depends on making these interactions
more predictable.

ACKNOWLEDGMENT

Special thanks to Ken Ward for help with programming,
and

PI
PI

. -

to an anonymous reviewer for insightful comments. -

REFERENCES

“Knowlcdge-based planning workshop.” DARPA, Austin. TX, July
1987.
L. Erman and V. R. Lesser, “A multi-level organization for prob-
lem solving using many diverse, cooperating sources of knowledge,”
in Proc. 1m. Joint Conf. 011 Arrrficrul Intelligence, 1975.

V. R. Lesser, E. H. Durfee, and J. Pavlin. “Approximate processing
in real-time problem solving,” A I Mug.. pp. 49-61. Spring 1988.
T. Dean, “Large-scale temporal data bases for planning in complex
domains,” in Pro<. Tenrh I i i r . Joint Con/. oil Arrificiul Itirellrgenc,e,
Milan, Italy, 1987.
-, “Planning. execution and control.” in Proc. DARPA Know/-
edge-Bused Pluiining Worl,shop, Austin. TX, Dec. 1987.
S. Hanks, “Temporal reasoning about uncertain worlds,” in Third
Workshop on Uncerruinrj~ r i i Arrific,iul Inrelligence, American Assn.
Artificial Intelligence, 1987, pp. 114-122.
M. Herman and 3. S. Albus, “Real-time hierarchical planning for
multiple mobile robots,” in Proc. DA RPA Knowledge-Bused Plun-
ning Workshop, Austin, TX. Dec. 1987.
R. Korf. “Real-time heuristic search: First results.’’ in Proc. Six-rh
Nutionul Cotif. on Artificiul Inrellrgence, Seattle, WA, 1987, pp.
133-138.
D. McDermott. “A temporal logic for reasoning about processes
and plans,” Cognitive Sei.. vol. 6. pp. 101-155, 1982.
A. Howe, J. R. Dixon, P. R. Cohen, and M. K. Simmons. “Dominic:
A domain-independent program for mechanical engineering
design,” lnr. J . Arrificiul lnrell. Eng.. vol. 1, no. 1; pp. 23-29. July
1986.
M. F. Orelup, “Meta-control in domain-independent design by
iterative redesign,” master’s thesis, Mechanical Eng. Dept.. Univ.
Massachusetts, Sept. 1987.
M. F. Orelup, J. R. Dixon, P. R. Cohen, and Melvin K. Simmons,
“Dominic 11: Meta-level control in iterative redesign,” in Proc.
Seueiith Nut. Con/. on Arrrficiul Inrelligence, St. Paul, MN. Aug.
1988, pp. 25-30.
W. J. Pardee and B. Hayes-Roth, “Intelligent real time control of
material processing,” Technical Rep.. Rockwell International, Sci-
ence Center, Palo Alto Laboratory, Feb. 1987.
S. Marcus. J. McDermott. and T. Wang. “Knowledge acquisition
for constructive systems,” in Proc. Niiirh lnr . Joint Con/. on
Artificrul lnrelligence, Los Angeles, CA, Aug. 1985, pp. 637-639.
S. Marcus, “Taking backtracking with a grain of SALT.” lm. J .
Mun- Muchrne Studies, vol. 26, no. 4, pp. 383-398. 1987.
E. R. Bareiss, B. W. Porter, and C. C. Wier, “Protos: An exemplar-
based learning apprentice.” in Proc. Second A A A I Knowledge Ac-
qursirron for Knowledge-Bused Sj’srenis Workshop, Banff, Canada,
Oct. 1987.
J. H. Boose and J. M. Bradshaw. “Expertise transfer and complex
problems: Using AQUINAS as a knowledge acquisition workbench
for expert systems,” / tu. J . of Muti- Muchrne Srudies. vol. 26. no. 1,
pp. 21-25, Jan. 1987.
L. Eshelman, “MOLE: A knowledge acquisition tool that buries
certainty factors,” in Proc. Second A A A I Knowledge Acquisirroti for
Knowledge-Bused Sysrenis Workshop, Banff, Canada, Oct. 1987.
M. A. Musen, L. M. Fagan, D. M. Combs, and E. H. Shortliffe,
“Using a domain model to drive an interactive knowledge editing
tool,” lnr . J . Mail- Muchine Studies, vol. 26. no. 1, p. 105. 1987.
T. R. Gruber. “Acquiring strategic knowledge from experts,” lnr.
J . Muri- Muchine Srudies, 1988.
T. R. Gruber, “The acquisition of strategic knowledge” Ph.D.
thesis. Univ. of Massachusetts. 1988: also to be published in book
form by Academic Press.
R. Davis, “Applications of meta-level knowledge to the construc-
tion, maintenance, and use of large knowledge bases.” Ph.D. thesis,
Computer Science Dept. Stanford University, 1976: reprinted in
Knowledge-Bused $ysrems i i i A rrr/iciul Inrelligence, R. Davis and
D. B. Lenat, Eds.
W. J. Clancey. “Acquiring, representing, and evaluating a compe-
tence model of diagnosis,” KSL Memo 84-2, Stanford University,
Feb. 1984.
W. J. Clancey, “Representing control knowledge as abstract tasks
and metarules,” in Computer Expert Systenis, M. Coombs and
L. Bok, Eds. Springer-Verlag, also KSL Memo 85-16, Stanford
University.
P. R. Cohen. D. S. Day, J. Delisio, M. Greenberg, R. Kjeldsen,
D. Suthers, and P. Berman, “Management of uncertainty in
medicine,” I n [. J . Approximure Reasoning, vol. 1, no. 1. pp.
103-116. 1987.
P. R. Cohen. M. Greenberg. and J. Delisio, “ M U : A development
environment for prospectivc reasoning systems.” in Proc. Sixrh
Nurroiiul Con/. on Artificiul lntelhgence, Seattle, WA, July 1987. pp.
783-788.

New York: McGraw-Hill, 1982.

COHkN et U/.: A DLCLARATIVE REPRESENTATION OF CONTROL KNOWLLDGF

P. R. Cohen and D. S. Day, “The centrality of autonomous agents
in theories of action under uncertainty,” EKSL Technical Rep.
88-14. Univ. Massachusetts, Jan. 1988.
P. R. Cohen and A. E. Howe, “How evaluation guides AI research,”
AI Magazine, vol. 9, no. 4, pp. 35-43, 1988.
P. R. Cohen and A. E. Howe, “Toward AI research methodology:
three case studies in evaluation,” IEEE Truns. Syst. Mu17 Cvhern..
this issue, pp. 634-646.
S. Weiss, C. Kulikowski, and A. Safir, “A model-based consultation
system for the long-term management of glaucoma,” in Proc.

S . M. Weiss, C. A. Kulikowski, S. Amarel, and A. Safir. “A
model-based method for computer-aided medical decision-making,”
Artrficiul Intelligence, vol. 11, nos. 1, 2, pp. 145-172, 1978.
S. G. Pauker, A. Gorry, J. P. Kassirer, and W. B. Schwartz,
“Towards the simulation of clinical cognition: Taking a present
illness by computer,” Amer. J . Medicine, vol. 60, pp. 981-996,
1976.
L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The
HEARSAY-11 speech understanding system: Integrating knowledge to
resolve uncertainty,” Computing Surveys, vol. 12, pp. 213-253,
1980.
B. Chandrasekaran, S . Mittal, and J. W. Smith, “Reasoning with
uncertain knowledge: the MDX approach,” in Proc. Congress of
Americun Medicul Informatics A m . , San Francisco, 1982, pp.
335-339.
B. Chandrasekaran and S. Mittal, “Conceptual representation of
medical knowledge for diagnosis by computer: MDX and related
systems,” in Advunces in Computers, M. Yovits, Ed. New York:
Academic Press, 1983, pp. 217-293.
W. J. Clancey, “From guidon to NEOMYCIN and HERACLES in
twenty short lessons,” AI Mug., vol. 7, no. 3, pp. 40-60, 1986.
E. Shortliffe, Computer-Based Medicul Consultutions: MYCIN. New
York: American Elsevier, 1976.
W. J. Clancey, “Classification problem solving,” in Proc. Fourth
Nutionul Conf. on Artificial Intelligence, 1984, p. 49.
-, “Heuristic classification,” Artificial Intelligence, vol. 27, pp.

T. Bylander and B. Chandrasekaran, “Generic tasks in knowledge-
based reasoning: The ‘right’ level of abstraction for knowledge
acquisition,” Int. J . Man- Machine Studies, vol. 26, no. 2, pp.
231-244, 1987.
B. Chandrasekaran, “Generic tasks in knowledge-based reasoning:
High-level building blocks for expert system design,” IEEE Expert.
vol. 1, no. 3, pp. 23-30, Fall 1986.
-~ “Towards a taxonomy of problem solving types,” A I Mag.,
vol. 4, no. 1, pp. 9-17, 1983.
T. R. Gruber and P. R. Cohen, “Knowledge engineering tools at
the architecture level,” in Proc. Tenth In? . Joint Conf. on Artificial
Intelligence, Milan, Italy, 1987, pp. 100-103.
-, “Design for acquisition: Principles of knowledge system
design to facilitate knowledge acquisition,” Inr. J . Man- Machine
Studies, vol. 26, no. 2, pp. 143-159, 1987.

IJCAI 5. 1977, pp. 826-832.

289-350.1985,

557

[45] A. Garvey, C. Cornelius, and B. Hayes-Roth, “Computational costs
versus benefits of control reasoning.” in Proc. AAAI-87: Si.xrh
Nutioriul Corif. on Artificiul Intelliger7ce, American Association for
Artificial Intelligence, 1987.

Paul Cohen received the Ph.D. degree from
Stanford University in 1983.

His research interest is planning and reasoning
under uncertainty in knowledge-based systems.
He is an Assistant Professor of computer and
information science at the University of Mas-
sachusetts, Amherst, where hc direct5 the Experi-
mental Knowledge Systems Laboratory.

Dr. Cohen is an editor of The Hutidhod of

c A rti fic iul Inrelligeric e

Jefferwn DeLisio was born In Washington, D C
He did his undergraduate studv at Marlboro
College in Vermont and the Universit\ of
Massachusetts, Amherst He received the M S
degree in computer and information science in
1988 from the Unirersitv of Massachusetts

He is co-Developer of d system architecture
for interpretation and diagnostic tasks, MU, dnd
has worked in the domam of medical diagnosia
In collaboration with Dr Paul Berman of thc
University of Massachusettc Health Center His

research interests include real-time problem solving. task-yxcific archi-
tectures, case-based reasoning, and knowledge acquisltion

Mr DeLisio is a member of the AAAI and the Cognitive Science
Society

David M. Hart was born in 1954 in Natchez. MS.
He received the B.A. degree in English from
Hampshire College. Amherst. MA.

He is currently pursuing the Ph.D. degree at
the University of Massachusetts, Amherst. He
worked for four years at the University Comput-
ing Center at the University of Massachusetts.
Amherst. where he was a member of the software
group that developed Lisp/VE for Control Data
Corporation. His research interests include
knowledge-based systems, process control. real-

time dynamic planning, and operations research.
Mr. Hart is a member of the AAAI and ACM

