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Abstract Over�tting arises when model components are evaluated against the wrong

reference distribution. Most modeling algorithms iteratively �nd the best of several com-

ponents and then test whether this component is good enough to add to the model. We

show that for independently distributed random variables, the reference distribution for

any one variable underestimates the reference distribution for the the highest-valued vari-

able; thus variate values will appear signi�cant when they are not, and model components

will be added when they should not be added. We relate this problem to the well-known

statistical theory of multiple comparisons or simultaneous inference.

1 Iterative Modeling Algorithms

Iterative modeling algorithms (IMAs) generate a search space M of models by repeatedly

selecting a model m(�) 2 M and adding a component ci from a list of components C =

c1; c2; :::; cn to m(�), producing m(�; ci). For example, m(�) may be the regression equation

ŷ = �3c3 + �1c1, and m(�; c5) is ŷ = �3c3 + �1c1 + �5c5. Generally, IMAs do not add

every possible component to each model m(�)|this would result in exhaustive search|but

rather, they add the component that appears best according to some evaluation function

xi = V(ci; m(�);S). We call xi the score of component ci given model m(�) and a sample

of data S. For example, V might compute information gain or classi�cation accuracy for

decision tree induction algorithms, F ratios for stepwise multiple regression algorithms, and

so on. We may de�ne a general IMA algorithm as follows:

IMA: Initially,M contains the empty model m(). Now iterate:

1. Select a model m(�) 2 M

2. Remove components from C on logical grounds if necessary, producing C0. For exam-

ple, regression models shouldn't contain multiple occurrences of the same variable;

whereas decision trees can in some circumstances.

3. Find the best component, cmax 2 C
0, the one with the highest value xmax = max(x1; x2; :::xn),

where xi = V(ci; m(�);S)

4. If xmax > TV , where TV is a possibly dynamic threshold value, then add cmax to m(�).
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5. Revise M by adding m(�; cmax) and perhaps removing one or more models.

IMA terminates when no component can be added to any m(�) 2M according to step 4.

A modelm(�) over�ts a dataset S when it includes one or more components ci that have

su�cient scores xi > TV given S, but ci would not have su�cient scores in general|that is,

in other datasets drawn from the same population or in the population itself. Obviously,

over�tting can occur if the threshold TV is set too low. Said di�erently, if TV is set in a way

that underestimates the distribution of xmax, then over�tting will occur. In particular, if

TV is based on the distribution of scores xi instead of the distribution of maximum scores

xmax then over�tting is inevitable.1 Virtually all decision tree induction algorithms, for

example, base TV on the distribution of xi instead of xmax, which is why they over�t, often

dramatically.

Clearly, TV must respect the distribution of xmax, so we begin by examining this distri-

bution under some simplifying assumptions. We focus on the probabilities Pr(xmax � k)

and Pr(xi � k), and on the expected values E(xmax) and E(xi). In general, the distribution

of xi underestimates the probability of xmax. Then we consider how TV is set, focusing on

the common view of TV as a critical value in a reference distribution. It will then be obvious

how the problem of over�tting is a version of the classical statistical problem of multiple

comparisons. This equivalence suggests numerous over�tting-avoidance techniques, which

have been tested empirically (see [4]).

2 The Distribution of the Maximum Score

Recall that a score is an evaluation of a component ci that IMA is considering adding to

a model m(�): xi = V(ci; m(�);S). Suppose IMA is considering n components c1; c2; : : : ; cn
with scores x1; x2; : : : ; xn. Each score is the value of a random variable. The distribution

of the maximum score will depend on the distributions of the random variables, and, in

general, the variables are not identically and independently distributed (i. i. d.). The

following results are for i. i. d variables, and for independent but not necessarily identically

distributed variables. We have not extended the results to non-independent variables.

However, empirically we have shown that the errors introduced by non-independence are

small relative to the errors incurred by not using the reference distribution for the maximum

(see Figure 1 and [4]).

For simplicity and concreteness, assume x1 and x2 are random variables drawn from

a uniform distribution of integers (0 : : :6). The distribution of max(x1; x2) is shown in

table 1. Each entry in the table represents a joint event with the resulting maximum score;

for example, (x1 = 3
V

x2 = 4) has the result, max(x1; x2) = 4: Because x1 and x2 are

i. i. d. and uniform, every joint event has the same probability, 1=49, but the probability of

a given maximum score is generally higher; for example, Pr(max(x1; x2) = 4) = 9=49. In

fact, the probability Pr(max(x1; x2) = k) increases with k; for example, Pr(max(x1; x2) =

6) = 13=49.

For i. i. d. random variables x1; x2; : : : ; xn, it is easy to specify the relationship be-

tween cumulative probabilities of individual scores and cumulative probabilities of maxi-

mum scores:

1In fact, over�tting can occur even when the appropriate reference distribution is used, but its probability

can be controlled and made arbitrarily small.



0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 1 2 3 4 5 6

2 2 2 2 3 4 5 6

3 3 3 3 3 4 5 6

4 4 4 4 4 4 5 6

5 5 5 5 5 5 5 6

6 6 6 6 6 6 6 6

Table 1: The joint distribution of the maximum of two random variables, each of which

takes integer values (0...6).

If Pr(xi < k) = q; then Pr(max(x1; x2; : : : ; xn) < k) = q
n
: (1)

For example, in table 1, Pr(x1 < 4) = 4=7 (and Pr(x2 < 4) is identical, because x1 and

x2 are i. i. d.) but Pr(max(x1; x2) < 4) = (4=7)2 = 16=49. It is also useful to look at the

upper tail of the distribution of the maximum:

If Pr(xi � k) = p; then Pr(max(x1; x2; : : : ; xn) � k) = 1� (1� p)n (2)

These expressions and the distribution in table 1 make clear that the distribution of any

random variable xi from i. i. d. variables x1; x2; : : : ; xn underestimates the distribution of the

maximumxmax = max(x1; x2; : : : ; xn). Pr(xi � k) underestimatesPr(max(x1; x2; : : : ; xn) �

k) for all values k if the distributions are continuous. Said di�erently, the distribution of

xmax has a heavier upper tail than the distribution of xi.

This disparity increases with the number of random variables, x1; x2; : : : ; xn. Imagine

three variables distributed in the same way as the two in table 1. Then,

Pr(xi � 4) = 3=7 = :43

Pr(max(x1; x2; x3) � 4) = 1� (1� 3=7)3 = :81:

The distribution of xi underestimates Pr(max(x1; x2; x3) � 4) by almost one half its value.

The expected value xi, E(xi), generally underestimates the expected value of the maxi-

mum. This is easily demonstrated for two random variables x1 and x2 which are statistically

independent but not necessarily identically distributed; the extension to more independent

variables is obvious. The expected values of x1 and x2 are

E(x1) =
nX

i=1

x1iPr(x1i); E(x2) =
nX

j=1

x2jPr(x2j):

Likewise, the expected value of max(x1; x2) is

E(max(x1; x2)) =
nX

i=1

nX

j=1

max(x1i; x2j)Pr(x1i)Pr(x2j) (3)



=
nX

i=1

Pr(x1i)
nX

j=1

max(x1i; x2j)Pr(x2j): (4)

For any value x1i , max(x1i ; x2j) � x2j . Consequently,

nX

j=1

max(x1i; x2j)Pr(x2j) � E(x2) (5)

Thus, expression 4 becomes an inequality:

E(max(x1; x2)) �
nX

i=1

Pr(x1i)E(x2)

� E(x2)
nX

i=1

Pr(x1i)

� E(x2)

We can prove E(max(x1; x2)) � E(x1) in the same way. In sum,

E(max(x1; x2)) � max(E(x1); E(x2)) (6)

In fact, max(E(x1); E(x2)) nearly always underestimates E(max(x1; x2)); more dra-

matically as the number of random variables increases.

These properties of the distribution of xmax depend on x1; x2; : : : ; xn being indepen-

dently (if not identically) distributed. In the general case, where x1; x2; : : : ; xn are de-

pendent, the probability Pr(max(x1i; x2j ; : : : ; xnm) � k) is not so easy to estimate (but

see [6]). It is not simply a product of probabilities, as in expressions 2 and 4, because

Pr(a; b) 6= Pr(a)Pr(b) when a and b are dependent. In empirical studies of over�tting

(e.g., Figure 1), we see that the errors introduced by assuming independent variables to

derive a reference distribution for xmax are small relative to the errors introduced by relying

on the reference distribution for xi instead of the xmax distribution.

3 Underestimation and Over�tting

Underestimating the maximum of n random variables can lead to over�tting. Recall that

IMA adds component ci to model m(�) when ci is the best component (step 3) and ci's

score, xi, exceeds the threshold TV (step 4). There are many ways to set TV , but however

one does it, TV ought to reect the number of components being considered, the variances

of the distributions of the components, the size of sample S, and the number of compo-

nents already in model m(�). These factors suggest treating TV as a critical value in a

reference distribution; said di�erently, xi � TV can be tested with the machinery of statis-

tical hypothesis testing. In fact, this is how many IMA algorithms decide whether to add

components. We will briey review the logic of statistical hypothesis testing.

Suppose we want to test whether a component, c1, contributes enough to model m(�)

to warrant generating a new model m(�; c1). The usual approach is to derive a reference

distribution F1, for the scores, x1i, under the null hypothesis, H0, that c1 contributes

nothing to m(�). Then, given a particular score x1 = k, one calculates the probability

p = Pr(x1 � k), and if it is very low, one rejects H0 and concludes that c1 probably does



contribute something tom(�). The probability p bounds one's con�dence in this conclusion.

Typically, one selects a high quantile of F1, say, the 95th quantile, F1(95). If x1 > F1(95),

then one rejects the hypothesis that c1 contributes nothing to m(�), with a probability of

error p � :05. F1(95) is called the .05 critical value for the reference distribution F1.

The hypothesis testing strategy can be misapplied in incremental modeling algorithms,

with over�tting as the consequence. Here is the incorrect implementation of hypothesis

testing in IMA:

Incorrect Hypothesis Testing in IMA: For a given model m(�), and components

C 0 = c1; c2; : : : ; cn with scores x1; x2; : : : ; xn,

1. Find the best component ci for which xi = xmax = max(x1; x2; : : : ; xn).

2. Formulate the null hypothesis that ci contributes nothing to m(�) and derive the

reference distribution Fi under this hypothesis.

3. Set TV = Fi(95) (or some other con�dence level). If xi � TV reject the null hypothesis

and add ci to m(�).

In this procedure, the null hypothesis, and thus the reference distribution, are incorrect.

The correct null hypothesis is, \The best of n components adds nothing to the model," and

the correct reference distribution is the distribution of Fmax under this null hypothesis. It is

easy to see how one might erroneously use Fi to test xi when xi is the maximum score, but

Fi underestimates Fmax|as we demonstrated earlier for i. i. d. variables, and have shown

to be generally true even for non-independent variables|so xi might easily exceed Fi(95)

but fall short of Fmax(95).

It is now clear how this procedure causes over�tting: In general a reference distribution

Fi will underestimate Fmax, so any value TV based on Fi will be too low. Thus, components

will be added because their scores seem statistically unlikely (e.g., xi � Fi(95)) when, ac-

cording to the correct reference distribution, they are not unlikely at all (i.e, xi < Fmax(95)).

Equation 2 provides an estimate of the probability of over�tting for any given model

m(�) 2M. For example, if any one of ten components could be added to a model, and the

components' scores are i. i. d., and we use a .1 critical value for Fi instead of for Fmax as

TV , then the probability of over�tting is

1� (1� :1)10 = :6513:

Keep in mind that this result characterizes the probability of incorrectly adding a single

component to a model. After adding one component, most modeling algorithms then

consider adding another, and another, and each of these decisions also has an elevated

probability of being incorrect. One can easily build models in whichmost of the components

shouldn't be there. Decision tree induction algorithms, for instance, are exquisitely prone

to over�tting [4].

Figure 1 illustrates how non-independence of the scores x1; : : : ; xn a�ects the proba-

bility of incorrectly rejecting the null hypothesis and thus accepting a model component

incorrectly. In each trial, ten binary attributes with equal class probability and 50 in-

stances were compared to a randomly-generated binary classi�cation variable. The scores

for these attributes, x1; : : : ; x10, measure strength of association between the attribute and
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Figure 1: The joint e�ects of underestimating Fmax and non-independent scores.

the binary classi�cation variable. These scores are expected to be small because, as noted,

the classi�cation variable is random. The horizontal axis of Figure 1 is the median pair-

wise correlation between the attributes. The leftmost value, 50, means the attributes are

i. i. d. and higher values reect increasing dependence among the attributes and thus

their scores. The Fisher and chi-square scores were compared with conventional reference

distributions for Fisher's exact test and chi-square tests with alphac = :1. When the at-

tributes are i. i. d., the probability of spuriously accepting one into a model on the basis

of Fisher and chi-square scores is roughly 80attribute scores become more dependent, the

probability of over�tting drops. Intuitively this is because as attribute scores become more

highly correlated, the number of independent opportunities to reject the null hypothesis is

e�ectively reduced. In fact, we may think of highly correlated attributes as equivalent to

having fewer attributes; in the extreme case of perfect correlation, all the attributes behave

identically, so either they all reject the null hypothesis or none does.

To avoid over�tting, simply replace Fi with Fmax in the procedure, above. To do this,

one must estimate Fmax, which is easy to do by randomization, bootstrapping or some other

Monte Carlo procedure [3, 8]. Figure 1 shows that a randomized estimate of Fmax controls

over�tting perfectly. That is, once we have an estimate of Fmax we can select a critical

value TV to give us any desired probability of incorrectly rejecting the null hypothesis and

accepting a spurious model component. When we �xed this probability at .1, we did in

fact accept model components 10% of the time (Figure 1).

Alternatively, one might adjust the critical value in the Fi reference distribution to

ensure that the probability of falsely rejecting the null hypothesis on the basis of xmax is,

say, .1 as desired. This approach is reminiscent of the Bonferroni adjustment, and it works

quite well [1, 2, 4], although the adjustment tends to be conservative, especially when the

variables are not i. i. d. The line marked \bonferroni" in Figure 1 is Bonferroni-adjusted

chi-square scores, and when the attributes are i. i. d., the adjustment gives us exactly

the probability of over�tting that we stipulated, 0.1, but as the attribute scores become

more correlated, the Bonferroni adjustment becomes overly stringent. While it prevents

over�tting, it also prevents us adding any model components. See [4] for details.



4 Underestimation and Multiple Comparisons

The Bonferroni adjustment is popular for problems involving multiple comparisons, or

simultaneous inference. There is a direct mapping from the problem of estimating the

distribution of the maximum to the problem of multiple or simultaneous comparisons.

Suppose C = c1; c2; : : : ; cn with scores x1; x2; : : : ; xn, and assume these scores are in-

dependently and identically distributed (i. i. d.) random variables. Consider two null

hypotheses:

Simultaneous : Every component ci contributes nothing to model m(�).

Max : The best component, cmax, contributes nothing to model m(�).

Suppose one tests each of the simultaneous null hypotheses against a reference distribu-

tion, Fi (which is the same for all scores because they are i. i. d.) For example, one tests c1
by comparing x1 to Fi, then one tests c2 by comparing x2 to Fi, and so on. Alternatively,

one might test the max null hypothesis by comparing xmax to Fi. Assuming i. i. d. scores,

these testing strategies produce identical type I errors.

A type I error involves rejecting the null hypothesis when it is true. In the simultaneous

case, above, �c denotes the probability that a test of a single component will erroneously

reject the null hypothesis, and �e denotes the probability that at least one test of n com-

ponents will erroneously reject the null hypothesis. Think of �c as a bias on a coin: if

�c = :05, then with probability .95, a toss will land tails, and no error will occur. Clearly, if

one tosses the coin twice, the probability of landing tails twice, and avoiding a type I error,

is :952. Clearly, if one performs n independent statistical tests, each with �c probability of

a type I error, then the probability of at least one type I error in all n tests is

�e = 1� (1� �c)
n (7)

�e is called the experimentwise type I error.

Now suppose we have x1; x2; : : : ; xn i. i. d. random variables, and we set k so that

Pr(xi � k) = �c. What is the probability that the maximum of the variables exceeds k?

From expression 2 we see

Pr(max(x1; x2; : : : ; xn) � k) = 1� (1� �c)
n
: (8)

That is, the probability of a type I error committed by comparing max(x1; x2; : : : ; xn) to a

reference distribution for Fi is identical to the experimentwise probability of a type I error

in n comparisons. The simultaneous and max null hypotheses, above, are identical in

terms of the resulting type I error probabilities. This is not surprising, because �nding

the maximum of n random variables and then testing whether it exceeds a critical value

requires n pairwise comparisons of random variables.

The upshot of this result is that we may apply techniques developed for problems of

multiple comparisons (such as the Bonferroni adjustment) to the over�tting problem [2, 1].

All these techniques adjust TV to account for the fact that we are testing not one, but the

best of several, model components.
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