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A Declarative Representation 
of Control Knowledge 

PAUL R. COHEN, JEFFERSON DELISIO, AND DAVID HART 

Ahstroct -An explicit representation of control called strategy frames is 
described. The control of several well-known expert systems can be 
described in terms of strategy frames, although their control is actually 
encoded in an interpreter. One advantage of strategy frames is that 
complex control strategies emerge from their interaction, U) complex 
interpreters are not necessary. This idea is illustrated in the context of a 
process control problem. 

I. INTRODUCTION 

ONTROL is an important problem in artificial intel- C ligence (AI): knowledge systems are getting very large 
and difficult to control [I], [2] and, because efficiency is a 
concern in these systems, control strategies must be flexi- 
ble enough to balance various costs, especially time [l], 
[3]-191. Independent of efficiency concerns, we are begin- 
ning to work on tasks such as design [lo]-[12], process 
control [13], and knowledge-based planning [l], in whch 
“how to” knowledge is important. In these tasks, problem 
solvers do not use a single fixed strategy but instead 
change strategies as the situation demands, keeping “ trim” 
to the current situation. 

AI researchers are beginning to recognize control knowl- 
edge as a kind of expertise and are developing tools to help 
knowledge engineers acquire it [14]-[I 91. Previous work by 
Thomas Gruber in our laboratory has addressed the prob- 
lem of acquiring and generalizing strategic “meta-rules” 
[20], [21] similar to those discussed by Davis [22] and 
Clancey [23], [24]. Meta-rules give control a “one step at a 
time” or reactive flavor that, when implemented in a 
medical expert system [25], [26] failed to capture some 
aspects of diagnostic expertise [27]. For example, it was 
difficult to formulate meta-rules that had contingent ac- 
tions on their right sides-to, for example, “do test A and 
if the answer is positive do test B otherwise do test C.” 
The current work was initiated to develop representations 
for these little contingency plans, but it swiftly became an 
exploration of representations for the range of knowledge 
one needs to control complex AI systems. Throughout, we 
have required these representations to be declarative, so 
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that they might be accessible to knowledge engneers, and 
also to be knowledge acquisition tools. 

This paper represents a snapshot of our current work on 
control. It represents work in progress and so poses prob- 
lems that it does not solve. We thnk  it is essential that as 
AI researchers explore more realistic environments, they 
report where they are, how they got there, and where they 
are going; even if they still have a long way to go [28], [29]. 
In this spirit, we have organized the paper into six sections 
that correspond roughly to aspects of a journey. 

We begin with an analysis of the control literature that 
led us to the idea of strategy frames-declarative struc- 
tures that represent problem-solving strategies (Section 11). 
Next, we discuss the purpose of the journey, our intent 
being to empirically test some hypotheses about local and 
global control via strategy frames (Section 111). In the next 
two sections we describe a process control task and an 
implementation in terms of strategy frames which together 
provide the environment for our empirical work (Sections 
IV and V). Preliminary results are described in Section VI. 

11. STRATEGY FRAMES: A VIEW OF CONTROL 

Our view of control is motivated by the following obser- 
vations, which are based on analyses of the control strate- 
gies of Casnet [30], [31], Pip [32], Hearsay-I1 [2], [33], Mum 
[25], MDX [34], [35], Neomycin [23], [36], Dominic, and 
Dominic-I1 [lo], [12]. 

Observation 1:  The control strategies of many knowl- 
edge systems can be viewed as the inter- 
action of a small number of simpler 
strategies. We call these strategy frames. 

The structure of the strategy frames will be discussed in 
Section V. For now, one can imagine them controlling 
inference within and between levels of hypothesis spaces. 
For example, Casnet’s hypothesis space had three levels, 
for data, pathophysiological states, and disease hypotheses, 
respectively (Fig. 1). Its control strategy can be viewed in 
terms of the interaction of three strategy frames: bottom-up 
inference from data to pathophysiological states, lateral 
inferences along causal pathways between pathophysiolog- 
ical states, and bottom-up inferences between pathophysic- 
logical states and disease hypotheses. The tails and heads 
of the arrows in Fig. 1 are different regions of the hypothe- 
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Fig. 1. Schematic representation of control in Casnet. showing levels of 
hypothesis space and strategy frames represented as vectors. 

sis space and are the domain and range, respectively, of 
strategy frames. 

Observation 2: Strategy frames do not relinquish control 
after every inference, nor do they keep 
control throughout problem solving. 

A strategy frame says, for instance, “I’m in control, and 
we’re going to do some bottom-up processing until it 
appears that some other kind of processing would be more 
useful.” For example, Mum was controlled by strategic 
phases that changed relatively infrequently. A control cy- 
cle in Mum begins by looking at the state of the hypothesis 
space to determine whether the applicability conditions of 
the current strategic phase are still in effect. If not, a new 
strategic phase is invoked. In either case, the next step is to 
select a focus of attention, and then to select evidence for 
or against that focus. The evidence is solicited and the 
state of the hypothesis space is updated. Then the cycle 
begins again. The system can stay in a strategic phase (i.e., 
under the control of a single strategy frame) for many 
cycles. For example, one strategic phase-called “Deal- 
with-Critical-Possibilities”-was active as long as critical 
dangerous hypotheses (e.g., heart attack) had some degree 
of support. Within this phase, Mum selected the hypothe- 
ses for its focus of attention in order of their criticality; it 
first sought low-cost evidence against the focus of atten- 
tion, but had no prohibition against high-cost evidence, 
pro or con the focus. Unlike other strategic phases, the 
Deal-with-Critical-Possibilities strategy gave Mum’s prob- 
lem solving a distinct “this is important, so hang the cost” 
flavor for the duration of time that critical hypotheses 
were active. 

One is tempted to equate knowledge sources in Hearsay- 
I1 with strategy frames. But although the stimulus and 
response frames of knowledge sources (KS’s) in Hearsay-I1 
are analogous to the domain and range of strategy frames, 
the latter take control of processing for intervals that can 

involve many inferences whereas KS’s generate knowledge- 
source instantiations (KSI’s) for each possible inference 
and relinquish control to the scheduler after every infer- 
ence. 

In fact, the designers of many systems have found it  
desirable to give them something like the functionality of 
strategy frames, even when they were initially designed to 
have opportunistic control, or at the other extreme, com- 
pletely fixed control. Hearsay-I1 was designed to have 
opportunistic control, but was later modified to have two 
phases-a bottom-up phase followed by an opportunistic 
one. Even Mycin, which is commonly thought to be an 
exhaustive backward-chaining production system, switched 
to limited forward chaining when it was presented with 
particular kinds of data [37]. 

Observation 3: Strategy frames are nested structures in 
whch there are tactical instantiations of 
the components of a strategy. 

All strategic phases in Mum have the same nested struc- 
ture: 

1) applicability conditions, 
2) criteria for selecting focus of attention, 
3) criteria for selecting evidence, 

but they differ in how the components or slots of the 
strategies are instantiated. For example, the criterion 
for selecting focus of attention in the “Discriminate- 
Strongest-Hypotheses” strategic phase is plausibility; this 
phase focuses on hypotheses that are likely given the 
evidence. In contrast, the Deal-with-Critical-Possibilities 
phase focuses on hypotheses that are dangerous and have 
some level of support; these hypotheses may actually have 
a low plausibility. 

A similar view is found in Dominic-11, a program for 
iterative redesign of mechanical devices. The program has a 
five-step basic control cycle: 

1) select an aspect of the design to improve, 
2) determine how much improvement is desired, 
3) select a design variable that, when changed, is ex- 

pected to improve the design, 
4) determine how much to change the design variable, 
5) decide whether or not to change the design variable. 

For example, Dominic-I1 may want to improve the ex- 
pected life of the pulley system (step l), from “short life” 
to “medium life” (step 2), by changing the diameter of the 
drive pulley (step 3), from four to five inches (step 4). If 
this change is predicted to have the desired effect, and it 
improves the overall evaluation of the design, then it will 
be adopted. Then the redesign cycle starts again. Roughly, 
redesign in Dominic-I1 is hill-climbing because each change 
to a design improves its overall evaluation. But it is not 
strict hll-climbing because, depending on the tactical in- 
stantiations of the five steps in the redesign cycle, 
Dominic-I1 can actually allow a design to get worse before 
it gets better. For example, one tactical instantiation of 
Dominic-11’s basic design strategy is as follows. 
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Select an aspect of the design to improve: Select the 
aspect that has the largest negative effect on the 
overall evaluation of the design. 
Determine how much improvement is desired: Re- 
quire an improvement sufficient to ensure that the 
aspect no longer has a negative effect on the overall 
evaluation of the design. 
Select a design variable that, when changed, is ex- 
pected to improve the design: Select any design vari- 
able that has not been changed in the last two 
cycles. 
Determine how much to change the design Variable: 
Change the value of the design variable “a lot.” 
Decide whether or not to change the design variable: 
Even if the overall quality of the design decreases, 
accept the change if it improves the specific aspect 
of the design as desired. 

Dominic-I1 monitors the current state of its design, look- 
ing for pathological situations. When it finds one, it typi- 
cally switches from one tactical instantiation of the basic 
redesign strategy to another, more appropriate one. For 
example, a common problem in hill-climbing is the mesa 
effect: instead of moving steadily up a hill, a system gets 
trapped in a relatively flat area, making many small changes 
but not improving overall performance. When Dominic-I1 
detects this situation, it adopts a tactical instantiation of 
the redesign strategy that makes very large changes to a 
design variable even if they reduce the quality of the 
design. This is like talung large steps instead of little ones 
to get off the plateau onto a hill-even if one lands on the 
hill below one’s current altitude. In a series of experiments 
we found that Dominic-11, which could select among tacti- 
cal instantiations, always outperformed an earlier system, 
Dominic-I, which could not select [12]. 

Observation 4 :  The same strategy frames show up in 
many knowledge systems, though these 
systems differ parametrically. 

In the last few years there has been a sense that many AI 
tasks are very similar. This sense was given voice by 
Clancey’s characterization of diagnostic reasoning [38], 
[39] and by Chandrasekaran’s evolving taxonomy of AI 
tasks [40]-[42]. It has been argued that task-level architec- 
tures more general than particular knowledge systems but 
less general than weak methods, such as generate and test, 
[43], [44] can be designed. What makes AI tasks similar is 
not the facts and heuristics we use to solve them, for these 
vary from one domain to another, but rather the general 
kinds of knowledge they require and, most important from 
our perspective, how they are solved. In our analysis of 
many knowledge systems, we believed we repeatedly saw 
the same strategies. For example, all the diagnostic systems 
made some distinction in their control strategies between 
data that “trigger” hypotheses and those that cannot trig- 
ger hypotheses but can support previously triggered ones. 
Most of these systems also made their control strategies 

sensitive to data that could categorically rule out hypothe- 
ses. The basic control strategy for diagnosis, though slightly 
different in each of the several systems, was to first use a 
subset of the data to generate a small set of hypotheses 
(using all the data would create an unmanageable combi- 
nation set), then to try to rule out or rule in these hypothe- 
ses, typically in an order that reflects the importance of the 
hypotheses. 

The advantage of identifying general strategies is that 
they become part of the knowledge engineer’s toolbox. We 
imagine providing task-level architectures complete with a 
variety of declarative strategy frames, each easily parame- 
terized for the particular application, much as knowledge- 
engineering tools currently provide declarative representa- 
tions to be filled with domain-specific facts and heuristics. 
Several steps have already been taken in this direction [14], 
[16], [18]-[20]. 

Observation 5: Control strategies can depend intimately 
on the structure of the hypothesis space. 

Casnet’s control strategy exploited causal associations 
among pathophysiological states, and MDX’s strategy ex- 
ploited hierarchical associations in a taxonomy of dis- 
eases. It seems that the diversity of control strategies 
depends on how many types of relations exist among 
objects in the hypothesis space. For example, if the only 
possible relation in the hypothesis space is “evidence-for,’’ 
then a system is limited to blind data-directed or goal- 
directed control. It cannot focus on hypotheses that are 
causally related to other likely hypotheses unless causal 
relations are explicit in the hypothesis space. In Neomycin, 
Clancey describes many relations that are needed to sup- 
port a wide range of diagnostic subtasks. These include 
binary relations (e.g., causal and hierarchical) relations, 
and also unary relations or properties of the objects in the 
hypothesis space. A similar approach was taken in Mum 
and the subsequent MU project. In MU, one defines sets 
of objects based on their relations with other objects, such 
as the set of all tests that potentially confirm any object in the 
differential and are inexpensive. Here, potentially-confirm is 
a binary relation and object in the differential, test and 
inexpensive are unary ones. Sets in MU can function either 
as foci of attention or, as in this example, as sets of 
potential evidence. 

In Pip, the relationship between control-specifically 
focus of attention-and the structure of the hypothesis 
space is extremely tight. The hypothesis space is a network 
of associated frames, most of which represent diseases. 
These frames are “activated” or “illuminated” when their 
associated symptoms are found in the patient. Hypotheses 
become active (i.e., part of the focus of attention) when 
activation spreads over relations in the hypothesis space. 
For example, Pip has triggering relations between data and 
hypotheses that make hypotheses active if the data are 
present. A more complex role is played by relations such 
as mqy be caused by: i f  two frames are associated by this 
relation, and one becomes active, then the other becomes 
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semiuctiue, which means, roughly, that it will have a greater 
propensity to become active as more data become avail- 
able. 

It is easy to see the importance of the structure of the 
hypothesis space when that structure is explicit, as it is in 
Casnet, MDX, Neomycin, and Mum. By explicit we mean 
that all data, intermediate hypotheses, and conclusions are 
known in advance before the system is ever run. In con- 
trast, objects in implicit hypothesis spaces are generated by 
search during execution. For example, in the Dominic 
systems we do not traverse an explicit space of thousands 
of designs, but rather we generate the space by iteratively 
modifying each design to produce the next. In such cases, 
objects in the hypothesis space are not associated by 
explicit relations, as they are in explicit hypothesis spaces. 
Consequently, control strategies are designed for the im- 
plicit structure of implicit hypothesis spaces. In Dominic 
this structure was assumed to be a hill, and so design was 
viewed as hill climbing. In fact, Dominic-I1 is able to 
detect the local topology of the hill and, if it is a plateau, 
modify its control strategy appropriately. In Hearsay-I1 
the implicit structure of the space of interpretations was 
assumed to contain many constraints-often referred to as 
redundancy in the speech signal-so that partial interpre- 
tations of one part of the signal could help the system 
interpret other parts. Like Dominic-11, Hearsay-I1 could 
detect where it was in the space and could extend relatively 
certain regions into less-certain areas. This was called 
island-driving. 

111. MOTIVATIONS 

Although AI researchers have been building control 
structures and problem-solving strategies for years, one of 
the basic questions about control remains unanswered: 
Under what conditions can you achieve a sequence of 
actions that look like they were selected by a global 
strategy, when in fact they were selected by one or more 
local strategies? Both global and local are vague and, at 
best, relative terms: one strategy relies on “more global” 
information than another. Informally, local means “based 
on a subset of the available information.” In terms of 
performance, because local strategies require less informa- 
tion and less integration of information, they are valuable 
when the cost of obtaining and processing relatively global 
information is prohibitive. On the other hand, perfor- 
mance is typically better when informed by global infor- 
mation. For example, imagine picking out a route across a 
city; a relatively local strategy determines the route given 
the global goal and the immediate environment, whereas a 
more global strategy considers the environment further 
away. The local strategy requires less information and less 
planning, but may take us away from our goal and into 
“blind alleys”; the more global strategy can avoid these 
problems because it has access to more global information, 
such as a map. In terms of this example, we want to know 
under what conditions one can traverse a route that up- 
pears to be guided by a map when it is not. 

Our research poses this question not in terms of actions 
such as traversing a route, but in terms of strategies 
(implemented by strategy frames) that select actions: Un- 
der what conditions can a sequence of strategies appear to 
be guided by global information when, in fact, it is not? 
The question is important because AI is working in task 
domains that seem to require multiple strategies (or, at 
least, multiple tactical instantiations of strategies). Exam- 
ples include Dominic-I1 and Mum (Section II), as well as 
recent work suggesting that alternative strategies should be 
selected by resource demands and availability [3], [13], [45]. 
We want to know the conditions in which a system with 
multiple strategies needs global information to select them 
and, conversely, when relatively local information will 
suffice. Under what conditions does the computational 
cost of global information outweigh the benefit of having 
it? Under what conditions does relatively local selection of 
strategies result in inefficiency, incoherence, or other pit- 
falls analogous to “ blind alleys” in the example above? 

Our research is designed to explore these questions. 
Initially, we thought about reimplementing some of the 
systems discussed earlier-Casnet, Pip, Mum, and so 
on-with strategy frames. But on reflection it seemed 
uninteresting to demonstrate yet another architecture for 
diagnosis. Instead, we have used strategy frames to control 
a system that solves a relatively new and uncommon kind 
of task: Process control tasks require a system to monitor 
and adjust to variations in an ongoing process, many or all 
of which are unpredictable. 

IV. THE McD PROBLEM 

McD is a simplified model of a fast-food restaurant. 
Orders are presented at varying rates over time. McD tries 
to fill all orders as quickly as possible without building up 
large surpluses of items. It does this by changing the rates 
at which it produces items-by shifting employees from 
one activity to another. For example, if McD has a surplus 
of hamburgers but a shortage of shakes, an employee may 
be moved from the grill to the beverage station. 

The McD problem has these characteristics. 

Dynamic demands: the problem solver must respond 
dynamically to changing de- 
mands; for example, changes in 
the rate at which orders are placed. 

Resource allocation: problems are solved by dynami- 
cally shifting resources from one 
activity to another, thereby chang- 
ing the configuration of the prob- 
lem solver; for example, by moving 
employees to different stations. 
even if a system has the resources 
to handle any level of demand, it 
should not want them to be com- 
mitted when demand is slack, 
since they would be largely un- 
productive. There is a tradeoff be- 

Tradeoffs: 
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tween the costs associated with 
the failure to meet demand and 
those associated with excess sup- 
ply. And this is but one of many 
tradeoffs that together determine 
the efficiency of a system. 

In McD, resources are employees and products are menu 
items (hamburgers, fries, soda, shakes, apple pies) and 
service items (cashiers, clean tables, and condiments). The 
number of employees is variable, but in our experiments is 
initially seven. Employees work at stations. There are two 
grills (each with space for two employees), two fryer sta- 
tions (one employee tends each), one drinks and dessert 
station (tended by one employee), two busing stations that 
clean tables and manage condiments and utensils (tended 
by one employee each), and four cashier stations (each 
tended by one employee). Obviously, more than seven 
employees are needed to fully staff all the stations in McD. 
Successful management of McD involves shifting employ- 
ees from one station to another in response to demands. 
McD can also call in additional employees and send 
surplus employees home. 

McD is presented with blocks of orders at varying rates. 
A block includes the number of people in a group, whether 
they require tables, and how many of each menu item are 
desired. 

Since cashiers take orders in McD, and the number of 
cashiers is limited, some orders will not be processed 
immediately. Moreover, not all menu items are available 
all the time, so some orders will not be filled immediately. 
Two components of McD’s performance are the average 
time waited for a cashier and average time waited for food. 

McD recognizes three special situations: shortages, sur- 
pluses, and breakdowns. A shortage is indicated when the 
expected demand for an item significantly exceeds the 
number on hand (minor disparities between demand and 
supply are ignored). Conversely, a surplus is indicated 
when the expected demand is significantly less than the 
number on hand. (Expected demand is just the average 
demand over the last few time segments.) Breakdowns 
remove stations from commission until resources are allo- 
cated to fix them. For example, one of the two grills may 
go down and may result in a shortage if demand is high 
and it is not fixed quickly. 

McD has strategies for each of these situations. All 
involve moving people from one station to another. A 
shortage of hamburgers, for example, is handled by search- 
ing for an employee who can stop what he is doing and 
move to a grill. Of course, if the capacity of the grills is 
exceeded (i.e., more than four people are already working 
them) then McD can do nothing to reduce the shortage. 
Thus shortages of beverages and desserts cannot be over- 
come unless these stations are unmanned, because each of 
these items is produced at a station that has a capacity of 
one employee. Breakdowns are fixed by moving an em- 
ployee to the broken station to fix it. Surpluses, conversely, 
are rectified by removing an employee from a station. 

W-cpmPnt:  
fl s t ra tegy  frdne f o r  ob ta ln lng  resources for shortages of 
nenu i t ens ’  

--of: strategies 
Agpkatditycu: is-there-a-food-shortage 

F m a ~ u :  hanburger-shortage apple-ple-shortage 
kitial-relevamy (U: 2 
Last-irrtantiatiancu: 5 
Measise-of-wess‘u: yes 
--tactics tu: uhen-inproued 
mu: resource-shuf f le  

tarn in at ion^: no 
Tarninatim-tactics (U: uhen-restored 
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+ 
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1’ I 

Fig. 2. Strategy frame for moving resources to cover shortages of menu 
items. 

We must digress briefly to explain what is strategic 
about problem solving in McD. Colloquially, strategies 
select actions and remain in effect longer than individual 
actions. By strategy, we mean a configuration of the prob- 
lem-solving system (McD) that remains in effect over 
many problem-solving actions. For example, McD may fill 
many customer orders with just two employees working at 
a grill, but eventually a shortage may require a change in 
t h s  configuration. Adding another person to a grill will 
change McD’s behavior: i t  may now produce a surplus of 
hamburgers, or experience shortages of other items, or the 
waiting period for food may decrease, or it may increase 
due to a bottleneck introduced by removing the employee 
from his previous station. The strategy frames described 
below change McD’s behavior by changing its configura- 
tions. A similar notion of strategy is found in, say, 
Dominic-I1 (see preceding), where different strategies pro- 
duced different hill-climbing behaviors. 

In sum, the McD problem is to dynamically monitor 
and alter configurations, that is, allocations of resources to 
stations, so that shortages and surpluses are avoided. McD 
detects shortages, surpluses, and breakdowns, and selects 
among strategies for rectifying these situations. 

V. STRATEGY FRAMES 

Strategies are represented by strategy frames. Fig. 2 is a 
strategy frame called “shuffle-resource-to-menu” (“shuf- 
fle,” for short). The figure shows an instance of shuffle 
that was invoked somewhere in the middle of a run of 
McD . 

Shuffle is invoked to fix shortages in menu items, which 
include shortages of hamburgers, fries, soda, shakes, and 
apple pies. Shuffle has an applicability slot that contains a 
lisp function called “ is-there-a-food-shortage,” which the 
interpreter runs to determine whether there is a shortage of 
any food items. If the applicability condition is met, the 
interpreter adds shuffle to the list of applicable strategies. 
Typically, this list contains several strategies, ranked by 
their relevance slots. Relevance can be calculated many 
ways, that is, the relevance slot can have many tactical 



C O H I N  Cf U / .  : A I>LCl,AKATIVL KEPKI:SENTATION Ob CONTKOI. KNOWI.k.I>GE 551 

instantiations. But in shuffle and other strategy frames 
that deal with shortages, only one tactical instantiation is 
currently used (others are planned but not yet iniple- 
mented). I t  ranks strategy frames by the number of known 
shortages they can potentially fix and by the severity of 
those shortages. For example, if McD is currently suffering 
shortages of hamburgers and fries, then shuffle can poten- 
tially fix two problems, and so is more relevant than, e.g., a 
strategy for correcting service item shortages if only one 
kind of service item-e.g., tables-is in short supply. 

The initial-relevance slot of a strategy frame is used to 
bias whether McD attends to a situation. Shuffle’s initial 
relevance is zero, which means that McD will not attend to 
it before other strategy frames with higher initial relevance. 
We have used this mechanism to configure McD to attend 
to shortages before surpluses and vice versa. Once a strat- 
egy is selected, its focus slot ranks the problems it will deal 
with. The order of elements in shuffle’s focus slot dictates 
that hamburger shortages should be fixed before fries 
shortages. This order is determined dynamically, based in 
part on the severity of the shortages. 

The recipe slot of a strategy frame contains a series of 
actions- typically a reallocation of resources. For exam- 
ple, shuffle’s recipe is a lisp function called resource-shuf- 
fle that attempts to obtain a resource from somewhere else 
in the system to assign to the shortage. It has two tactics 
for doing this. One favors obtaining employees who are 
not assigned to any station. The other looks for employees 
on stations that are producing surpluses. In either case, if 
shuffle fails to get resources, it returns control to the 
interpreter. 

Sometimes McD’s strategy is appropriate but not ag- 
gressive enough. For example, a shortage strategy may 
move one employee to a new station, but two or more 
employees are needed to correct the shortage in a reason- 
able time. In such cases, McD may reinvoke that strategy; 
if shuffle moves one employee but is ineffectual, then McD 
may reinvoke shuffle to move another employee. 

This raises the question of how we keep track of whether 
a strategy is having the desired effect. Shuffle has a mea- 
sure-of-progress slot that contains a function-currently 
binary-that tells the strategy whether it is progressing. If 
the system notices no progress, or if the situation is actu- 
ally getting worse, the strategy may be reinvoked as de- 
scribed earlier to obtain more resources. McD can measure 
progress in one of three ways, specified in the mop-tactics 
slot of a strategy frame. Shuffle’s mop-tactics are “when- 
improving,” which means that progress is being made so 
long as the situation (in this case, a shortage) continues to 
improve. The measure-of-progress slot in shuffle says that 
progress is indeed being made. 

Finally, the strategy has terminuting-conditions that 
specify when to quit work. Tactical instantiations of this 
slot determine exactly when the strategy quits. Three in- 
stantiations are 

when-restored -stay in effect until the problem is 
solved (e.g., until there is no more shortage), 

Ihit-nnment: 
Menba-of : 
Active-hypotheres~~: hanburger-shortage soda-surplus 

Active-pbmcu: (plar-2 plan-6 plan-7)  
Ertinatd-resarce-dndcu: increasing 

Gbbd-denund-ktory(u: (1 i g h t  l i g h t  noderate) 
Gbbd-denrand-level#u: noderate 
Lkten-interval IU: 4 
Patch-tineru: 3 

wple-pie-shortage 

Feahre-Srt (U : 

R e s o w c e - ~ t m ; h i ? o r y l u :  
((2 ‘Cashier Free’) (5  ‘Bus’ ’ G r i l l ’ ) )  

Resaroe-danandcu: inprove 
Resowce-demand-ktoryw: ( I  r e s t o r e )  
Resowce-p-eferencescu: deternine-dynanical l y  

Resarrz-shtrtage-kwelevelu: 0 
Responre-prefaencesiu: quick 
Situatm-pref-w: surplus 

surplus-enployees-first f ree-enployees-f i rst  

S t n t e g y - k t a y  11,: 

Syrtem-dock(u: 8 
ClrtilssigN?d-arpbyee-histay,u: ( I  2 I ) 

&date-evabaVrn-mea- 111: yes 

( I  nonitor  2 seruice-surplus surplus 3 l i s t e n  4 
update-denand 5 ... ) 

Fig. 3. State frame. which represents McD’s global state. 

when-improved -stay in effect until the situation 
improves (even if the problem is not solved), 
time-stay in effect for N cycles. 

Shuffle has a when-restored termination tactic, and its 
termination slot contains no, which means that the termi- 
nation criterion has not been achieved yet. 

A .  State 

One special frame, called State, maintains a global view 
of McD and is accessible to all strategies. Fig. 3 shows the 
state of McD at a particular time during a run (in this 
case, at time = 8, as seen in the system-clock slot). 

State contains some global information that strategies 
may need to select appropriate tactics. Strategy frames do 
not maintain global views of McD’s world. They are 
“egocentric” in the sense that they attempt to solve prob- 
lems as well as possible, irrespective of the global ramifica- 
tions. For example, a strategy might want to allocate 
several people to a shortage for as long as necessary to 
reduce it, irrespective of other shortages. But because 
strategies compete for resources, a global State must tell 
strategies what they need to know to resolve these con- 
flicts. In particular, strategies consult the resource-demand 
slot (Fig. 3 ) ,  which contains the overall level of demand for 
resources, when they decide which tactical instantiations to 
prefer. This slot contains a recommended termination tac- 
tic, which may be restore, improve, or time, as discussed in 
the preceding. McD determines which termination tactic is 
appropriate by considering known shortages, surpluses, 
breakdowns, available resources, and rough estimates of 
trends in the values of these parameters. If the demand for 
resources is high, then State recommends conservative 
termination tactics-strategies run for N time units and 
then quit (the patch-time slot sets N . )  Conversely, if the 
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level is low, then State recommends termination tactics 
that permit strategies to run until they solve their prob- 
lems. Intermediate levels result in tactics that terminate 
strategies after some improvement. 

State also maintains a list-called active-hypotheses -of 
problems (i.e., surpluses, shortages, and breakdowns) and 
a list of active-plans, which are the problems McD has 
responded to in the past. The strategy-history is simply a 
list of strategies in the order they are called, so McD can 
see when strategies were last called. The list in Fig. 3 
shows that in addition to surplus and shortage strategies, 
McD has strategies to listen for incoming orders to update 
demand and other statistics, and to monitor measures of 
progress and termination conditions. 

McD maintains a projection of resource demands, called 
estimated-resource-demand that contains a moving average 
of resource-demand. In Fig. 3, estimated demand is in- 
creasing. Obviously, estimated demand can be calculated 
in many ways: for example, we know that demand for 
food (and thus resources) increases during breakfast, lunch, 
and dinner hours, and so might include the time of day in 
the calculation of estimated resource demands. 

The purpose of the other slots in State will be described 
later, when we present examples of McD. 

B. How McD Works 

McD has a basic control cycle in which the interpreter 
first polls strategies to find those that are applicable, then 
ranks the applicable strategies, and then gives control to 
the top-ranked strategy. That strategy will attempt to 
change McD’s configuration (i.e., the allocation of re- 
sources to stations) and will then return control to the 
interpreter. If the strategy succeeds-and it  may not if 
resources are unavailable-the new configuration will re- 
main in effect until the strategy terminates it. We now 
describe these steps in more detail. 

C. Polling and Ranking Strategies 

At each cycle, the interpreter asks each strategy whether 
i t  is applicable and thereby discovers whether McD has 
surpluses, shortages, or breakdowns at any stations. A 
frame-like structure is created for each problem situation, 
and a pointer to it is added to the active-hypotheses list in 
State. Sometimes, several instances of the same situation 
arise (e.g., several shortages), and a strategy will be appli- 
cable to each. This and other factors are combined by a 
function in the relevance slot of each strategy. Relevance 
represents the strategy’s own assessment of how much it 
can contribute to keeping McD running smoothly. In 
general, the more situations to which a strategy applies 
(and the greater their severity), the higher its relevance 
score. The strategy with the highest relevance is selected 
for execution unless another with equal relevance was 
invoked less recently. Note that, except for this last clause, 
the selection of strategies is based on information local to 
the strategy frames. The interpreter then turns control over 
to the selected strategy. 

D. Executing U Strategh, 

When a strategy gains control, i t  instantiates itself with 
tactics. The first thing a strategy such as shuffle (Fig. 2) 
does is to determine its focus, which in this case is a 
shortage of hamburgers and fries. Currently, shuffle can 
select only a single problem (e.g., hamburgers), but eventu- 
ally it will be able to address multiple problems from 
State’s active hypotheses list-if the problems are on its 
focus list and if State permits it the resources. After 
selecting a problem, shuffle selects the most appropriate 
measure of progress and also the most appropriate termi- 
nating conditions, given the resource-demand slot of State. 

Shuffle then tries to run its recipe. Since it is an instance 
of a “menu-item-shortage’’ strategy, it will try to find 
additional resources-in this case, an employee to move to 
a hamburger grill. This is also a tactical issue. As men- 
tioned earlier, the two tactics for finding employees are to 
favor unassigned people and to favor those on stations 
producing surpluses. State tells strategies which of these 
tactics to select; the resource-preferences slot in Fig. 3 says 
to take free employees before those on surplus stations. 

E. When Strategies Fail 

If a strategy like shuffle cannot find an employee, it will 
return control to the interpreter without taking any action, 
and record its failure in the resource-shortage-level slot of 
State. Another kind of failure happens when a shortage 
plan successfully finds an additional employee but cannot 
use him because the station that is producing the shortage 
is already staffed to capacity. Lastly, a plan can fail i f  it 
attempts to take an employee off a station that is produc- 
ing a surplus, but nobody is working at the station (i.e., the 
surplus is residual). 

F. Termination of Strategies 

Assuming shuffle succeeds, it will move an employee to 
a grill and mark that employee as busy. This means that no 
other plan can grab that employee until shuffle’s termina- 
tion condition is satisfied, at which time the employee is 
marked as free. Recall that when a strategy is executed, it 
looks at State to determine one of three terminating condi- 
tions: the strategy is allowed to work until the problem is 
fixed, or until progress has been made, or for N time units. 
One tactical issue is whether the terminating conditions of 
a strategy should be set once or whether they should be 
updated on every cycle. The argument for the latter is that 
if resource levels were very tight initially, but relax over 
time, then the strategy ought to be allowed additional 
resources; and, conversely, if  resources were plentiful im- 
mediately but now are tight, the strategy ought to be 
allowed fewer resources. Clearly, there are many tactical 
possibilities for terminating strategies, but currently McD 
allows just two: 

static-terminution-conditions - termination condi- 
tions are set once when the strategy is created and 
not changed, 
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Fig. 4. Graph of initial performance of McD 

dynamic-termination-conditions -termination condi- 
tions are updated dynamically on every cycle. 

These tactics are selected by the update-eualuation-mea- 
sures slot of State. 

In special cases, McD needs resources more rapidly than 
they are provided by the mechanism just described, It then 
invokes a strategy called the "terminator." This strategy is 
always applicable, but its relevance is related to the re- 
source-shortage-level slot of State, so that it is selected for 
execution only when this level is high. This, recall, is 
determined by the number of shortage strategies that fail. 
Once invoked, the terminator will mark resources as free 
even if their termination conditions have not been met. 
Three tactics determine how aggressively it does this. 

Benign: Find a resource on a station that has just a 
small problem (i.e., a small surplus or 
shortage) and that has already made some 
progress toward solving the problem. 
Like benign, except the problem can be 
moderate. 
First look for resources on stations where 
there has been progress, and mark a re- 
source at the station that has the least 
serious problem; otherwise mark a re- 

Edgy: 

Aggressive: 

source at the station with the least serious 
problem; but if all stations have equally 
serious problems, mark the resource that 
has been assigned longest. 

These tactics are currently selected by the resource- 
demand slot of State. It takes one of three values-restore. 
improve, and time-depending on the degree of resource 
demand (restore is the least demand). Resource demand is 
calculated from historical, current, and anticipated aspects 
of State. 

VI. EXAMPLES 

In the following examples, we will show how we tuned 
the McD system by adjusting the values in slots of strategy 
frames so it would maintain a fairly "trim" configuration. 
Although this will not demonstrate the necessity of the 
slots in question, it will demonstrate their sufficiency. We 
found that we could quickly improve McD's performance 
to a point using relatively local information. However, 
once the system achieved a certain level of performance it  
became impossible to predict whether further changes 
would improve or detract from performance, whch raises 
questions about the utility of global information. 
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Fig. 5 .  Order set used for all examples. 

We evaluate McD’s performance by several metrics. One 
is a graph, over time, of the supply and demand for 
various items. Fig. 4 shows a graph in which McD’s 
performance is poor. Although it does not have large 
shortages or surpluses of food items initially, by time = 20 
it develops a shortage of hamburgers, then a little later a 
surplus of fries. Around time = 40, McD begins to develop 
a massive shortage of sodas, and around time= 50 a 
slightly smaller shortage of hamburgers, and then a short- 
age of fries. As these shortages develop, one can see a 
corresponding increase in the length of time that cus- 
tomers must wait. This is due almost entirely to waiting for 
food from the kitchen, although around time = 65 cus- 
tomers must wait a short time for cashiers. 

Each movement of an employee is represented in the 
graph by a vertical dotted line, grounded at a pair of 
characters that represent the initial and final location of 
the employee. For example, shortly before time = 40, McD 
takes an employee from a cashier station (C) and moves it 
to the drinks station (D), probably to correct the slight 
shortage of sodas. In fact, the shortage disappears around 
time = 40, and shortly thereafter McD moves the employee 
from the drinks station to the list of unassigned employees 
(X). This, i t  turns out, was a bad move, since the drinks 
shortage immediately becomes very serious. 

These moves are proposed by strategy frames based on 
relatively local information. A frame sees a shortage, sur- 
plus, or breakdown, and proposes itself to the interpreter. 
The choice by the interpreter among strategy frames is also 
based on relatively local information: it selects the strategy 
frame that is most relevant, that is, the one that potentially 
fixes the most problems of greatest severity. It does not 
predict the effects of the resource allocations suggested by 
each relevant strategy, and in particular does not predict 
the interactions between these resource allocations and the 
ones that are already in effect, 

McD’s performance on each run is summarized with a 
table of statistics (e.g., Fig. 6 presents the statistics that 
correspond with Fig. 4). We record the mean surplus, 
shortage, and total supply of each food item, the standard 

deviation, and the number of each situation. In Fig. 6 there 
are 33 situations in which we had a surplus of hamburgers, 
in which the mean surplus was 30.18 with a standard 
deviation of 17.98. More significant, of course, is the 65 
shortage situations, in which the mean shortage was a 
distressing -86.31! Overall, the mean level of supply for 
all 98 cases ( including shortage and surpluses) was - 47.08. 
We have a similar pattern of results for the other food 
items. A summary of these figures is found in the row 
called “Totals,” which contains the weighted means of 
surpluses, shortages, and overall supply for all the food 
items. The weighting reflects the rate at which food items 
can be produced and are typically consumed. Thus big 
shortages of hamburgers “count the same” as smaller 
shortages of apple pies, because the latter are produced 
more slowly. Fig. 6 also includes the average wait for a 
cashier, and for food once an order has been placed; these 
figures are 0.27 and 12.20, respectively, indicating that a 
customer can expect to order in about one-quarter of a 
time unit, but wait 12 time units for food! Lastly, Fig. 6 
includes information about the efficiency with which McD 
uses its employees. We record the total number of units 
worked by all employees and the number of those units in 
which they were productive (not idle). The ratio, or utility 
mean, is just the ratio of these statistics. In this case, the 
employees were not particularly efficient (71 percent). 

McD’s performance in Figs. 4 and 6 is fairly poor. Now 
we will show how, by modifying the slot values of McD’s 
strategy frames, we improved performance. The previous 
example and all the subsequent ones use the order set 
shown in Fig. 5.  It contains 100 blocks of orders. Each 
block contains between zero and eight orders (distributed 
around a mean of four orders), and each order includes 
zero to seven orders of pies, burgers, fries, sodas, and 
shakes. 

The performance illustrated in Figs. 4 and 6 is poor for 
several reasons. First, the mean wait for food is over 12 
units-much too long. This is due in part to the enormous 
mean shortage (-53.9): McD is out of everything most of 
the time, so customers have to wait. Indeed, there are 308 
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Fig. 6 .  Statistics for production and utilization from initial run. 

shortage situations and 176 surplus situations. Our imme- 
diate goals were to reduce these shortages and reduce the 
waiting time for food. 

By changing the values of slots in strategy frames, we 
were able to affect the following aspects of McD’s behav- 
ior. 

0 

0 

0 

0 

Preference among situations. McD can react more 
quickly to surpluses, or more quickly to shortages, or 
equally to both, as determined by the situation-pref- 
erences slot of State. 
Where to get resources. McD can either favor talung 
resources from stations that are producing a surplus, 
or it can favor talung the resources from a list of free 
resources. In the first case, if no stations are produc- 
ing surpluses, McD will look to the free list; in the 
second case, conversely, if there are no free employ- 
ees, McD will look at stations producing surpluses. 
This choice is dictated by the resource-preferences 
slot of State. 
Speed of response. McD can react quickly or slowly 
to situations, as dictated by the response-preferences 
slot of State. 
Whether to re-evaluate termination conditions. McD 
can allow strategy frames to re-evaluate their termi- 
nating conditions dynamically, or it can set terminat- 
ing conditions once for each strategy as it is invoked. 

This is determined by the updute-euuluution-meusures 
slot of State. 

The version of McD discussed earlier was configured to 
respond to surpluses before shortages, to get employees 
from surplus stations before free employees. to respond 
quickly, and to re-evaluate its terminating conditions. Since 
this version generates huge shortages, it makes little sense 
to attend to surpluses before shortages. Thus we ran the 
system again with it attending to shortages first. The 
results were much better: The mean surplus was 24.7, up 
from 17.1; but the mean shortage was -32.2, down con- 
siderably from -53.9; and the total mean supply was 
-4.9, down from -27.4. Moreover, the cashier wait 
dropped from 0.27 to 0.08; and more importantly, the 
kitchen wait dropped from 12.2 to 6.5. There was no 
improvement in the efficiency with which McD used its 
resources. Clearly, attending to shortages before surpluses 
improves McD’s performance. 

Still, it is awkward to wait 6.5 time units for one’s food. 
We also noted that cashier wait was almost nonexistent. If 
cashier wait was increased slightly, then it might delay 
some orders being placed and reduce the shortages, and 
thus the kitchen wait time. In our next run we changed the 
applicability conditions for cashier shortages and sur- 
pluses, to register a shortage less quickly and to register a 
surplus more quickly. (Although these functions are not 
shown in any of the figures in this paper, they too are 
explicit and easy to modify.) The net result, we hoped, 
would be to free up cashiers and make them easier to 
reassign. At the same time, we changed the resource-pref- 
erences slot in State so McD would look for resources on 
the free list before surplus stations. The net result was to 
improve performance slightly. The cashier wait increased 
slightly (from 0.08 to 0.42) and the kitchen wait decreased 
slightly (from 6.5 to 5.8). At the same time the mean 
surplus decreased a little and the mean shortage improved 
a little. 

Beyond this, we had little success improving McD’s 
performance. This is a story that has repeated itself many 
times. We can get performance to some reasonable level by 
a small number of configuration changes, all of which rely 
on relatively local information. After that, improvements 
in performance seem to require relatively global informa- 
tion that is difficult and sometimes impossible to acquire. 
For example, in the aforementioned we tried changing the 
applicability conditions for cashier shortages in the hope 
that, by making it  harder to get to a cashier, fewer orders 
would be placed, and so the wait for food would be 
decreased. This argument, based on nonlocal interactions 
of assignments of resources, suggests that relatively global 
information could improve McD’s performance; but as 
noted above, t h s  strategy had only a small effect. In fact, 
most of our attempts to predict the effects of interactions 
of resources, and so improve overall performance, failed. 
Beyond the effects of the really big changes, which can be 
selected based on local information, the other effects are 
too susceptible to the global interactions of many vari- 
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ables, and levels of shortages and surpluses, and other 
dynamic factors, for us to predict them. 

VII. CONCLUSION 

Starting from the position that complex control strate- 
gies can be viewed as the interaction of smaller strategic 
units, we developed a representation for these units and 
showed how their tactical instantiations could be adjusted 
to tune control strategies. We showed that particular slots 
of strategy frames are sufficient to control McD in a 
dynamic environment, but we did not show their necessity. 
Nor were we able to predict the effects of changes to all 
slots. Clearly then, research with strategy frames is nascent. 

Future research with strategy frames will emphasize the 
subtle interactions between how strategy frames are instan- 
tiated with tactics and the dynamic environment in which 
they are used. That is, we want better predictability. This 
is essential if we are to study the tradeoffs between the 
costs and benefits of relatively local and global informa- 
tion. Currently, we have no reliable methods to predict the 
global interactions of strategies’ allocations of resources, so 
we cannot guess at the utility of this knowledge. This is 
our priority for work in the future. 

Strategy frames were motivated by the need for declara- 
tive representations of strategy, and by the observation 
that, in many systems, devices with similar functionality 
had been implemented in an ad hoc way. Ideally, strategy 
frames will become part of the AI programmer’s toolbox, 
complete with tactical instantiations for various tasks and 
interpreters capable of dynamically selecting the most ap- 
propriate instantiations. Before that, there is much work to 
be done. Strategy frames imply “emergent” control, that is, 
control strategies that arise from interactions of individual 
control decisions. In McD, and in general, these decisions 
allocate computational and other resources. The basic 
question is whether the global interactions between these 
decisions must be examined before they are taken, or 
whether acceptable control can be based on relatively local 
information. Our preliminary experiments suggest that lo- 
cal information is sufficient to replace grossly inefficient 
configurations of McD with more efficient ones, but be- 
yond that, performance depends on currently unpre- 
dictable global interactions among resource allocations. 
Further progress depends on making these interactions 
more predictable. 
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