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Abstract

We introduced the term plan steering to describe
the process of predicting and avoiding plan fail-
ures, much as one steers a car around potholes.
We will describe a plan steering system for man-
aging transportation networks, and a suite of ex-
periments which show that mixed-initiative plan
steering works better than humans or programs
working alone. More recently we built a mixed-
initiative planner for data analysis. In a large
dataset, the space of relationships between vari-
ables is vast, and many look attractively infor-
mative. It proved challenging to keep the hu-
man/computer analyst team working toward the
same goals and informing each other of their
progress.

Introduction

Plan steering addresses the problem of predicting

and avoiding, in real time, pathological states that

make it di�cult or impossible to achieve goals.

We describe a plan steering agent that assists hu-

mans in monitoring plans as they unfold, detecting
and predicting pathological situations and suggest-

ing bene�cial plan modi�cations in real time. The

agent helps the human to steer the plan out of or

around trouble. To explore issues related to plan

steering we have constructed a system for the re-
lated task of schedule maintenance.

Mixed-initiative planning is more challenging

than plan steering for several reasons. First, the

interaction between agent and user is focused in

plan steering by the emergence of a problem; the

control loop is simple: a pathology is predicted,
then avoided. Control in mixed-initiative planning

is much more complex, especially in domains that

require rapid changes in focus of attention, instead

of a stately progression of problems and solutions.
Second, a mixed-initiative assistant has to \read

the mind" of the user to a much greater extent than

a plan steering assistant. To explore these issues we

have built a mixed-initiative planning assistant for

data analysis, a complex task with an enormous
search space.

An Agent for Schedule Maintenance

We have constructed an agent to perform sched-

ule maintenance in the transportation planning do-

main. Its goal is to move cargo quickly through a

network starting with an initial schedule. This task
is more di�cult than simple load balancing due to

the structure imposed by the initial schedule; we

want to maintain as much of that structure as pos-

sible.

Our agent manages a transportation simulation
called TransSim. A TransSim scenario consists of

a collection of ports, ships, cargo, and routes. The

routes, called \simple movement requirements" or

SMRs, specify when each piece of cargo is to begin

its journey and through which ports it is to travel.
Ports and ships are limited resources, constraints

govern which kinds of cargo can go on di�erent

kinds of ships, and the simulation is nondetermin-

istic in that ship travel times may vary.

SMRs are fully speci�ed at the start of each sce-

nario. The speci�c ship on which a piece of cargo

will travel is determined at run time, based on avail-

ability. There may be a free ship locally or one

may be requested from a nearby port. Therefore,

the behavior observed during a simulation is largely
determined by the scenario's SMRs. If many SMRs

travel through one port, that port is likely to be-

come clogged. If SMR destinations are evenly dis-



tributed in time over all ports then problems are
unlikely to arise. The key point is that there is re-

ally no plan in this domain. Cargo must travel spe-

ci�c routes starting at certain times, but how that

happens is determined dynamically at run time.

This is why we characterize the task as schedule
maintenance, and why our agent is but a �rst stab

at the more general plan steering problem.

A generic plan steering system comprises a hu-

man user, a plan steering agent, a pathology de-
mon, and the plan execution exvironment. The

architecture for schedule maintenance is identical,

only the task changes. A pathology demon mon-

itors the environment as a plan unfolds, detect-

ing and predicting pathological situations. The
plan steering agent monitors the demon's output

and formulates plan modi�cations that address the

problems found by the demon. A human user eval-

uates the agent's advice and e�ects plan changes

when appropriate.

A pathology demon has been implemented to

monitor TransSim as cargo is shipped about. It

predictswhen and where in the network a bottleneck

is likely to arise. Bottlenecks result when too many
ships attempt to travel through a port, causing re-

duced throughput. The demon uses simple domain

information to make its predictions. It looks at

the current state of each port and ships that are

traveling in channels toward the port and assigns

a probability to each possible state of the port on
each day out to a horizon. That is, the demon only

uses information local to a given port. Resource-

based schedule revision with local information was

used successfully in (Smith et al. 1990).

The schedule maintenance agent combines the

demon's predictions for multiple days in the fu-

ture to determine which ports are likely to become

clogged. The agent then uses simple heuristics to

generate advice that, when implemented, will either
alleviate or avoid the predicted bottleneck. This

may be contrasted with reactive approaches, such

as (Ow, Smith, & Thiriez 1988) and (Prosser 1989),

that respond to unexpected events at the time that

they occur. Currently, the only advice the agent
o�ers is based on a simple rerouting heuristic. If

a piece of cargo is being loaded onto a ship bound

for a potential bottleneck, the agent changes the

cargo's SMR so that it travels to the port closest

to the original destination that is not problematic.

This seems to be a reasonable approach in that
rerouted cargo continues to make progress toward

its destination. We assume that ports that are close

geographically are \equivalent" in some sense.

Performance Assessment

The pathology prediction demon models each ship

as a probability distribution of arrival times. Com-
bining this distribution with the current state of

each port, the demon arrives at a predicted dock-

ing queue length. The model is similar to that used

in (Muscetolla & Smith 1987) for exploring the ef-

fects of resource allocation decisions. Long docking

queues indicate the presence of a bottleneck. Sev-
eral factors a�ect the accuracy of the demon's pre-

dictions. They are (1) the distance into the future

for which predictions are made, (2) the certainty of

the demon's knowledge about ship arrivals, and (3)

a prediction threshold that controls how aggressive
the demon is at making predictions (low values are

aggressive, high values are conservative). We ex-

pect predictions to be less accurate when made far

into the future or when there is a lot of variance in

ship arrivals. There should be an optimal predic-
tion threshold, at least for a given level of the other

two factors.

The accuracy of the demon was explored by run-

ning a fully factorial experiment with 10 simula-

tions for each of three levels of the factors (a total

of 270 trials). The demon's predictions for each
port as well as the actual state of each port were

recorded and average squared prediction error was

calculated for each trial. For predictions 2, 4, and

6 days into the future, average squared error was

0.137, 0.244, and 0.214; increasing but not mono-
tonically. Though the e�ect of variance in the

demon's knowledge about ship arrivals was not a

signi�cant main e�ect, it did interact signi�cantly

with prediction distance. High variance had an in-

creasingly adverse e�ect on error as prediction dis-

tance was increased. Finally, plotting error at sev-
eral prediction threshold values resulted in a bowl

shaped curve with 0.2 being the optimal threshold.

Measures of Cost

Having established some inuences on demon ac-

curacy, we turned next to the schedule mainte-

nance agent and its performance. We de�ned sev-

eral measures of cost associated with a single run
of TransSim, and used them to evaluate the e�ect

of moving from one experimental condition to an-

other: Bottleneck Predictions { the sum over all

days of the number of ports marked as potential

trouble spots by the demon for a given day; Cargo

Transit { the sum over all pieces of cargo of the
number of days from when the item �rst came on

line until it reached its �nal destination; Idle Cargo

{ cargo is considered idle if it is ready to be loaded



onto a ship but none is available or if it is sitting
in a ship queued for docking, and this measure is

the sum over all days of the number of pieces of

idle cargo; Queue Length { the sum over all days

and all ports of the number of ships queued for

docking; Simulated days { the number of simulated
days required to ship all cargo to its �nal destina-

tion; Ship utility { the sum over all simulated days

of the number of ships traveling empty on a given

day.

Agent Advice vs. No Advice

Several experiments were run to evaluate the per-

formance of the agent working alone, without in-

put from the user. In each, the agent monitors a

running simulation and either implements its own
advice or does nothing. By varying the number

of SMRs for a simulation we have some crude con-

trol over the frequency and duration of bottlenecks.

Few SMRs results in low tra�c intensity and few

bottlenecks. Many SMRs has the opposite e�ect.
Therefore, we ran an advice vs. no advice experi-

ment at each of three levels of the number of SMRs

(25, 30 and 35) in the scenario. A total of 10 trials

(simulations)were run in each condition. We assess

the impact of the agent's actions by performing an
analysis of variance (ANOVA) of each cost measure

on whether or not agent advice was implemented.

Increasing the number of SMRs did in fact in-

crease the number or severity of bottlenecks. The

mean queue length (an objective measure of bot-

tleneck severity) in the \no advice" condition is

positively correlated with the number of SMRs in

the scenario. The agent was bene�cial regardless of
pathology intensity. In fact, the percent reduction

in all cost measures was largest in the most patho-

logical 35 SMR case. The agent achieved its design

goal of reducing queue length. In doing so, it re-

duced the amount of time cargo spends sitting idle
and actually increased the speed with which cargo

travels to its destination locally (decreased Cargo

Transit) and globally (decreased Simulated Days).

To investigate the e�ects of increasing the complex-

ity of the task on the agent's ability to perform, a
similar experiment was run with a larger scenario.

The number of ports and ships were doubled (to

10 and 40 respectively) and the number of SMRs

was set at 60. Again, 10 trials per condition were

run. We obtained signi�cant reductions in all cost

measures except Ship Utility. Comparing percent-
age reductions with all three of the previous exper-

iments we found that increasing the complexity of

the task increases the extent to which the agent is

able to help.

The obvious conclusion is that in a wide va-

riety of conditions, the agent is able to reduce

the costs associated with a simulation. Neither

pathology intensity nor problem complexity seem

to nullify its ability to perform. In fact, the agent
shines most brightly in precisely those situations

where it is needed most, highly pathological and

large/complex scenarios.

Control Condition: Random Advice

The previous experiment lacked a control condition.

Perhaps the agent's advice isn't so good; perhaps
any actions would help alleviate bottlenecks. In

fact, we ran an experiment to determine the ef-

fects of demon accuracy on agent performance, with

the surprising result that there was no signi�cant

impact of demon accuracy on the e�cacy of the
agent. If the agent performs equally well with good

and bad predictions of bottlenecks, then perhaps its

ability to reduce costs is due to shu�ing of routes,

not to its ability to predict. Random rerouting, pe-

riodically picking a piece of cargo and sending it on

a newly chosen random route, may be as good as
the agent's \informed" advice. Random rerouting

has the advantage of tending to evenly distribute

cargo over the network, minimizing contention for

any one port. The disadvantage is that it destroys

the structure inherent in the initial schedule.

To investigate the utility of random advice, we

ran an experiment in which the agent, with vary-

ing frequency, rerouted a randomly selected piece

of cargo. This was done with no regard for bot-

tleneck predictions. We varied the probability of
performing a reroute on each day over four values:

5%, 15%, 25%, 35%. As with the advice vs. no

advice experiments, the number of SMRs in the

simulation was varied to get a feel for how these

e�ects changed with pathology intensity. ANOVA
was used to identify signi�cant e�ects.

As expected, cost measures decrease with in-

creasing frequency of random rerouting. For the

25 SMR case the decrease tends to atten out with

the two highest levels of randomness being nearly

equivalent. For the 30 SMR case the decrease con-
tinued monotonically whereas for the 35 SMR case

the cost measures actually spiked back up at the

highest level of randomness. It appears that for

highly pathological scenarios, there is a limit be-

yond which random shu�ing hurts more than it
helps.

In the 25 SMR case any amount of randomness is

indistinguishable from the agent's advice when per-



formance is measured in terms of Idle Cargo and
Queue Length, and virtually identical when mea-

sured by Cargo Transit. The situation is somewhat

better in the 30 SMR case. With an average of 12

reroutes, the agent is able to equal the performance

of randomly rerouting 20 times in the Idle Cargo
and Queue Length columns. (Note that a Sche��e

test indicates that the amount of real advice given

is signi�cantly lower than the amount given in the

random 25 case.) This is an important point. Re-

member that there is no \plan" in this domain, only
the structure imposed by the initial SMRs. Im-

proving performance with the minimal number of

rerouting decisions is key to maintaining that struc-

ture. The results in the 35 SMR case are somewhat

inconclusive. The agent performed better than the

random 5 level but only matched performance of
the other random levels. The two highest levels of

randomness (which had signi�cantly higher mean

numbers of reroutes) were statistically equivalent

to the agent in terms of simulation costs. Again we

see that the demon is able to achieve good results
with a few well directed rerouting decisions rather

than with large numbers of random ones.

The same large scenario described previouslywas

used to investigate the e�ects of problem size and

complexity on the e�cacy of random advice. The

results here are striking. The amount of rerouting
performed by the agent was statistically equivalent

to the random 25 condition only. In that condition,

Sche��e tests show that the agent's performance is

signi�cantly better than random advice; its domain

knowledge is paying great rewards. Looking at the

data another way, the agent performed equally as
well as the random 35 condition with 34% fewer

reroutes.

Our initial proposition that random rerouting

would help to lower the various cost measures was

borne out. In fact, it seems that more random

rerouting is better than less, except perhaps in
highly bottlenecked scenarios. There existed some

level of randomness that equalled the performance

of the agent for each of the previous experiments.

However, the agent typically rerouted many fewer

pieces of cargo than the equivalent level of ran-

domness, thereby preserving more of the struc-
ture of the simulation. Finally, it appears that for

large/complex scenarios the di�erencebetween ran-

domness and the agent is more pronounced.

Highly Constrained Scenarios

To increase the realism of the agent's task, several

constraints were added to the scenarios. There are

three types of cargo: CONT (containerized),GENL
(general), and RORO (roll-on,roll-o�). Rather

than using a single cargo type, we used multiple

types and limited the cargo handling capabilities

of both ships and docks. Now for cargo to ow

through the network, it must match in type with
any ship that is to carry it and any dock where

it will be handled. We ran agent advice vs. ran-

dom advice experiments under these conditions af-

ter modifying the agent to consider the additional

constraints. Whenever random advice generated an
incompatible routing assignment, it was penalized

with a short delay for the o�ending piece of cargo.

Again we found that the agent is able to match

the performance of random rerouting with many

fewer changes to the schedule. The fact that Queue

Length for the agent is di�erent only from the ran-

dom 5 condition and that Cargo Transit for the

agent is di�erent only from the highest and low-
est levels of random advice points to a result of

constraining the scenario: the performance of ran-

dom advice in any one condition is highly variable.

The variance associatedwith Cargo Transit for ran-

dom advice was on average 3.5 times higher than
for agent advice. Likewise, the variance associated

with Idle Cargo was 4.1 times higher and the vari-

ance associated with Queue Length was 3.2 times

higher. The agent is able to achieve good aver-

age case performancewith much higher consistency
when compared to random rerouting by making a

few appropriate rerouting decisions.

Humans and Agents Working Together

In another study, we demonstrated that humans
and the plan steering agent perform better together

than either does alone (Oates & Cohen 1994).

Space precludes a detailed account of the study.

The major conclusions, however, are these: Hu-

mans are not good at steering plans in real time;
they make fewer adjustments than are necessary.

The plan steering agent, in contrast, makes too

many adjustments. Although plans require less

time to �nish when they are steered by the agent,

they are also modi�ed a lot more often. If plan
modi�cation is costly, which it often is, then the

agent's advice should be moderated. The ideal con-

�guration turns out to be humans and the plan

steering agent working together. Humans can't

generate plan steering actions quickly enough, but

they can review the agent's suggestions and mod-
erate them. In this condition, the throughputs and

run times of plans were almost as good as in the

agent-alone condition, but much less violence was



done to the structure of the plans.

A Mixed-initiative Planner for

Exploratory Data Analysis

Analysts in the military, business, and government

spend a great deal of time looking at data with

outmoded, cumbersome tools. We have developed
a mixed-initiative assistant for exploratory data

analysis (EDA). Although EDA is regarded as the

province of statisticians, it is, in fact, an extremely

general activity. Basically, EDA involves noticing

and then tracking down explanations of patterns in
data. Both activities are di�cult: Interesting pat-

terns are often obscured by noise or uninteresting

patterns, and it can be tricky, painstaking work to

explain a pattern in terms of variables or subsets of

variables in one's data.

Viewed as a search process, EDA is intractable.
The number of EDA operations is very large, and

the number of subsets of variables and observations

to which these operations are applied grows expo-

nentially. Statistical packages provide comfortable

interfaces for these operations and variables, but
they don't solve the more basic control problem: If

one views EDA as the application of statistical op-

erations to data, then its search space is too large.

We have designed and implemented an Assis-

tant for Intelligent Data Exploration, a knowledge-
based, mixed-initiative planning system that helps

users carry out EDA. In aide, data-directed mech-

anisms extract simple observations and suggestive

indications from the data. EDA operations then

act in a goal-directed fashion to generate more ex-

tensive descriptions of the data. The system au-
tonomously pursues its own goals while still allow-

ing the user to guide or override its decisions.

Notably, the user interacts with aide not at the

level of statistical operations, but in terms of data

analysis strategies. Thus we reformulate the search
space of mixed-initiative EDA to make it smaller.

The mixed-initiative approach imposes some spe-

cial requirements on our design of aide. In the

domain of EDA, the quality of the �nal result

strongly depends on the decisionsmade at interme-
diate points, and these decisions can often bene�t

from human judgment. We must thus be concerned

with more than whether the planner can construct

a solution to a problem. We must also ensure that

the system's planning and the user's understand-

ing proceed along the same path, so that the sys-
tem and the user work cooperatively rather than at

odds. This can be di�cult: the system should an-

ticipate the user's actions whenever possible, incor-

porating knowledge of standard statistical practice;
the system should not constrain the user from tak-

ing the analysis in any desired direction; the system

must decide at which points the user can come into

the planning process, and must be able to exchange

relevant, context-dependent information with the
user when necessary.

An Example

To see how an automated assistant might con-

tribute to the exploration process, consider the di-

alog below. We present the exchange as a natu-

ral conversation; in reality, the dialog is conducted

with mouse clicks, menu selections, typed input,
and graphical displays. The information exchanged

on the part of both conversants is accurately ren-

dered.

user: Load dataset \planner-evaluation.data".

: : :

user: Show me all highly correlated bivariate re-

lationships.

aide: (Displays graph of variables, relevant rela-
tionships highlighted.)

user: Select relationship

(Resources-Consumed, Task-Duration).

aide: (Resources,Duration) has these indications:

high correlation (r = 0:93); outliers in both
Resources and Duration; clustering. Suggested

courses of action are (1) generating a linear �t

and (2) exploring clusters.

user: Why the linear �t?

aide: A linear �t can be appropriate for relation-

ships with high correlation.
user: Why the given ordering of actions?

aide: When there is a high correlation and no

evidence of extreme outliers, we �t a line before

trying other possibilities.

user: Okay.
aide: (Generates linear �t.) A three-group resis-

tant line is appropriate; its intercept is �0:96, its
slope 0:0017. (Presents graphical display of lin-

ear �t.) There are outliers in the residuals, as

well as evidence of clustering.
user: Show recent decisions.

aide: (1) With the goal of exploring (Re-

sources, Duration), we decided to �t a line. The

active alternative is to explore clusters. (2) With

the goal of �tting a line, I decided without con-

sultation on a resistant �t. Alternative is a re-
gression �t.

user: Make a note: I am con�dent that the rela-

tionship (Resources, Duration) is linear, despite



indications of outliers and clustering.
aide: (Accepts note.)

user: Okay.

aide: (Considers linear �t phase to be com-

plete.) The possibilities remaining to explore

(Resources,Duration) are (1) the linear �t, which
is in progress, and (2) cluster exploration, which

has not started.

user: Okay.

aide: (Begins cluster exploration.) There are sev-

eral di�erent ways (Resources, Duration) can be
broken into clusters: : :

aide relies on speci�c abilities in participating in

this kind of exploration. First, aide makes heuris-

tic judgments about the data. This lets it decide
on its own which procedures are appropriate, rather

than relying entirely on the user. In general, aide

takes advantage of indications in the data as more

detail is gradually uncovered, to focus its explo-

ration on promising areas. Second, aide does more
than simply react to user commands. While the fa-

miliar \submit command; view result" cycle is sup-

ported, aide can sometimes anticipate the user's

actions through its representation of common sta-

tistical practice. Third, aide does not go to the

other extreme of being completely autonomous; its
decision process is accessible to the user. At any

time the user can review the assistant's decisions

concerning statistical procedures, parameter set-

tings, variable selection, and so forth. Further, the

user is given a means of navigating through the de-
cisions, to reevaluate and modify them when nec-

essary.

A mixed-initiative planning
environment

aide is built around a partial hierarchical plan-

ner (St. Amant & Cohen 1996). Systems that
use this approach include PRS (George� & Lansky

1987), the phoenix planner (Cohen et al. 1989)

and the RESUN system (Carver & Lesser 1993).

Rather than constructing plans from primitive ac-

tions, starting from scratch for each new prob-
lem, the aide planner relies on a library of ab-

stract plans and primitive actions for its processing.

These plans and actions implement statistical pro-

cedures and strategies at di�erent levels of abstrac-

tion. aide explores a dataset by searching through
its library, instantiating appropriate plans, and �t-

ting them into a growing network of plans already

executing.

The existence of pre-de�ned plans greatly re-

duces the search space. aide nevertheless still
faces the meta-level problem of deciding which

plans are appropriate. Several plans in the library

may potentially satisfy a single goal: in the dia-

log above, the planner might satisfy a describe

relationship goal with a linear-fit plan or a
decompose-clusters plan. Similarly, plan vari-

ables may be bound in a variety of ways: there are

often many plausible criteria by which a relation-

ship can be clustered, and it is not always obvious

which is the best way. We refer to choices between
plans and plan variable bindings as focus points.

Planning, at the meta-level, is a matter of decid-

ing which focus point to concentrate attention on

and which of its choices should be pursued. aide

makes these decisions based on indications in the

data, results that have been generated up to the
current point, and the context in which the focus

points are generated.

The user interacts with aide at the meta-level.

Managing the interaction at this level gives the
aide environment much of its power. Relieved of

the necessity of calling individual actions directly,

the user can take a strategic view of the process.

aide explores a dataset by incrementally expand-

ing a set of active focus points representing relevant
decisions: which variables or relationships should

be examined, which plans should be active to ex-

plore them, how plans should be parameterized.

The user participates in the exploration by view-

ing the sequential presentation of these focus points
and providing acknowledgement or guidance when

appropriate.

Mixed-initiative systems like aide face a two-

sided problem. aide may take actions on its own,
without consulting the user; aide mustn't confuse

the user, however, by presenting results seemingly

unrelated or irrelevant to the current state of ex-

ploration. Similarly, the user may take actions for

which aide can �nd no justi�cation; aide must

nevertheless follow the path set by the user, to
contribute to the exploration once it again reaches

a familiar point. This issue involves maintaining

shared knowledge about a problem to be coopera-

tively solved (Allen 1994).

aide's solution relies partially on the notion of

common statistical practice and its relationship to

planning. In many situations data analysis follows

well-understood paths, involving procedures famil-

iar to most users. For example, if one generates
a regression �t for a relationship, one also gener-

ates residuals. The residuals may contain patterns

not captured by the �t; by examining the residuals



one ensures that the �t is an adequate description.
Thus if the user tells aide that a linear �t is ap-

propriate, aide will present both the �t and the

residuals. aide's plans implement common statis-

tical procedures, so that when aide executes such

plans without consultation, the user sees nothing
unusual in the system's initiative.

For several reasons we need to provide direct

communication about the exploration process, in

addition to relying on implicit knowledge about
common practice. The user may get temporarily

distracted and need to review the last few decisions.

aide may make a mistake; the user needs a way

to tell aide to return to an earlier decision point

to �x it. aide may make a sequence of decisions,
without consultation, that can only be explicated

by a review of each one's justi�cation and context.

Exploration is �nally an opportunistic process. In-

termediate results can cause di�erent points in the

search space to becomemore promising, points that

may not appear directly connected to the current
state. For example, the user may reach a conclu-

sion beyond aide's scope, say, that a variable is rel-

evant to a relationship examined earlier, based on

exogenous information about the domain that aide

cannot know. When this conclusion is reached, the
user may want to tell aide to return to the earlier

relationship, so that it might be examined further.

For these reasons aide needs to give the user access

to its decision-making process.

Recent research has drawn a useful analogy be-

tween mixed-initiative planning and a dialog be-

tween problem-solving agents (Allen 1994). James

Allen identi�es three distinguishing characteristics

of mixed-initiative planning: exible, opportunistic
control of initiative; the ability to change focus of

attention; mechanisms for maintaining shared, im-

plicit knowledge. aide meets these requirements as

follows.

aide's control of initiative changes with context.

That is, whether a decision is presented to the

user or is settled internally depends on situation-

dependent factors. For example, if aide deter-

mines that only one plan is able to satisfy a given
goal (i.e., all others rendered inactive by evaluation

rules), then this decision point will not be presented

to the user. An exception is made in the case where

a plan is being selected for the initial exploration of

a variable or relationship. Choosing an appropri-

ate initial plan for exploring a relationship can often
depend heavily on external knowledge; thus the de-

cision about how to proceed from the new point is

presented to the user even if only one course of ac-

tion seems appropriate. At any other point in the
exploration, the user is free to take the initiative.

Because aide supports the interaction style of a

conventional statistical package, the user can sim-

ply select operations from the menu bar, entirely

disregarding the suggestions and results aide gen-
erates.

When the user changes focus of attention, aide

follows suit. For example, the user may decide
to abandon exploration of relationship (x, y) for

exploration of (z, w), simply by choosing Select

variable/relationship from the menu bar and

constructing the new relationship. aide interprets

this as a shift in focus of attention, and runs the

appropriate meta-level actions to match the shift.
aide also makes limited decisions on its own to

change focus. For example, after �tting a line to a

relationshipand generating residuals,aide presents

a set of residual examination and other plans to the

user. An Okay gesture, which usually indicates that
the top-rated plan for the current decision should

be activated, rather in this context causes aide to

refocus on other plans for exploring the relation-

ship.

Part of the shared context between the user and

aide is implicit in plans designed to implement

common statistical procedures. Navigation mecha-

nisms provide an explicit means of supporting this

context. The user can view the data under con-
sideration, results constructed, commands carried

out, and planning structures leading to the cur-

rent state. There is no complementary facility for

aide to ask for clari�cation of user actions, how-

ever, which could clearly be helpful in some situa-
tions.

Besides making decisions at the local level of fo-

cus points, the user can also change the aide's focus

of attention through a navigation facility. The nav-
igation facility shows the user di�erent views of the

exploration process:

A command history view displays a list of the
commands that the user has selected from the

menus. Selecting a command shows the operation,

the data to which it was applied, and the result

generated. This facility gives a super�cial history

of exploratory actions taken|though not of the de-
cisions that led to their selection.

An overview view presents a graph of the dataset,

with variables represented as nodes and relation-

ships as arcs, marked appropriately to show which
have been explored and the types of descriptions

that have been established for them. The user can

review a variable or relationship along with its in-



dications from this view, and can direct aide to re-
turn to the initial point of exploring that variable

or relationship.

A data view presents a display of the dataset,

similar to the overview, but organized in textual

tree form. In addition to the variables and relation-
ships of the dataset, this view also presents derived

data (e.g., transformations, partitions) and results.

A plan view displays the plan structure as it has

been elaborated to the current point. Each fo-

cus point is presented, with documentation about
the decision it manages. By browsing through this

graph, the user can review past decisions. The user

can also cause aide to return to an earlier decision

to resume at that point.

Through this interface the user can review past

decisions, revisit them, and if necessary modify
them.

Conclusion

We have described work in mixed-initiative plan-
ning. The �rst project involved an agent that steers

transportation schedules, modifying them dynami-

cally to avoid bottlenecks. We learned that humans

and the plan steering agent, working together, work

better than either, alone. The second project in-
volves tight collaboration between human data an-

alysts and an assistant for exploratory data analy-

sis. The challenge was to give aide autonomy but

not have it "run away" from the user, to keep the

user and aide thinking along the same lines during
data analysis.
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