
'



Simulation for ARPI and the Air Campaign Simulator

Paul Cohen
Scott Anderson
David Westbrook

Experimental Knowledge Systems Laboratory

Computer Science Department, LGRC

University of Massachusetts
Amherst MA 01003-4610

fcohen,anderson,westyg@cs.umass.edu

Abstract

We describe a simulation substrate for building
real-time simulators in a Common Lisp environ-
ment, and a simulation of Air Campaign Planning
implemented in the substrate. The substrate is
designed for experimental work: Trials are repeat-
able and randomness is carefully controlled; all as-
pects of the simulation are instrumented and inte-
grated with the UMass CLIP/CLASP instrumen-
tation and analysis package. The ACS simulator
is for testing campaign-level planners and simula-
tors.

The Need for Simulation

As planners become more sophisticated, they will

solve increasingly large planning problems involv-

ing, for example, the movement and actions of

thousands of vehicles, over many hours and under

changing conditions. It is extremely di�cult to in-
spect such elaborate plans and determine, for ex-

ample, their probability of success, the extent to

which their goals will be satis�ed, and so forth.

Nevertheless, such evaluation is critical to a sci-

enti�c understanding of how and how well a so-
phisticated planner works. Simulation provides a

solution: plans are run many times in the space

of conditions that they were meant to handle, and

various dependent variables are measured and sta-

tistically analyzed. Furthermore, simulators enable

the planner to be on-line: it can be an agent in
an ongoing environment, monitoring the progress

of the plan and making additions or corrections as

necessary. An on-line planner can even scrap a fail-

ing plan or sub-plan and replan (Howe 1993). If

the thinking time of the planner is limited, so that

there is time pressure on its thinking, the on-line
planning becomes real-time planning.

A number of simulation environments already

exist to support research in on-line and real-time

planning (Hanks, Pollack, & Cohen 1993). Some

of these simulators are quite domain-speci�c, such

as our own Phoenix testbed (Cohen et al. 1989),
which simulates forest �res in YellowstoneNational

Park. Other examples are Truckworld (Hanks,

Nguyen, & Thomas 1992) and Trains (Martin &

Mitchell 1994), where trucks or trains move cargo

in a graph of depots, cities and towns. Other
testbeds are much more domain-independent, such

as theMice testbed (Durfee & Montgomery 1990),

in which agents move in a generic gridworld.

These testbeds all have to solve the fundamen-

tal issues of simulation, such as managing events

from many sources and getting them to occur in

the correct order. They have to deal with the in-
terface between planners and the environment, and

often that interface is not well de�ned. Because of

the many design decisions, these testbeds are of-

ten not as easily shared as their authors intended.

OurMess substrate (Anderson 1995) captures the
best of the common, domain-independent aspects

of these simulators, and improves the representa-

tion of thinking agents and the measurement of

time.

One builds a simulation environment in Mess

by de�ning the events that happen, thereby chang-

ing the state of the world, and de�ning the event
streams that produce those events. TheMess sub-

strate takes care of synchronizing all the events so

that the simulation unfolds in the correct way, with

processes interacting as they should. Our goals

in designingMess were (a) domain independence,



(b) planner independence, meaning that we pose
little constraint on the kind of planner that can

be integrated with Mess, (c) extensibility by the

user, (d) portability to any Common Lisp platform,

and, most importantly, (e) a 
exible, platform-

independent de�nition of planning duration, so that
real-time simulations will have those properties.

Mess Design

Mess makes no commitment to a domain but in-

stead supplies the materials to build simulators

in any domain, namely events and event streams.

For example, the ignition of a �recell is an event

in Phoenix, the appearance of a tile is a Tile-

World event (Joslin, Nunes, & Pollack 1993;

Pollack & Ringuette 1990), and a train travers-

ing a route is an event in Trains. Events are de-

�ned in Mess using Clos, where the user supplies

code that determines when the event occurs and
how it modi�es the representation of the world.

The \how" code is the realization method of the

event, and executing that code is called realizing

the event. The hierarchy of event classes can be

used to group kinds of events, such as all the move-
ment events or all the �re events, so that they can

be controlled and modi�ed as a group.

Mess is a process-oriented simulator (Bratley,

Fox, & Schrage 1983, p. 13), which means that each
event is produced by a process, and that process

determines subsequent events. For example, things

like �re, weather, and particularly an agent's think-

ing might each be separate processes in the simu-

lation. The representations of processes are called

event streams. Event streams are also de�ned using
Clos, so that users can add other kinds of event

streams if they need a particular way of producing

events.

Mess has a central \engine," which interleaves

the streams of events that represent di�erent real-

world processes. The Mess engine is so called be-

cause it controls all the events and event streams,

and it invokes the realization of events. Discrete

event simulators go from state to state in discrete
steps, which we call advancing the simulation. Fig-

ure 1 presents pseudo-code for the algorithm to ad-

vance the simulation. Each time the simulation is

advanced, exactly one event is realized.

The event to be realized is whichever is nearest

in the future. In a queuing simulation, if we have

a customer arrival scheduled for time 18 and a de-

parture scheduled for time 13, the departure must

obviously come before the arrival. The simulation

literature has several terms for the data structure
holding these events; we call it the \pending event

list" or PEL. When an event is scheduled, it is in-

serted into the PEL in the correct place; when the

simulation is advanced, the �rst event in the PEL

is realized and removed from the list.

In Mess, there can be two kinds of object in the

PEL: an event or an event stream (ES). If we think

of an event as a sheet of paper, an ES is like a pad

of paper: it has a bunch of sheets, only one of which

shows at a time. The PEL inMess contains either
individual events, or event streams. In practice, in

the simulators implemented using Mess, most of

the objects in the PEL are event streams.

Let's look brie
y at the pseudo-code to see how

Mess works. (A more detailed description is avail-
able in (Anderson 1995).) The primary objective

of the engine is to realize events, which we see in

the center of the algorithm. If the �rst thing in

the PEL is an ES, the engine must make the ES

produce an event to realize, which is done by the
peek operation. (Later, the event is removed from

the ES by the pop operation.) After the event is

realized, the event is illustrated. The purpose of

realization is to change the state of the simulation,

while the purpose of illustration is to modify the
graphical user interface (GUI), if any. This separa-

tion of realization from illustration aids in running

batch simulations, because all the GUI code can be

ignored. The separation also helps keep testbeds

portable, since GUI code is a common source of

portability troubles.

The highlighted operations|peek , interaction ,

realize , illustrate , and pop|are all Clos meth-

ods that can be specialized by the user. Indeed,

the realize and illustratemethods, which operate on
events, must be specialized, since their default be-

havior is to do nothing. The peek and pop methods

operate on event streams; as mentioned above, sev-

eral general event stream classes are implemented

in Mess already. The user can arrange for partic-

ular events to happen during a simulation by us-
ing the list event stream. The function ES classes

run a function, supplied by the user, to generate

an event either during the peek or pop operation.

We've found it straightforward to implement many

kinds of processes using just these event streams,
but the protocol is designed for extensibility by the

implementer of a simulation.

Several minor steps in the pseudo-code deserve

mention. The \every event" step executes all the

code in a list supplied by the user at the start of



Algorithm to Advance the simulation:
increment event counter

advance time by head of PEL

If head of PEL is an event stream

Set ES to head of PEL

Peek ES

Set E to event in ES
else

Set ES to nil and set E to head of PEL

Check for Interaction

Realize E

Illustrate E (optional)
Unless ES = Nil

Pop ES

Do Every Event Stu�

Check Wakeup Time Functions

Write out E (optional)
Change Activity

Figure 1: Pseudo-code for the Mess engine.

the simulation, so that it's easy to arrange for some-

thing to be executed continuously during the sim-

ulation. For example, data-collection code is often

executed this way. The \wakeup time" step awak-
ens event streams that have been put to sleep for

some reason. For example, the �re-simulation ES is

asleepwhen no �re is burning. The \write out" step

saves every event to a �le, so that a simulation can

be analyzed or replayed if desired. Finally, the pro-
tocol includes steps to check for interactions and

change activities; these are discussed in the next

section.

Activities and Interactions

Events are \point-like," in that they happen at a

moment in time. For example, a customerarrives in

a queuing simulation, or a tile disappears in Tile-

World. However, many kinds of simulations in-
volve things that happen over an interval of time;

these are called activities in Mess. For example, a

train travelling from one station to another would

be represented as an activity. Activities are repre-

sented as a pair of point-like events, representing
the beginning and ending of the activity.

Mess is designed not only to support activities,
but also interactions between activities and other

events, including other activities. Suppose a bull-

dozer (or other vehicle) is traveling from A to B,

while another is traveling on an intersecting course

from C to D. In many simulators, this collision

would never be noticed, but Mess keeps track of

all current activities and checks for interactions.

Activities are essentially a kind of event that hap-

pens twice. Whenever an activity starts, it is placed
on a list by the Mess engine, and it is removed

when the activity ends. Each event that happens

while the activity is on the list has the opportunity

to interact with the activity. This opportunity is

implemented via the interaction function. The in-
teraction function is a two-argument Clos generic

function, extended by the user, since the seman-

tics of the interaction between the activity and the

event is necessarily domain-dependent.

The interaction can a�ect either the activity or
the event, or both. A rain activity might cancel

a scheduled �re-ignition event (which is why the

Mess engine checks for interactions before realiz-

ing the event). An event representing the �ring of

a surface-to-air missile might terminate a �ghter
plane's 
ight activity. The movement activities of

two vehicles might result in a collision, with both

activities a�ected by the interaction. Activities are

represented as a single object, a sub-class of an

event. This representation allows an easy sharing

of information that might be needed for the realiza-
tions at the start and �nish of the activity. It also

yields a single object for specializing the interaction

function. The engine takes care of \informing" the

object that its role as the beginning of the activity

is over and it now represents the end of the activity;



this is the purpose of the \change activity" step in
the pseudo-code in �gure 1.

Planners

An on-line or real-time planning agent is integrated

into aMess-based simulation as just another event

stream. The agent discovers the state of the simu-

lation by producing sensory events, and it acts by

producing e�ector events. Thus, from the view-
point of theMess engine, a thinking agent appears

to be the same as any event stream, obeying the

same peek and pop protocol.

Some planners can certainly be implemented us-

ing the pre-de�ned function event streams, but be-

cause the function is executed from scratch each

time, there is no continuous \stream of thought."
Therefore, most agents will want to use the pre-

de�ned class of thinking event streams. These event

streams run the planner as a co-routine, switching

control back to theMess engine whenever the plan-

ner produces an event, since an event signi�es inter-
action with the simulation, and so the simulation

must be brought up to date.

TheMess engine lets the agent ES have its turn

when it needs to get the next event from that ES,

and the ES runs until it computes an event, where-

upon it returns control to the engine. To be pre-

cise, an agent event stream gets its turn when it is
popped, and when it computes an event, the event

becomes the pending event in the event stream.

The timestamp on the pending event determines

when the event is realized and when the ES runs

again.

How is the timestamp on the pending event cal-

culated? Note that this is not a question we have
considered before. We assumed that the event

streams compute the timestamp in domain-speci�c

ways, involving, for example, models of how fast ve-

hicles move or �re spreads. With a thinking ES, we

want the timestamp on the event to be determined
by the amount of computation that has occurred

during this turn. That is, the computation of the

timestamp on the next event in the agent is a side-

e�ect of its getting a turn to think: the agent thinks

until it gives an event to the substrate for realiza-
tion, and the amount of thinking determines the

timestamp of the event.

Thinking time only matters for real-time agents.

A planner that is merely on-line may think for as

long as it wants. It must therefore determine in

some other way when it will get another chance to

think. It may, for example, simply get to run every

�ve simulated minutes. While the Mess substrate
can easily accommodate on-line agents, it is partic-

ularly designed for real-time agents.

Timed Common Lisp for Real-Time
Agents

One valuable component of the Mess simulator

is Timed Common Lisp (TCL), which has all the

functionality of ordinary Common Lisp, but each
function advances the clock predictably and appro-

priately. Most simulators (including our Phoenix

system) use elapsed CPU time to assess how long

an agent has been thinking. This approach is intu-

itive and straightforward to implement, but it has

drawbacks. It is platform-dependent, so a simula-
tion will run di�erently on a di�erent CPU, oper-

ating system, Lisp implementation, or even a dif-

ferent release of the Lisp compiler. In fact, a simu-

lation will behave di�erently from run to run even

if none of these factors change, due simply to vari-
ability in CPU time. (Indeed, this variability can

be quite striking (Anderson 1995).) For replicable

experiments, for explicit reasoning about time, for

deliberation scheduling, and other applications, it

is very valuable to have a database of timings for

Common Lisp functions (and for user-de�ned func-
tions). This TCL provides. One can use Mess

without TCL, but for real-time applications, one

should use TCL. The overhead is minimal (Ander-

son 1995).

Instrumentation and Data Analysis

Mess is completely inte-

grated with the clip/clasp, an instrumentation

and analysis package developed at UMass. With

clip, one attaches \alligator clips" to pieces of
code, for example, messages sent by agents, envi-

ronment events, or various activities. These alli-

gator clips collect state information periodically or

in response to speci�ed events, and dump the data

to clasp for analysis. The clasp package incorpo-
rates dozens of statistical techniques; its design em-

phasized exploratory data analysis over strict hy-

pothesis testing. After all, most experiments with

complex systems are intended to �nd out how the

systems work|the factors that a�ect performance,

singly and in combination|which often involves
searching for hidden structure in run-time data. In

fact, we have developed a mixed-initiative planning

assistant for exploratory data analysis, described in

a companion paper in this volume.

One general and apparently very powerful sta-



tistical method is called \multi-stream dependency
detection, or msdd. Consider the streams of data


owing from a robot's sensors, a command and con-

trol network, the monitors in an intensive care unit,

or periodic measurements of various indicators of

the health of the economy. There is clearly util-
ity in determining how current and past values in

those streams are related to future values. We for-

mulate the problem of �nding structure in multi-

ple streams of categorical data as search over the

space of dependencies, unexpectedly frequent or in-
frequent co-occurrences, between complex patterns

of values that can appear in the streams. msdd per-

forms an e�cient systematic search over the space

of all possible dependencies. There are currently

four versions of msdd. The �rst version searches

dependency space in a best-�rst manner, guided
by a user supplied evaluation function. The sec-

ond version employs a statistical measure of depen-

dency strength and uses bounds that we derive for

the value of that measure to prune huge portions

of the search space. When the algorithm termi-
nates, it returns a list of the k strongest dependen-

cies that is equivalent to the list that would be re-

turned by an algorithm that exhaustively searched

the space of all possible dependencies. The third

version is incremental; it does not require an ini-
tial batch of data from the streams (as the �rst two

versions do) but instead incrementally re�nes hy-

potheses about where strong dependencies exist as

new data is acquired from the streams. The fourth

version is a distributed algorithm that runs on net-

works of machines. All versions of the algorithm
employ domain independent heuristics to make the

search e�cient, and can be augmented with domain

speci�c heuristics to maximize performance on spe-

ci�c problems.

We have successfully applied msdd to classi�ca-

tion problems and to learning rules in a shipping

network that relate current states to future patholo-

gies. In the latter, we demonstrated that msdd can
automatically acquire rules that allow an agent to

manage the network as e�ectively as when the agent

uses hand-coded domain knowledge. We are cur-

rently applying msdd to the problem of predicting

faults in computer networks.

The Air Campaign Simulator

The Air Campaign Simulator (ACS) is being de-

veloped at UMass as a testbed for work in the

ARPA/Rome Lab Planning Initiative. Currently,

ACS implements the Korea Scenario, developed by

Doug Holmes at ISX. We will brie
y describe the
key features of ACS.

Campaign-level Simulation

Activities in ACS are large-scale, abstract, aggre-

gated and at the strategic, campaign level. For

example, actions in ACS include Observe, Sup-

ply, Show Force, Blockade and the like. Actions
commit resources, but again, these are aggregated

forces, not individual airplanes with tail numbers.

Outcomes of actions are similarly general; for ex-

ample, an attack on a supply route may disrupt

supply. We do not 
y speci�c aircraft against par-
ticular targets on the supply route; we do not model

the engagements of these aircraft and their targets;

we do not perform simulated BDA. At the cam-

paign level, it su�ces to direct a wing against a

supply route and assess the change in status of the
supply route.

Campaign-level Ontology

Doug Holmes' ontology of campaign-level actions is

fully implemented in ACS. One can simulate cam-

paigns manually by selecting actions from this on-

tology and placing them on the timeline, or, get-
ting closer to the aims of ACS, various ARPI plan-

ners can select and have ACS simulate campaign

actions. We have augmented Holmes' ontology

with various objects, locations, types of terrain and

weather, and status variables.

Chains

The concept of center of gravity is very important
to campaign planners, and we implement it in ACS

with structures called chains. A chain is a causal

association between objects; for example, an anti-

aircraft battery is \downstream" on a command

and control chain from the unit that controls it.
We have chains for command and control, logistics,

personnel, geography, and other centers of gravity.

Visualization

ACS has various interfaces to show the \campaign

at a glance." Chains �gure prominently because

they identify leverage points in the campaign.

Computing Outcomes

The outcomes of actions such as Attack, Patrol,

Blockade, and so on are computed by rules that

take into account the readiness and morale of the

units involved, the weather, and other factors. Cur-

rently, outcomes are crude; only four status vari-



ables are allowed: operational, degraded, disrupted
and non-operational.

Implementation

ACS is implemented in Mess, the simulation sub-

strate described earlier. Currently, it does not ex-
ploit much of the functionality of Mess; for ex-

ample, actions are implemented as events instead

of activities, and ACS isn't a real-time simula-

tor. These choices enabled us to produce a �rst

draft of ACS very rapidly; it is available from co-
hen@cs.umass.edu.

Acknowledgments

This work is supported by ARPA/Rome Labora-

tory under contract #F30602-95-1-0021. The US

Government is authorized to reproduce and dis-

tribute reprints for governmental purposes notwith-

standing any copyright notation hereon. The views
and conclusions contained herein are those of the

authors and should not be interpreted as necessar-

ily representing the o�cial policies or endorsements

either expressed or implied, of the Advanced Re-

search Projects Agency, Rome Laboratory or the
US Government.

References

Anderson, S. D. 1995. A Simulation Substrate for

Real-Time Planning. Ph.D. Dissertation, Univer-

sity of Massachusetts at Amherst. Also available

as Computer Science Department Technical Re-
port 95{80.

Bratley, P.; Fox, B. L.; and Schrage, L. E. 1983.

A Guide to Simulation. Springer-Verlag.

Cohen, P. R.; Greenberg, M. L.; Hart, D. M.; and

Howe, A. E. 1989. Trial by �re: Understanding

the design requirements for agents in complex en-

vironments. AI Magazine 10(3):32{48.

Durfee, E. H., and Montgomery, T. A. 1990.

MICE: A 
exible testbed for intelligent coordi-

nation experiments. In Erman, L., ed., Intelli-

gent Real-Time Problem Solving: Workshop Re-

port. Palo Alto, CA: Cim
ex Teknowledge Corp.

Hanks, S.; Nguyen, D.; and Thomas, C. 1992. The
new Truckworld manual. Technical report, De-

partment of Computer Science and Engineering,

University of Washington. Forthcoming. Contact

truckworld-request@cs.washington.edu.

Hanks, S.; Pollack, M. E.; and Cohen, P. R.

1993. Benchmarks, testbeds, controlled experi-

mentation, and the design of agent architectures.
AI Magazine 13(4):17{42.

Howe, A. E. 1993. Accepting the Inevitable:

The Role of Failure Recovery in the Design of

Planners. Ph.D. Dissertation, University of Mas-

sachusetts at Amherst. Also available as Com-

puter Science Department Technical Report 93{

40.

Joslin, D.; Nunes, A.; and Pollack, M. E. 1993.

TileWorld user's manual. Technical Report 93-

12, Department of Computer Science, University

of Pittsburgh. Contact tileworld-request@cs.
pitt.edu.

Martin, N. G., and Mitchell, G. J. 1994. A

transportation domain simulation for debugging

plans. Obtained from the author, martin@cs.

rochester.edu.

Pollack, M. E., and Ringuette, M. 1990. In-

troducing the Tileworld: Experimentally evalu-
ating agent architectures. In Proceedings of the

Eighth National Conference on Arti�cial Intelli-

gence, 183{189. American Association for Arti�-

cial Intelligence.


