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On Explaining Behavior

Abstract

In his book Explaining Behavior, Fred Dretske distinguishes between types of representational systems based on
whether the actions or intentions of an external agent need be mentioned in an explanation of the system s behavior.
He argues that the relevant criterion in making this distinction is whether the system s behavior was structured by a
learning process or by the activity of the system s designer/constructor. However, our work with learning mobile
robots demonstrates that the distinction learned  versus designed : (i) is not always well-defined, and (ii) cannot
by itself be used for deciding whether the activities of an outside agent must be mentioned in an explanation of a
system s behavior. We argue that Dretske s theory experiences similar difficulties even when the theory is applied to
natural systems (e.g., humans). The problem arises because not all representational states fit neatly into one of the
three idealized types he describes. There is a fairly broad class of states that fall somewhere between Type II and
Type III. For system behavior involving these states, we ask the question anew: What is the relevant criterion for
deciding whether the activities of an outside agent must be mentioned in an explanation of a system s behavior?



On Explaining Behavior

Introduction

In a series of books and articles,i Fred Dretske attempts to satisfy two pressing needs in the philosophy of mind by:

providing a theory of content and demonstrating how content can be relevant in the explanation of behavior. Unlike

most other philosophers writing on the same set of topics,ii Dretske has developed a theory and classification scheme

that applies to all representational systems, not just those described as psychological . While Explaining Behavior

makes a major contribution to philosophers  understanding of content (especially psychological content), we are

most interested in what Dretske has to say about explanation.

Dretske distinguishes between triggering and structuring causes. A triggering cause is the event that caused

some effect. (In the token causal process C _ E, C is the triggering cause.) A structuring cause is the cause of C s

causing E (i.e., whatever was responsible for arranging things such that C caused E). Consider the case of a pigeon

trained via instrumental conditioning to peck at a lever whenever a certain light goes on. At time t, the light goes on

and the (hungry) pigeon pecks at the lever. The triggering cause of the pecking is the pigeon s seeing that the light is

on. (This will be some state in the pigeon s brain.) The structuring cause of the pecking is the set of past training

trials that wired  the pigeon s brain such that now (at time t) it pecks whenever it sees the light go on (and it is

hungry). Note that structuring causal explanations are historical in nature: they advert to events that took place

before the causing of the event to be explained. Dretske s contribution to the debate on the causal efficacy of mental

content was in working out and then combining two separate parts of the puzzle: a theory of content and a

description of the nature of content-adverting explanation. The first part of the puzzle was the development of an

historical account of psychological content. According to this theory, psychological content is determined by the

learning history of the system. Non-psychological content (the content had by non-learning representational

systems) is determined by the intentions (and actions) of the designer/constructor of the representational system.

Some philosophers of mind have argued that the physical properties of mental states screen off  the mental

properties (in particular, the content properties) of those mental states from playing a causal role.iii Dretske s second

main contribution was noticing that this difficulty could be avoided by finding a role for content to play as

structuring cause.



The Type II/Type III distinction is a distinction between kinds of representational states.iv However, the

distinction is also relevant to Dretske s theory of explanation. Consider again the causal process C _  E. Assume that

C is a representational state. If C is a Type II state, then the structuring cause of E will mention the actions of some

outside agent. If, however, C is a Type III state, then the structuring cause of E will mention the learning history of

the system that resulted in the C_ E connection.v In the remainder of the paper, we focus on the Type II/Type III

distinction as it applies to explanation.

We begin by describing our work with learning mobile robots. We then argue that, at least according to one

interpretation of the Type II/Type III distinction, our robot fits the bill for a Type III representational system.

However, things are not quite so straightforward. We have noticed that there are serious difficulties in maintaining

the Type II/Type III distinction in practice. We describe some problematic cases in the section entitled Breakdown

in the Type II/Type III Distinction . For example, it is possible to manipulate the learning process to the extent that

the resulting representational states, while receiving their control duties as the result of a learning process,

nevertheless have their content assigned by an outside agent. Suppose a heavily manipulated learning process results

in a C _ E connection. Event C occurs, and causes E. It is unclear whether the structuring cause of E is the learning

by the system or the manipulation by the outside agent (or, perhaps, some combination or the two). One should not

be misled into thinking that this problem only arises for artificial learning systems; while it is more obvious for

artificial systems (because artificial systems supply more avenues for manipulation), difficulties in classification as

Type II or Type III (and concomitant difficulties in picking out structuring causes) arise for natural systems as well.

The Robot and Some of What It Learns

In this section, we provide information on our robot, its controller and (most importantly) the learning algorithm that

runs on top of  and influences the controller. We also try to give some idea of what the robot is capable of learning.

This description of the robot is necessary, first, for establishing that the robot can be characterized as a Type III

representational system, and, second, for giving the background necessary for understanding the difficulties that

arise in applying the Type II/Type III distinction in practice.

Our robot is a Pioneer-1 mobile robot, with several effectors and roughly forty sensors.vi The robot has

learned numerous contingencies, including dependencies between its actions, the world state, and changes in the



world state by processing data gathered as it roams around our laboratory.vii In this section, we focus on one learning

method, clustering by dynamics, and a primitive ontology of actions that it learned without supervision.

The robot s state is polled every 100msec., so a vector of 40 sensed values is collected ten times each

second. These vectors are ordered by time to yield a multivariate time series.  Figure 1viii shows four seconds of data

from just four of the Pioneer s forty sensed values. Given a little practice, one can see that this short time series

corresponds to the robot moving past an object.  Prior to moving, the robot establishes a coordinate frame with an x-

axis perpendicular to its heading and a y-axis parallel to its heading. As it begins to move, the robot measures its

location in this coordinate frame. The ROBOT-X line is almost constant, while the ROBOT-Y line increases,

indicating that the robot moved straight ahead. The VIS-A-X and VIS-A-Y lines indicate the horizontal and vertical

locations, respectively, of the centroid of a patch of light on the robot s retina , a CCD camera. VIS-A-X decreases,

indicating that the object s image drifts to the left on the retina, while VIS-A-Y increases, indicating the image

moves toward the top of the retina.  Then, both series jump to constant values simultaneously.ix In sum, the four-

variable time series in Figure 1 indicates the robot moving in a straight line past an object on its left, which is visible

for roughly 1.8 seconds and then disappears from the visual field.

Every time series that corresponds to moving past an object has qualitatively the same structure as the one

in Figure 1 — namely, ROBOT-Y increases; VIS-A-Y increases to a maximum then takes a constant value; and VIS-

A-X either increases or decreases to a maximum or minimum depending on whether the object is on the robot s left

or right, then takes a constant value.  ROBOT-X might change or not, depending on whether the robot changes its

heading or not.

It follows that if we had a statistical technique to group the robot s experiences by the characteristic

patterns in time series, then this technique would in effect learn a taxonomy of the robot s experiences. Clustering

by dynamics is such a technique.x The end result of applying clustering by dynamics to the multivariate sensor data

gathered by the robot as it wanders around the lab is the learning of prototypes. A prototype is a characteristic

pattern in the robot s time series of sensor data as it performs some action. The details of the clustering by dynamics

algorithm are described in an endnote.xi In a recent experiment, this procedure produced prototypes corresponding to

passing an object on the left, passing an object on the right, driving toward an object, bumping into an object, and

backing away from an object.xii



We claim that these prototypes were learned largely without supervision and constitute a primitive

ontology of activities - the robot learned some of the things it can do.  What supervision or help did we provide?

We wrote the programs that controlled the robot and made it do things.  We divided the sensor data time series into

episodes (although this can be done automatically). We limited the number of variables that the dynamic time

warping code had to deal with, as it cannot efficiently handle multivariate series of forty state variables.  We did not

label the episodes to tell the learning algorithm which clusters of activities it should consider.  In fact, the only

guidance we provided to the formation of clusters was a threshold statistic for adding an episode to a cluster.  To

reiterate, we did not anticipate, hope for, or otherwise coerce the algorithm to learn particular clusters and

prototypes.  Thus we claim that the robot s ontology of activities is its own.

Recently we have been trying to close the loop  and have the robot learn enough about the preconditions

and effects of its actions that it can plan to accomplish a goal. For instance, suppose the robot wants to drive the

state of the bump sensor from low to high (i.e., it wants to bump into something); what should it do?xiii Previous

workxiv discusses how the robot learns models of single actions from its prototypes. But planning is more than just

executing single actions. Planning means reasoning about the effects of sequences of actions to achieve a goal state.

To plan, the robot needs to transform prototypes into planning operators that specify the preconditions and effects of

actions. The algorithm that performs this transformation is described in an endnote.xv

A single set of preconditions (one set for each prototype) is the vector of average sensor values that

accurately predicts the future series of sensor values when a particular operator is applied. After learning, the robot

will perform the operation specified by a prototype whenever both (i) its most recent time series of sensor values

matches the set of preconditions for that prototype (within some tolerance), and (ii) it currently has a want that is

satisfied by an effect of the operator associated with that prototype. We shall henceforth use the term preconditions

satisfier  (abbreviated PS ) to refer to the data structure encoding the time series of sensor values, when that time

series matches any of the sets of learned preconditions. (This term is applicable to the sensor state data structure

only when a match occurs.)



PSs are Type III Representational States

We claim that our robot is a Type III representational system. More specifically, we claim that the robot’s PSs

satisfy the requirements for Type III status. A Type III state must: indicate some external condition,xvi have the

function of indicating that condition, and have this function assigned as the result of a learning process.

We shall argue that PSs acquire their indicator functions through learning; although, as we discuss in the

section entitled Breakdown in the Type II/Type III Distinction , there are problems in applying the learning

criterion from Dretske s theory to our robot. Recall that, for Dretske, a state of a larger system indicates some

external condition when there is a covariance between the system going into that state and the external condition s

obtaining.xvii PSs indicate (because they covary with) external conditions. In the case of PSs, the conditions

indicated involve the location of objects relative to the robot. PSs in the post-learning robot cause the robot to take

specific actions to satisfy its wants. PSs have been given this control duty because of what they indicate about the

state of the world (namely, that the location of objects relative to the robot is such that execution of these actions is

likely to bring about satisfaction of a want). The specific control duty assigned to a PS is determined by a learning

process — namely, by the learning algorithm that runs on top of the controller. Thus, PSs are Type III states.

The bulk of Explaining Behavior deals with the naturalization of content for beliefs of a rather primitive

sort — beliefs about perceptually salient features of one s immediate environment.xviii In Chapter 6, Dretske allows

that more perceptually remote beliefs will have their content determined, at least in part, by their functional (or

conceptual) role in the production of output (including their internal relations to each other). xix Thus, one may

object to our claim that PSs are Type III states as follows. There is an implicit requirement that must be satisfied in

order to obtain Type III status (in addition to those mentioned above): the state must be one in a web of beliefs and

desires that attains some critical level of complexity. This objection continues: without a complexity condition,

punctate minds (e.g., minds containing only one belief) would be possible. However, a punctate mind is an

impossibility.xx We reject this complexity condition, because the model of a cognitive agent that we have uppermost

is not an adult human (for whom the complexity condition is appropriate), but an infant. We are trying to understand

how mental content can be bootstrapped, given a small primitive set of wants and action types. A major goal of our

project is to show how this bootstrapping is possible with limited innate structure. (This goal is shared by

Dretske.xxi) Thus, our rejection of the complexity condition for Type III status is justified.



Explaining Behavior Involving Type II versus Type III States

As mentioned previously, Dretske s theory and classification scheme apply to all representational systems. This

inclusiveness is justified, because explanations of all behaviors involving representational states share some general

features in common. Although Type II and Type III states differ with respect to how their contents are determined

(i.e., how their indicator functions are assigned), the explanation of behavior involving those states in terms of

content is the same; for both, the content is explanatorily relevant to the system s behavior. Compare two robots.

The first robot learns how to bump into an object using the method described in the section of this paper entitled

The Robot and Some of What it Learns . The second robot comes with a fixed controller that accomplishes the

same task. (In both cases, the robot possesses a state with the content there s an object in front of me .) Suppose

both robot1 and robot2 bump objects at time t. Robot1 bumped an object (in part) because it was in a state with the

content there s an object in front of me . Robot2 bumped an object (in part) because it was in a state with the

content there s an object in front of me . Obviously, how the content is determined differs in the two cases, but this

doesn t imply that explanation in terms of content is somehow less legitimate for robot2 than for robot1.xxii

The two cases diverge when one takes one step back and asks of robot1 and robot2: How did the state

whose content is alluded to in the explanation acquire its content?   For learned behavior (e.g., the stimulus-

response pattern learned by robot1) this 2nd tier  explanation is given in terms of an indicator function acquired

through a learning process.xxiii For unlearned behavior, the 2nd tier  explanation is given in terms of an indicator

function that arises because of the intentions and actions of the designer or constructor as she structured the system.

One purpose that Type III representation serves within Dretske s framework is that it stops the chain of

derived content; Type III states ground all intentionality. (The grounding of intentionality is one of the criteria for

success of any theory of content naturalization.) However, for Type III states to serve this purpose, the authorship of

Type III content must be isolated strictly within the individual Type III representational system. This condition is

problematic for a wide variety of states that in all other respects appear to be clear candidates for Type III status.

Breakdown in the Type II/Type III Distinction

We argued above that PSs are Type III states; however, if one takes seriously the claim that the authorship of Type

III content must be strictly isolated within the individual, it is not so clear that PSs are Type III states. While others

have attacked Dretske for his insistence on the learning condition,xxiv our take on the issue differs from that taken by



others and is based less on philosophical  concerns than on concerns relating to the application of the theory to a

concrete system.

We have tried to avoid reverse engineering  the robot or the robot s environment so as to coerce a

particular result.xxv Even though we have minimized task-specific innate structure, we cannot avoid playing a

significant role in the design of the robot s control and learning algorithms. In addition, we manipulated the robot s

learning environment: the prototypes (and associated PSs) for moving toward and past objects were learned from

trials that we set up.  We varied the placement of objects relative to the robot and instructed the robot to move.  Even

so, we had no idea whether the robot s learning algorithm would produce prototypes, we did not anticipate the

prototypes it produced, and we were pleasantly surprised that the prototypes made sense to us.  So who is the author

of the learned PSs  contents?  Dretske might take a hard line and say that the robot did not develop its prototypes all

by itself, so PSs are not Type III states, but then he would also have to rule out concepts in a curriculum learned by

human schoolchildren. In fact, curricular concepts are even more suspect than our robot s PSs, because teachers

intend their students to believe something while our placement of objects around the robot was not intended to

teach  the robot any particular prototype (and, consequently, any particular PS).  On the other hand, if our

contribution to what the robot learned does not disqualify PSs from Type III status, then what other help are we

allowed to provide?  Suppose we classify prototypes as good  and bad , and make the robot learn our

classification rule. Does the fact that a learning algorithm inserts the rule qualify the state that predicts class for

Type III status? Since the rule is entirely conventional, the fact that the rule was learned is not relevant to explaining

the robot s behavior in correctly classifying prototypes as good  or bad : the rule could just as well have been

inserted by a programmer.  We must also consider in-between  cases like those in reinforcement learning, where a

system learns our rule by seeking to maximize a reinforcement signal that may well be endogenous; for example,

when I reward a child for saying please , she undoubtedly learns, mediated by her unique reinforcement function.

But she is learning my rule.

Dretske wishes to distinguish types of representations based on whether their content is the result of

learning or design, but the distinction learned  versus designed : (i) is not always well-defined, and (ii) cannot by

itself be used for deciding whether the activities of an outside agent must be mentioned in an explanation of a

system s behavior. Dennett (1992) accuses Dretske of wanting do it yourself understanding , in which the

authorship of understanding belongs entirely to the individual.  Among our robots, at least, there are no such



individuals and they have no such understanding.  A distinction between Type II representations, in which the

functions of indicators are assigned, and Type III representations, in which the functions are learned, is not practical.

No aspect of our criticism of the Type II/Type III distinction has been the result of our focusing on an

artificial learning system: a black and white distinction is just as untenable for natural learning systems. Parents of

small children arrange their children s environment in a way not unlike the way we arrange our robot s environment.

To what extent then are children s perceptually-based beliefs something less than full-blown Type III? Children are

presumably the archetype of the Type III representational system. Although it was our work with robots that led us

to notice that the Type II/Type III distinction is problematic, the difficulty is a general one, and arises when applying

Dretske s theory to any learning system.

The Upshot for Explanation

So, when must the activities of an outside agent be mentioned in an explanation of a system s behavior?

Unfortunately, we do not have a nice, neat answer to this question. Clearly, though, whether the behavior was

learned is not by itself decisive.xxvi The root of the problem here seems to be that learning environments are more

complicated than Dretske s simple Type II/Type III distinction assumes. We can think of Type III states as he

envisions them (call them pure Type III states ) as one end of a continuum, the other end of which is marked by

pure  Type II states. The representational states lying in between these two ends vary as a function of how large a

role an outside agent played in structuring the system; however, at this juncture, we can discern no single condition

or set of conditions that would allow the defining of some critical amount  of outside involvement.
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Figure 1. Time series of 4 sensors corresponding to the robot moving past an object on its left.
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Endnotes

                                                            
i The most comprehensive sources in this series are Dretske, 1988 and 1993.

ii For example, Fodor, 1987 and 1990, Millikan, 1984, Cummins, 1989.

iii The most noteworthy example of a philosopher who holds that mental properties are screened off  is Kim, 1989.
For an overview of the debate, see Heil, 1992.

iv Dretske introduces the Type II/Type III distinction as applicable to whole representational systems, not individual
states.  However, the distinction only makes sense when applied to individual states within larger systems. We say
this for two reasons. (1) The Type II/Type III distinction boils down to how an indicator function is assigned to a
representational element. Having a particular indicator function is a property of states, not systems. (2) It is
conceivable that a system has some states whose indicator functions are assigned by an external agent and some
states whose indicator functions are the result of learning.

v There is a category of non-conventional representation that falls outside of the Type I/Type II/Type III scheme:
representational states whose content is determined by a process of natural selection. Because the contents of such
states are wholly non-conventional, they are not of Type II; however, Dretske explicitly disallows them from
classification within Type III. (See Explaining Behavior, page 64.) Dretske s stated reason for excluding states with
evolutionarily determined content from Type III is that this latter grouping is used to pick out psychological states,
and Dretske thinks that, in order for a state to be a psychological state, its indicator function must be assigned as the
result of a learning process during the life-span of the system.

vi The robot has two independent drive wheels, a trailing caster, a two degree of freedom gripper, and roughly forty
sensors including five forward-pointing sonars, two side-pointing sonars, a rudimentary vision system, bump and
stall sensors, and sensors that report the state of the gripper.

vii Reference removed for blind review.

viii The figure is on the page between the body of the paper and the bibliography.

ix These constant values are returned by the vision system when nothing is in the field of view.

x References removed for blind review.

xi First, one divides a long time series into segments, each of which represents an episode such as moving toward an
object, avoiding an object, crashing into an object, and so on.  Episode boundaries can be inserted by humans or by a
simple algorithm that looks for simultaneous changes in multiple state variables. Obviously we prefer the latter
technique (and apply it in [references removed for blind review]) because it minimizes human involvement in the
learning process; however, for the experiment described here, episode boundaries were marked by us.  We did not
label the episodes in any way. Second, a dynamic time warping algorithm compares every pair of episodes and
returns a number that represents the degree of similarity of the time series in the pair.  Dynamic time warping is a
technique for morphing  one multivariate time series into another by stretching and compressing the horizontal
(temporal) axis of one series relative to the other. (Sankoff and Kruskal, 1983) A number that indicates the amount
of stretching and compressing is thus a proxy for the similarity of two series.  Third, having found this similarity
number for the series that correspond to every pair of episodes, it is straightforward to cluster episodes by their
similarity. Agglomerative clustering is a method to group episodes by similarity such that the within-cluster
similarity among episodes is high and the between-cluster similarity is low.  Fourth, another algorithm finds the
central member  of each cluster, which we call the cluster prototype  following Rosch and Mervis, 1975.

xii Reference removed for blind review.



                                                                                                                                                                                                   
xiii The robot s wants  are implemented by a trivial algorithm that selects a sensor and tries to change the sensor s
current value. Obviously, most human wants are more sophisticated, yet we think our simple algorithm is a primitive
model of exploratory motor behavior in infants.

xiv Reference removed for blind review.

xv First, each episode is labeled with the cluster to which it belongs. Next, the first 1000 msec. time series of each
state variable in each episode is replaced by its mean value. These are the initial conditions , the average values of
state variables at the beginning (i.e., the first 1000 msec.) of each episode. Initial conditions are not the same as
preconditions. To qualify as a precondition in an episode, an initial condition must at least make good predictions
about how the episode will unfold. That is, an initial condition cannot be a precondition for a prototype if it is
uncorrelated with that prototype across episodes. We have a batch of episodes, and each is labeled with its cluster
membership, and each has a list of initial conditions, so it is a simple matter to run these data through a decision tree
induction algorithm to find those initial conditions that best predict the cluster membership of the episodes. Since
each cluster is represented by exactly one prototype, these predictive initial conditions are interpreted as
preconditions for the prototypes.

xvi Strictly speaking, a Type III state need not indicate what it has the function of indicating. (The bifurcation
between indicating and having the function of indicating is what allows Dretske to explain how misrepresentation is
possible.) However, Dretske does insist (Dretske, 1988, pp. 59-60) that, at a minimum, to have the function of
indicating that F, a state must be (in theory?) able to indicate that F. There is no harm in stiffening the requirement
for Type III status to require that a state in fact indicates some external condition, because if PSs satisfy this
stiffened requirement, then they automatically satisfy some lesser requirement.

xvii Thus, the physical states of a thermometer (in particular, the level of mercury in the thermometer) indicate the
external temperature because the level of mercury covaries with the external temperature.

xviii Dretske, 1988, page 138.

xix Dretske, 1988, pp. 150-151.

xx One finds this sort of argumentation in the papers collected in Fodor and LePore, 1992.

xxi See Dretske (1988, pp. 106-107).

xxii In a certain derived sense, then, it is the fact that C [the bending of a bimetallic strip in a thermostat/furnace
system] means what it does, the fact that it indicates the temperature, that explains (through us, as it were) its
causing what it does. And its causing, or being made to cause, what it does because it means what it does is what
gives the indicator the function of indicating what it does.  An internal indicator acquires genuine (albeit derived)
meaning — acquires a representational content of Type II — by having  the fact that it indicates F, determine its
causal role in the production of output.  (Dretske, 1988, page 87)

xxiii [D]uring the normal development of an organism, certain internal structures acquire control over peripheral
movements of the systems of which they are a part. Furthermore, the explanation, or part of the explanation, for this
assumption of control duties is not (as in the case of [non-learning] artifacts) what anyone thinks these structures
mean or indicate but what, in fact, they do mean or indicate about the external circumstances in which these
movements occur and on which their success depends. In the process of acquiring control over peripheral
movements (in virtue of what they indicate), such structures acquire an indicator function  (Dretske, 1988, page
88)

xxiv See, for example, Dennett (1991 and 1992), Davidson (1987) and Stich (1983). For Dretske s response, see
Dretske (1988, p. 105), Dretske (1991, pp. 201-202) and Dretske (1995, pp. 116-117).



                                                                                                                                                                                                   
xxv The charge of reverse engineering  arises in both the traditional AI and connectionist approach; the tweaking
of network parameters that goes on in connectionist research is not qualitatively different from the reverse
engineering  in traditional AI learning systems.

xxvi This is a co-authored paper. At least one of us is willing to use learning as a necessary condition for Type III
status.


