
How to Find Big-Oh in Your Data Set (and How Not To)

C. C. McGeoch

Department of Mathematics and Computer Science,

Amherst College, Amherst, MA 01002 ccm@cs.amherst.edu

P. R. Cohen

Department of Computer Science, University of Massachussetts

Amherst, MA 01003 cohen@cs.umass.edu

October 31, 1996

Abstract The empirical curve bounding problem is de�ned as follows. Suppose data vectors X;Y

are presented such that E(Y [i]) = �f (X[i]) where �f (x) is an unknown function. The problem is to

analyze X;Y and obtain complexity bounds O(gu(x)) and
(gl(x)) on the function �f (x).

As no algorithm for empirical curve bounding can be guaranteed correct, we consider heuristics.

Five heuristic algorithms are presented here, together with analytical results guaranteeing correctness

for certain families of functions. Experimental evaluations of the correctness and tightness of bounds

obtained by the rules for several constructed functions �f (x) and real datasets are described.

1 Introduction

Suppose the expected cost of algorithm A under some probabilistic model is described by an unknown

exact function �f (x) which belongs to some unknown class �(�g(x)) (where x denotes problem size). An

experimental study of A produces a pair of vectors X;Y such that E(Y [i]) = �f (X[i]). The empirical

curve-bounding problem, addressed in this paper, is: Analyze (X;Y) and estimate complexity classes

O(gu(x)) and
(gl(x)) to which �f (x) belongs. While a primary goal of traditional algorithm analysis

is to identify complexity classes to which unknown functions belong, this empirical version of the

problem appears to be new. We can �nd no techniques in the data analysis literature designed

for �nding bounds on data, although much is known about �tting curves to data (see sec. 4).

Algorithms for domain-independent function �nding [13] might be adapted to curve bounding but

are not considered here.

For any �nite set of points X there are functions �f (x) of arbitrarily high degree but indistinguish-

able from the constant c at those points. Therefore any heuristic producing an upper bound estimate

can be fooled, and no curve-bounding method can be guaranteed correct. This paper presents �ve

robust heuristics that produce correct bound estimates (or clear indications of failure) for broad

classes of functions and for functions that tend to arise in practice. We describe each rule R together

with a justi�cation that describes a class FR: for any function �f 2 FR, the rule is guaranteed to �nd

correct (sometimes exact) bounds when applied to data vectors Y = �f(X). We also present empir-

ical studies of the rules using constructed multi-parameter functions, and \typical" data sets from

algorithm analysis. The experiments indicate the limitations of the rules and suggest an appropriate

level of conservatism in their application.

The rules can be viewed as interactive tools or as o�ine algorithms. To accomodate both views,

we present the algorithms with a small set of oracle functions which decide, for example, whether

\residuals are concave upwards." In interactive use, a human provides the oracle result; in o�ine

use, a simple computation is used. However, the experiment in section 4 suggests that o�ine versions

are far more e�cient, and often more e�ective, than interactive versions.

2 Notation and the Heuristics

The vector X contains k distinct nonnegative values arranged in increasing order. Each heuristic

takes a pair of vectors (X;Y) generated according to Y = �f (X) or sometimes E(Y) = �f(X). The

heuristic reports a class estimator g(x) together with a bound type, either upper, lower, or close.

Upper signi�es a claim that �f (x) 2 O(g(x)), and lower signi�es a claim that �f(x) 2
(g(x)). A

boundtype = close is returned when a data set does not meet the rule's criteria for upper or lower

bound claims. An upper bound estimate O(g(x)) is correct if in fact �f(x) 2 O(g(x)). A correct upper

bound is exact if g(x) labels the smallest correct class. Analogous de�nitions hold for lower bound

estimates. Some heuristics generate internal guess functions f(x) before reporting the estimate g(x);

for convenience we assume that g(x) and �g(x) take the standard one-term form of complexity class

labels.

The following computations are required by the oracle functions:

Trend(X;Y; cr). Returns a value indicating whether Y appears to be increasing, decreasing, or

neither. The function compares the correlation coe�cient r (computed on X and Y) to a cuto�

parameter cr which is 0.1 by default.

Concavity (X;Y; s). The function examines signs of smoothed residuals from a linear regression

�t of X to Y . It returns \concave upward" if signs obey the regular expression (+)+(�)+(+)+,
\concave downward" if they obey (�)+(+)+(�)+, and otherwise \neither." The default low setting

on parameter s produces \less smooth" residuals and more frequent \neither" results.

DownUp(X;Y; s). The DownUp oracle checks whether successive di�erences in smoothed Y

values obey the regular expression (�)+(+)+, returning True or False. The default low value of

parameter s produces more frequent False results.

NextCoef(f; direction; cstep) and NextOrder(f; direction; estep). Some rules iterate over

several guesses and require an oracle to supply the next guess. This implementation constructs

functions f(x) = axb for positive rationals a and b. NextCoef changes a according to direction (up

or down) and the cstep size. If a decrement of size cstep would give a negative coe�cient, then cstep

is reset to cstep=10 before decrementing. NextOrder changes the exponent b according to the estep

size. Default estep is .001 and initial cstep is .01.

2.1 Guess Ratio

The �rst heuristic is called the Guess Ration (GR) rule. To justify GR, let FGR contain �f (x) =

a1x
b1 + a2x

b2 + � � �+ atx
bt, with rationals ai positive, and bi such that b1 > 0, bi � 0, and bi > bi+1.

Let the guess function be of the form f(x) = xb. Then the ratio �f (x)=f(x) has the following

properties: (1) When �f1(x) 2 O(f(x)), the ratio decreases to a nonnegative constant as x increases;

(2) When �f1(x) 62 O(f(x)) the ratio eventually increases and has a unique minimum point at some

location xr. If xr > 0, then the ratio shows an initial decrease followed by an eventual increase.

These properties are established by an application of Descartes' Rule of Signs [17], which bounds

the number of sign changes in the derivative of the ratio.

If a plot of a �nite sample of the ratio (X vs Y=f(X)) shows an eventual increasing trend, then

(2) must hold. If only a decrease is observed, then cases (1) and (2) cannot be distinguished. The

Guess Ratio rule begins with a constant guess function and increments b until the ratios Y=f(X)

do not appear to eventually increase. The largest guess for which an eventual increase is observed

is reported as a \greatest lower bound" found. When �f (x) 2 FGR and k � 2, the correctness of

GR can be guaranteed simply by de�ning \eventual increase" as Y [k � 1] < Y [k]. However our

implementation uses the Trend oracle for this test because of possible random noise in Y . For any

data set (X;Y) and our Trend oracle, the rule must eventually terminate.

2.2 Guess Di�erence

The Guess Di�erence (GD) rule evaluates di�erences f(X)�Y to produce an upper bound estimate.

This rule is e�ective for the class FGD which contains functions f(x) = cxd + e where c, d and e are

positive rationals. Let the guess have the form f(x) = axb. Consider the di�erence curve f(x)� �f (x).

When f(x) 62 O(�f (x)) this curve eventually increases and has a unique minimum at some location xd.

Also, xd is inversely related to the coe�cient a: for large a the di�erence curve increases everywhere

(xd = 0), but for small a there might be an initial decrease. In the latter case we say the curve has

the DownUp property.

The GD rule starts with an upper bound guess f(x) = axb and searches for a di�erence curve

with the DownUp property by adjusting the coe�cient a. If a DownUp curve is found, the rule

concludes that f(x) overestimates the order of �f (x), so it decrements b and tries adjusting a again.

The lowest b for which the rule �nds a DownUp curve is reported as a \least upper bound" found.

Using an analysis similar to that for GR, we can show that when �f (x) 2 FGD and k � 4, and X is

�xed, there exists an a such that f(X) � �f (Y) will have the DownUp property. If the rule is able

to �nd a DownUp curve in its �nite sample, then the upper bound it returns must be correct. We

also show that the DownUp property cannot guarantee correctness for functions from FGR. In our

implementation, if the rule is unable to �nd an initial DownUp curve within preset limits, it stops

and reports the original guess provided by the user.

2.3 Power Rule

The Power Rule (PW) modi�es a standard method for curve-�tting (see [12]). Suppose that FP
contains functions �f (x) = cxd for positive c and d. Let y = �f (x). Transforming x0 = ln(x) and

y0 = ln(y), we obtain y0 = dx0 + c. The Power Rule applies this log-log transformation to X and

Y and then reports d, the slope of a linear regression �t on the new scale. The Concavity oracle,

applied to residuals from the regression, determines whether an upper or lower bound (or neither)

is claimed. If Y = �f (X) and �f (X) 2 FP then the Power rule �nds d exactly. If Y = �f (X) + � and

the random noise component � obeys standard assumptions of independence and lognormality, then

con�dence intervals on the estimate of d can be derived.

High-End Power Rule (PW3). When �f(x) has low-order terms (such as axb + e), the trans-

formed points do not lie on a straight line, and regression using only the j highest design points

might give a better asymptotic bound than one using all k design points. The PW3 variation tested

in this paper applies the Power rule to the data points for X[k � 2], X[k � 1], X[k].

Power Rule with Di�erences (PWD). The di�erencing variation on the power rule attempts

to straighten out plots under log-log transformation by removing constant and logarithmic terms.

This variation is applicable when the X are chosen such that X[i] = � � X[i � 1] for a positive

constant �. The variation applies the Power rule to successive di�erences in adjacent Y values.

To justify this rule, suppose FPWD contains �f(x) = cxd+e where c; d and e are positive constants,

and let Y = �f (X). Set Y 0[i] = Y [i+ 1]� Y [i] and X0[1::k� 1] = X[1::k� 1]. Then that Y 0 = c0X0d

(with a new coe�cient and with e gone), to which the basic power rule can be applied. When
�f (x) 2 FPWD , Y = �f (X) and k > 2, the PWD rule �nds d exactly. Di�erencing a�ects other kinds

of terms: for example, taking di�erences twice will remove logarithms.

2.4 The BoxCox rule.

A general approach to curve-�tting is to �nd transformations on Y or on X, or both, that produce

a straight line in the transformed scale. For example, if Y = X2, then a plot of X vs
p
Y would

produce a straight line, as would a plot of X2 vs Y .

The Box-Cox ([1], [5]) transformation on Y is parameterized by �. This transformation is applied

together with a \straightness" statistic that permits comparisons across di�erent parameter levels.

The transformation is as follows:

Y (�) =

8<
:

Y
�
�1

��Y ��1
if � 6= 0

�Y ln(Y) if � = 0

where �Y is the geometric mean of Y , equal to exp(mean(ln (Y))). The \best" transformation in this

family minimizes the Residual Sum of Squares (RSS) statistic which is calculated from X and Y �.

Our BC rule iterates over a range of guesses f(x) = xb, evaluating Y (�) with � = 1=b. The

Concavity of residuals from the best transformation found determines the type of bound claimed.

When �f (x) = FPW , Y = �f (X), k > 2, and the NextGuess oracle includes �f (x), this rule �nds the

function exactly. With standard normality assumptions about an added random error term, it is

possible to calculate con�dence intervals for the estimate b; see [1] or [5] for details.

2.5 The Di�erence Rule.

The Di�erence heuristic extends Newton's divided di�erence method for polynomial interpolation

(see [15] for an introduction) to be de�ned when Y contains random noise and nonpolynomial terms.

The method iterates numerical di�erentiation on X and Y until the data appears non-increasing,

according to the Trend oracle. The number of iterations d required to obtain this condition provides

an upper bound guess xd. When �f (x) is a positive increasing polynomial of degree d, k > d, and

Y = �f(X) then this method is guaranteed correct. Much is known about numerical robustness, best

choice of design points, and (non)convergence when k � d.

3 Experimental Results

The rules have been implemented in the S language [2], designed for statistical and graphical com-

putations. The experiments were carried out on a Sun SPARCstation ELC, using functions running

within the Splus statistical/graphics package; some supporting experiments were conducted using

the CLASP statistical/graphics package. Timing statistics would be misleading in this context and

are not reported in detail. Roughly, the Power rules required a few microseconds, and the iterative

rules usually took no more than a few seconds per trial. The Guess Di�erence rule required a coarser

estep value in the NextOrder oracle (.01 instead of .001) to produce comparable running times.

3.1 Parameterized Functions

The �rst experiment studies the sensitivity of the rules to second order terms, using functions
�f (x) = axb + cxd + e (with no random term). Very roughly, the particular constants for this test

were chosen after several months of exploration to highlight the boundary between functions that

are \easy for all rules" and \hard for all rules." Vector X takes powers of two between 8 and 128. In

Figure 1, the notations l, u, c, indicate the type of bound claimed. An underline marks an incorrect

bound, and an X marks a case where the heuristic failed to return a meaningful result.

The functions tend to track large positive second terms. For example, for the function �f (x) =

3x:8 + x:2, most of the methods estimate b to be in the range 7.7 to 7.9, which are correct and

No. Function GR GD PW PW3 PWD BC DF

1 3x:2 + 1 .171l (2.26).24u .171l .174l .2u .178l 1u

2 3x:2 + 102 .011l (2.26).24u .011l .012l .2l .012l 1u

3 3x:2 + 104 .0001l (2.27).24u .0001l .0004l .2l X 1u

4 3x:8 + 104 .004l (1.0)1u* .004l .006l .8l X 1u

5 3x:8 + x:2 .775l (1.0)1u* .774l .784l .793l .792l 1u

6 3x:8 � x:2 .825l (1.0)1u* .829u .817u .807u .809u 1u

7 3x:8 + 104x:2 .201l (1.0)1u* .202l .202l .206l .203l 1u

8 3x:8 + x:6 .771l (1.0)1u* .771l .775l .778l .778l 1u

9 3x:8 � x:6 .838l (1.8).88u .841u .834u .829u .819l 1u

10 3x:8 + 104x:6 .600l (1.0)1u* .600l .600l .600l .600l 1u

11 3x:8 � 104x:6 + 106 -.01l (1.0)1u* -.059u -.086u X X 0u

12 3x1:2 + 104 0.035l (2.8)1.22u .032l .056l 1.2l X 2u

13 3x1:2 + x:2 1.187l (2.8)1.22u 1.187l 1.194l 1.198l 1.2u 2u

14 3x1:2 + 104x:2 0.213l X 0.212l 0.220l 0.263l 0.231l 1u

15 3x1:2 + x:8 1.169l (3.1)1.21u 1.168l 1.175l 1.178l 1.183u 2u

16 3x1:2 � x:8 1.235l (2.2)1.26u 1.238u 1.227u 1.223u 1.218l 2u

17 3x1:2 + 104x:8 0.800l (1.0)2u* 0.800l 0.801l 0.801l 0.801u 1u

Figure 1: Parameterized nonrandom functions

close lower bounds on the true value of .8. But for the function �f (x) = 3x:8 + 104x:2, these same

methods estimate b to be .2, tracking the exponent of the larger second term. Negated second terms

can present problems, particularly for the GR method. GD does remarkably well at estimating the

coe�cient of the �rst term, although it is an iterative algorithm and its performance is sensitive to

the choice of initial guess and step size. The starred entries mark cases where the rule failed to �nd

a DownUp curve and returned the user-supplied guess which was either 1x1 (functions 1 through

11) or 1x2 (functions 12 through 17). Both PW3 and PWD give tighter bounds than PW; not only

does PWD successfully eliminate constants, but it is slightly better than PW and PW3 when the

second term is non{constant. The BC rule provides very competitive bounds when it works, but

it goes into an in�nite loop on functions with a large-magnitude constant as a second term; the

failure of BC on these functions is an intrinsic property of the � transformation. Like PWD, the

di�erencing operation of DF makes it insensitive to large constant terms. Because DF returns an

integer exponent its bound is never tight on this test set.

Function 11 disasterous for all the rules because the negated second term causes Y to be decreasing

within its range.

Doubling the Largest Problem Size. An obvious remedy to the problem of a dominant second-

order term is to use larger problem sizes. A second experiment uses the same functions as above,

except X takes values at powers of two in the range 8 : : :256 rather than 8 : : :128. That is, the

largest problem size is doubled. This had very little e�ect on the bounds returned by Guess Ratio

and the three Power Rules. The change in estimate is generally only in the third decimal place, and

incorrect bounds remain incorrect. We can argue that GR would probably be least a�ected by larger

problem sizes, but one might expect greater responsiveness of PW3 because the new point should

have greater leverage. The greatest improvement is found in the Guess Di�erence rule on functions 4

through 9 (excepting 7). In the previous experiment the rule failed to �nd an initial DownUp curve

at all|now the rule �nds upper bounds within .05 of the true exponent. BC also shows some very

slight improvement; in two cases the rule produces close bound claims (which are hard to evaluate)

where previously it had been incorrect.

Adding Random Noise. We added a random term to three easy functions (1, 5, and 13) to learn

how rule performance degrades with increased variance. We let Y = �f (X) + �i with and i = 1; 2; 3.

The �i are drawn independently from normal distributions with means 0 and standard deviations set

to 1, 10 and the function means �f (X[j]), for i = 1; 2; 3 respectively. We ran two independent trials

for each i.

The quality of results returned by all rules degrades as variance increases and the replication of

tests in each category demonstrates that many correct bounds are spurious. Conversely, rule perfor-

mance improves when variance decreases. Encouragingly, it is usually possible to reduce variance in

data by increasing the number of trials or by applying variance reduction techniques [10].

With greater variance in Y the Power and the BoxCox rules more frequently return claims of

close, which are hard to evaluate. Large variance has less impact when the change in Y is large. Our

implementations of the BC and PWD rules encounter di�culties with negative values and negative

di�erences in case �3; the former can be remedied by adding a large positive constant to the data,

but this introduces new inaccuracies.

3.2 Algorithmic Data Sets

This experiment applied the rules to eight data sets drawn from previous computational experiments

by the �rst author. The data sets were not originally intended for this purpose and may give more

realistic indications of performance. Data sets 1 and 2 are the expected costs of Quicksort and

Insertion Sort, formulas for which are known exactly [9]. Sets 3 through 6 are from experiments on

the FFD and FF rules for bin packing [3], [4]. Sets 7 and 8 are from experiments on distances in

random graphs having uniform edge weights [11]. The X vectors have various ranges and intervals;

except for the �rst two cases, the Y s represent means of several independent trials.

Results appear in Figure 2. The left column presents the best analytical bounds known for each.

The entries NA for PWD mark cases where this rule was not applied because design points were not

in required format.

Known GR GD PW PW3 PWD BC DF

1 y = (x+ 1)(2Hx+1 � 2) 1.2l 1.24u 1.221u 1.181u NA 1.181c 2u

2 y = (x2 � x)=4 2.0l 2.03u 3.003u 3.001u NA 2.0l 2u

3 E(y) = x=2 + O(1=x2) .99l 1u* 0.996l .999u 1.0002c 1.203c 2u

4 E(y) 2 �(x:5) .52l 1u* 0.555c .5716u .7785c 0.999c 1u

5 E(y) 2 O(x2=3(log x)1=2) .68l .72u 0.689c .695u .692c .687c 1u

E(y) 2
(x2=3)

6 E(y) � :68x .90l 1u 0.893l .954l 1.269l .976c 1u

7 x� 1 � y � 13:5x loge x 1.13l 1.18u 1.142u 1.125l NA 1.109c 2u

8 x loge x < y < 1:2x2 1.30l 1.47u 1.318u 1.201l NA 1.203c 2u

Figure 2: Tests on Algorithmic Data

Contrary to experience with the constructed functions, GR obtains a correct and tight bound

when a negated second term is present (case 2), but in four cases GR produces results violating

known bounds. GD and the Power Rules rarely violate known bounds, although without tighter

analyses it is impossible to tell whether the rules are always correct. BC nearly always returns a

\close" bound which is di�cult to evaluate. Interestingly, every incorrect bound produced by the

rules is a lower bound.

The most interesting results are in cases 6,7 and 8, which haves gaps in the known asymptotic

bounds. In 6, the rules provide consensus support for a conjecture that �f (x) is closer to linear than,

say, to
p
x. In 7, there is some very slim support for super-linear growth in the data set, but the rules

are not really powerful enough to make such �ne discriminations. In 8 the results give consensus

support for a conjecture of sub-quadratic growth.

4 Remarks

In our informal explorations and designed experiments with little or no random noise in the data,

the rules generally get within a
p
x factor of the exact bound. On data from algorithms, the rules

can get within a factor of x and sometimes within
p
x. The rules are not reliable in discerning

lower-order and logarithmic factors (this holds even when logarithms are added to the NextOrder

oracle), and it doesn't seem likely that taking larger problem sizes would help.

Most rules do not much respond to larger problem sizes. However the quality of bound obtained

is very responsive to variance in the data. This is good news for algorithm analyzers when Y is

correlated with runtime, since variance can be reduced by taking more random trials, and trials are

easier to get when Y grows slowly.

Can Humans Do Better? In one experiment, the second author was given the 25 data sets

presented here, without any information about their provenance, and was allowed to use any data

analysis tools to bound the function. He was more frequently incorrect than any of the implemented

rules, and the human/machine interactions took considerably more time to accomplish. A second

experiment involved strict application of the heuristics, but with a human oracle (the �rst co-author)

who was familiar with the eight algorithmic data sets. Again, interactive trials require much more

time to perform. Very preliminary results indicate that: GR produces worse (less close) bounds

with a human Trend oracle; the human Concavity oracle tends to agree with the implemented one in

the Power rules (no improvement); an interactive GD is more successful at �nding DownUp curves

(more frequent success, but not tighter bounds); an interactive BoxCox can be more successful by

providing bounds that bracket the estimate rather than optimizing the transformation.

Removing Constant Terms. In many applications it may be possible to remove a constant

from Y before analysis, either by testing with x = 0 or by subtracting an estimated constant. Our

preliminary results suggest that subtraction of a known constant uniformly improves all the rules,

but subtracting an estimated constant gives mixed results.

Some Negative Results. A basic requirement is that a heuristic be internally consistent. That

is, should not be possible to reach the contradictory conclusions \Y is growing faster than X2" and

\Y is growing more slowly than X2" on the same data set. Surprisingly, two plausible approaches

turn out to have exactly this failure. The �rst, which is perhaps the most obvious approach to the

bounding problem, is to use general regression to �t a function f(x) and to read its leading term,

using regression analysis to determine an upper/lower bound claim. In preliminary tests with this

approach it quickly became clear that the results were primarily artifacts of the regression technique:

contradictory bound claims, such as
(x2:2) and O(x1:8) were easy to obtain by small changes in

the regression method. This approach was abandoned early in this research. The second is based on

Tukey's [16] \ladder of transformations." This approach also gives contradictory results depending

on whether the transformation is applied to Y or X.

References

[1] A. C. Atkinson (1987) Plots, Transformations and Regression: an Introduction to Graphical

Methods of Diagnostic Regression Analysis, Oxford Science.

[2] R. A. Becker, J. A. Chambers, and A. R.Wilks (1988)The New S Language: A Programming

Enviornment for Data Analysis and Graphics, Wadsworth & Brooks/Cole.

[3] J. L. Bentley, D. S. Johnson, F. T. Leighton, and C. C. McGeoch (1983) \An experimental

study of bin packing," Proceedings of the 21st Allerton Conference on Communication,

Control, and Computing, University of Illinois, Urbana-Champaign. pp 51{60.

[4] J. L. Bentley, D. S. Johnson, C. C. McGeoch and L. A. McGeoch (1984). \Some unexpected

expected behavior results for bin packing," Proceedings of the 16th Symposium on Theory

of Computing, ACM, NY. pp 279{298.

[5] G. P. Box, W. G. Hunter, and J. S. Hunter (1978) Statistics for Experimenters, Wiley &

Sons.

[6] J. M. Chambers et al. (1983) Graphical Methods for Data Analysis, Duxbury Press.

[7] P. R. Cohen (1995) Empirical Methods for Arti�cial Intelligence, the MIT Press.

[8] T. Cormen, C. Leiserson and R. Rivest (1990) Introduction to Algorithms, the MIT Press.

[9] D. E. Knuth (1981), The Art of Computer Programming: Vol. 3 Sorting and Searching,

Addison Wesley.

[10] C. C. McGeoch (1992), \Analyzing algorithms by simulation: Variance reduction techniques

and simulation speedups," ACM Computing Surveys. (245)2, pp. 195{212.

[11] C. C. McGeoch (1995) \All pairs shortest paths and the essential subgraph," Algorithmica

(13), pp. 426{441.

[12] J. O. Rawlings (1988) Applied Regression Analysis: A Research Tool, Wadsworth &

Brooks/Cole.

[13] C. Scha�er (1990)Domain-Independent Scienti�c Function Finding, Ph.D. Thesis, Technical

Report LCSR-TR-149, Department of Computer Science, Rutgers University.

[14] R. Sedgewick (1975), Quicksort. Ph. D. Thesis, Stanford University.

[15] J. Soer and R. Bulirsch (1993) Introduction to Numerical Analysis, Springer-Verlag.

[16] J. W. Tukey (1977) Exploratory Data Analysis, Addison-Wesley.

[17] L. Weisner (1938) Introduction to the Theory of Equations., Macmillan.

