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Abstract

Our goal is for robots to learn conceptual systems
su�cient for natural language and planning.
The learning should be autonomous, without
supervision. The �rst steps in building a con-
ceptual system are to say some things are alike
and others are di�erent, based on how an agent
interacts with them, and to organize similar
things into classes or clusters. We use the bcd

algorithm for clustering episodes experienced by
our robots. The clusters contain episodes with
similar dynamics, described by Markov chains.

Keywords: Adaptation and learning; Mobile
agents; Autonomous robots.

1 Introduction

Picture yourself in a room illuminated only by a computer
screen, onto which bit strings ash, two or three a second,
for a few seconds at a stretch. After a few moments of this,
the screen goes blank, until it starts up again with another
sequence of bit strings. Your task is to make sense of the bit
strings. Being human, you wonder what they mean. You try
to work out how they might refer to your own experiences.
You ask where they came from and what kind of process
generated them. But your questions lead nowhere, so lack-
ing a stronger model, you decide to analyze the bit strings
as tokens generated by a very simple machine, a Markov
chain. You treat each unique string as a token and tabu-
late the transition probabilities between them. And then
you cluster the sequences of tokens into groups with similar
transition probabilities. At the end of the day, you have
your answer: Although the machine has generated several
hundreds of sequences of bit strings, none identical, only �ve
clusters emerge. Whatever process is generating the data,
at some level of abstraction it seems to be doing only �ve
qualitatively di�erent things.

We have just described the world as experienced by a Pi-
oneer 1 robot. As it does things in the laboratory | pushing
a toy cup, passing another, picking up a block | its percep-
tual system produces propositions such as (OBJECT A RED)

and (APPROACH ROBOT A). By design, we know what these
propositions mean but the robot does not. They might as
well be structures of gensyms. Two or three times a sec-
ond, the perceptual system produces a set of propositions
to describe the current state. Every few seconds, the robot

stops doing whatever it was doing and starts something else.
In the current work, we mark these episode boundaries for
the robot, although we are developing an algorithm to �nd
episode boundaries automatically. Episodes, then, are time
series representations, grounded in sensory data, of robot ac-
tivities. The problem for our robot, and the focus of much
of our research, is to learn enough about its activities and
the objects in its environment to support planning and nat-
ural language dialog with humans [3, 15, 14, 13, 19, 22].
This paper describes an essential early step in the robot's
conceptual development: Clustering episodes by their dy-
namics. Once the robot has identi�ed clusters | once it
knows that these episodes are similar and those are not |
it can search for explanations, in particular, it can look for
attributes of episodes that predict cluster membership.

It will be apparent from the previous example that we
take the challenge of autonomy very seriously, but our robots
will not learn much just by sitting in the lab with their power
on. Some shaping is necessary, in the design of the robots'
perceptual systems, in their activities, in the provision of
algorithms | like the one we discuss here | for analyzing
perceptual data. The \minimalist challenge" then is to show
how little help an agent needs to learn about its world. Full
autonomy clearly does not imply tabula rasa systems, but
it does mean systems that learn primarily from interactions
they have in their environments without supervision (i.e.,
without an omniscient teacher, oracle or critic). This pa-
per describes one piece of the challenge, learning to group
together similar activities.

More speci�cally, we let robots use a Bayesian algo-
rithm for clustering episodes described by propositions pro-
duced by their perceptual system. In this work, dynamics
are captured in �rst-order Markov chains (see [19, 14] for
other approaches) and the clustering algorithms puts to-
gether episodes that are likely to be generated by the same
process. The result is a partition of robots episodes into
clusters describing di�erent activities. Although a Markov
chain is a very simple descriptions of a dynamic process, the
algorithm, called Bayesian Clustering by Dynamics (bcd),
has been applied successfully to cluster robot experiences
based on sensory inputs [23, 25], simulated war games [24],
as well as the behavior of stocks in market and the fugues
of Bach. An intuitive explanation of the success of the al-
gorithm is that describing a dynamic process as a Markov
chain can be enough to capture the common dynamics of dif-
ferent robots episodes or, more generally, time series without
need to resort to complex models as, for example, Hidden
Markov models. Furthermore, an important novelty of the



bcd algorithm is its heuristic search that makes it very e�-
cient.

After describing the algorithm, we will present the re-
sults of experiments with robots. We conclude this paper
with a comparison of the bcd algorithm to other cluster-
ing techniques that capture other characteristics of dynamic
processes.

2 Bayesian Clustering by Dynamics

The bcd algorithm is easily sketched: Given time series of
tokens that represent states, construct a transition probabil-
ity table for each series, then measure the similarity between
each pair of tables to decide which tables try to cluster �rst,
and �nally group similar tables into clusters if their grouping
increases a scoring metric. The clusters found by the bcd
algorithm have the interesting property that they comprise
a clustering with maximum posterior probability.

2.1 Estimating Markov Chains

Suppose we observe a time series S =
(x0; x1; x2; :::; xi�1; xi; ::), where each xi is one of the
states 1; :::; s of a variable X. In the current work, xi
is a set of propositions generated by the robot's per-
ceptual system at time i, such as ((MOVING-FORWARD R)

(IS-RED A)). The process generating the sequence S is
a (�rst order) Markov chain if the conditional probabil-
ity that the variable X visits state j at time t, given
the sequence (x0; x1; x2; :::; xt�1), is only a function of
the state visited at time t � 1, [21]. Hence, we write
p(Xt = jj(x0; x1; x2; :::; xt�1)) = p(Xt = jjxt�1), where Xt

denotes the variable X at time t.
Markov chains can be represented as a probability dis-

tribution over the possible initial states of the chain and
a table P = (pij) of transition probabilities, where pij =
p(Xt = jjXt�1 = i) is the probability of visiting state j
given the current state i, so that

P =

Xt

Xt�1 1 2 � � � s
1 p11 p12 � � � p1s
2 p21 p22 � � � p2s
... � � �

s ps1 ps2 � � � pss

Given a time series generated from a Markov chain, we might
estimate the probabilities of state transitions Xt = jjXt�1 =
i from the data as pij = nij=ni, where ni =

P
j
nij and nij

is the frequency of the transitions Xt = jjXt�1 = i observed
in the time series. Instead we prefer a Bayesian estimate in
which prior information about transition probabilities can
be taken into account. The derivation of this estimate is
given in [23], here we simply give the result: The probability
p̂ij is estimated as

p̂ij =
�ij + nij

�i + ni

(1)

where �i =
P

j
�ij and the so called prior hyper-parameter

�ij can be thought of as the prior frequency of the transition
Xt = jjXt�1 = i, thus encoding prior knowledge about
the process. This estimate is a posterior probability in the
sense of being estimated from prior information �ij about

the transition Xt = jjXt�1 = i and the observed frequency
nij of the transition. Thus, �i and ni are the numbers of
times the variable X visits state i in a process consisting of
� and n transitions, respectively.

2.2 Clustering

The story so far has the robot engaging with its environment
in episodes of a few seconds duration. Each episode is a
time series Si of sets of propositions, and each time series is
transformed into a Markov chain as described above. Now,
given the set of Markov chains, the bcd algorithm is ready
to cluster the series in the set S = (Sk). Clustering can
be simply a matter of grouping objects together so that the
average similarity of a pair of objects is high when they are
in the same group and low when they are in di�erent groups.
Numerous clustering algorithms have been developed along
this principle (see [6] for a survey).

The bcd algorithm is agglomerative, which means that,
initially, there is one cluster for each Markov chain, then
pairs of Markov chains are merged, iteratively. Merging two
Markov chains yields another Markov chain until a stopping
criterion is met. The bcd algorithm does not use a measure
of similarity between Markov chains to decide if two Markov
chains need to belong to the same cluster but it uses a di�er-
ent principle: Both the decision of whether grouping Markov
chains and the stopping criterion in bcd are based on the
posterior probability of the clustering, that is, the probabil-
ity of the clustering conditional on the data observed. In
other words, two Markov chains are merged in the same
cluster if this operation increases the posterior probability
of the clustering and the algorithm stops when the poste-
rior probability of the clustering is maximum. If, as we do,
the prior probabilities of the clusterings are assumed equal,
then their posterior probabilities become proportional to a
quantity called marginal likelihood.

In fact, bcd performs a hill-climbing search through the
space of clusterings, so it yields a locally-maximummarginal
likelihood clustering. A more precise term than \clustering"
is \partition": A partition is a division of a set into mutu-
ally exclusive and exhaustive subsets. bcd's task is to �nd
a maximum marginal likelihood partition of Markov chains.
Said in yet another way, bcd solves a Bayesian model selec-
tion problem, where the model it seeks is the most probable
partition of Markov chains given the data.

To solve the problem, bcd must know which Markov
chains and clusters to agglomerate | it must know how to
iteratively construct a partition | and it must be able to
estimate the probability of the partition. We deal with these
in turn.

The number of possible partitions grows exponentially
with the number of Markov chains, so bcd cannot evalu-
ate them all in its search for the most probable partition
given the data. A heuristic method is required to make
the search feasible. A good heuristic is merge or agglomer-
ate similar Markov chains. What makes two Markov chains
similar? Recall that each row of a transition probability
table corresponds to a probability distribution over states
at time t given a state at time t � 1. Let P1 and P2 be
tables of transition probabilities of two Markov chains. Be-
cause each table is a collection of s row conditional probabil-
ity distributions, rows with the same index are probability
distributions conditional on the same event. The measure
of similarity that bcd uses is therefore an average of the
Kullback-Liebler distances between row conditional distri-
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butions. Let p1ij and p2ij be the probabilities of the tran-
sition Xt = jjXt�1 = i in P1 and P2. The Kulback-Liebler
distance of the two probability distributions in row i is
D(p1i; p2i) =

Ps

j=1
p1ij log(p1ij=p2ij). The average distance

between P1 and P2 is then D(P1; P2) =
P

i
D(p1i; p2i)=s.

Iteratively, bcd computes the set of pairwise distances
between the transition probability tables, sorts the gener-
ated distances, merges the two closest Markov chains and
evaluates the result. Note that the similarity measure is
just used as a heuristic guide for the search process rather
than a grouping criterion. The evaluation asks whether the
resulting modelMc, in which two Markov chains are merged
and replaced by the resulting Markov chain, is more prob-
able than the model Ms in which these Markov chains are
di�erent, given the data S. If the probability p(McjS) is
larger than p(MsjS), bcd updates the set of Markov chains
by replacing the two Markov chains with the cluster result-
ing from their merging. Then, bcd updates the set of or-
dered distances by removing all the ordered pairs involv-
ing the merged Markov chains, and by adding the distances
between the new Markov chain and the remaining Markov
chains in the set. The procedure repeats on the new set of
Markov chains. If the probability p(McjS) is not larger than
p(MsjS), bcd tries to merge the second best, the third best,
and so on, until the set of pairs is empty and, in this case,
returns the most probable partition found so far. The ra-
tionale of this search is that merging similar Markov chains
�rst should result in better models and increase the posterior
probability sooner. Empirical evaluations of the methods in
simulated data appear to support this intuition [17].

Now we will describe how bcd calculates the probability
of a partition given the data, p(McjS). Formally, this is done
by regarding a partition as a hidden discrete variable C,
where each state of C represents a cluster of Markov chains.
The number c of states of C is unknown, but the number
m of available Markov chains imposes an upper bound, as
c � m. Each partition identi�es a model Mc, and we denote
by p(Mc) its prior probability. By Bayes' Theorem, the
posterior probability of Mc, given the sample S, is

p(McjS) =
p(Mc)p(SjMc)

p(S)
�

The quantity p(S) is the marginal probability of the data.
Since we are comparing all the models over the same
data, p(S) is constant and, for the purpose of maximizing
p(McjS), it is su�cient to consider p(Mc)p(SjMc). Further-
more, if all models are a priori equally likely, the comparison
can be based on the marginal likelihood p(SjMc), which is a
measure of how likely the data are if the model Mc is true.

The quantity p(SjMc) can be computed from the
marginal distribution (pk) of the variable C and the con-
ditional distributions (pkij) of XtjXt�1 = i; Ck | where Ck

represents the cluster membership of the transition matrix
of XtjXt�1 | using a well-known Bayesian method with
conjugate Dirichlet priors [4, 23]. Let nkij be the observed
frequencies of transitions Xt = jjXt�1 = i in cluster Ck,
and let nki =

P
j
nkij be the number of transitions observed

from state i in cluster Ck. We de�ne mk to be the number
of time series that are merged into cluster Ck. The observed
frequencies (nkij) and (mk) are the data required to learn
the probabilities (pkij) and (pk) respectively and, together
with the prior hyper-parameters �kij , they are all that is
needed to compute the probability p(SjMc), which is the
product of two components: f(S; C) and f(S;Xt�1; Xt; C).

Figure 1: The Pioneer 1 robot.

Intuitively, the �rst quantity is the likelihood of the data, if
we assume that we can partition the m Markov chains into
c clusters, and it is computed as

f(S;C) =
�(�)

�(�+m)

cY

k=1

�(�k +mk)

�(�k)
�

The second quantity measures the likelihood of the data
when, conditional on having c clusters, we uniquely assign
each time series to a particular cluster. This quantity is
given by

f(S;Xt�1; Xt; C) =

cY

k=1

sY

i=1

�(�ki)

�(�ki + nki)

sY

j=1

�(�kij + nkij)

�(�kij)

where �(�) denotes the Gamma function. Once created, the
transition probability matrix of a cluster Ck | obtained
by merging mk time series | can be estimated as p̂kij =
(�kij + nkij)=(�ki + nki).

We conclude this section by suggesting a choice of the
hyper-parameters �kij . We use uniform prior probabili-
ties for all the transition considered at the beginning of the
search process. The initial m� s� s hyper-parameters �kij

are set equal to �=(ms2) and, when two Markov chains are
similar and the corresponding observed frequencies of tran-
sitions are merged, their hyper-parameters are summed up.
Thus, the hyper-parameters of a cluster corresponding to the
merging of mk initial Markov chains will be mk�=(ms2). In
this way, the speci�cation of the prior hyper-parameters re-
quires only the prior global precision �, which measures the
con�dence in the prior model. An analogous procedure can
be applied to the hyper-parameters �k associated with the
prior estimates of pk. We note that, since �(x) is de�ned
only for values greater than zero, the hyper-parameters �kij

must be non-negative.
Empirical evaluations have shown that the magnitude of

the � value has the e�ect of zooming out di�erences be-
tween dynamics of di�erent time series, so that, increasing
the value of � yields an increasing number of clusters.

3 Clustering Robot Experiences

The robot in these experiments is a Pioneer 1 platform,
depicted in Figure 1 with two independent drive wheels,
a two degree-of-freedom paddle gripper, and several sen-
sors. Visual sensors are provided by the Newton Labs Fast
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RECEDE X Y APPROACH X Y

MOVING-BACKWARD R MOVING-FORWARD R

STOP R FRONT-OF X Y BEHIND X Y

LEFT-OF X Y RIGHT-OF X Y

IS-RED X IS-ORANGE X

Table 1: Example of primitive propositions describing the
state of the world

Track vision system, which tracks colored regions and re-
turns their location and size on the image plane. The robot
also has seven sonars, shaft encoders for odometry on the
drive wheels, and a bump sensor and IR sensors on the grip-
per. All told, the robot generates roughly 40 time series of
real-valued data, sampled at 10Hz.

The question arises, should we try to cluster robot
episodes by grouping together these multivariate sensory se-
ries, or should we �rst pass the sensor data to a perceptual
system and cluster the perceptual experiences? We have
done both. An earlier version of the bcd algorithm was
tested with sensory data [25], and other algorithms for sen-
sory data, based on dynamic time warping and delay coor-
dinate embedding, have also been successful [14, 22, 19, 20].
In this work, we cluster time series of tokens returned by
the perceptual system. One reason is that we overload the
clustering algorithm when we force it to both resolve the
ambiguity in sensory data and �nd similarities in time se-
ries.

The robot's perceptual system is a work in progress, but
for our most recent experiments, it could describe the state
of the world with up to 47 propositions at any instant. One
example is given in Table 1 in which these propositions are
obtained by binding objects in the robot's environment to
the variables X and Y . Note that R is not a variable, it
always denotes the robot.

Because up to 47 propositions may characterize the state
of the world for the robot at each instant, the state space
for the robot may be represented as a bit string of length
47. Each unique bit string represents a unique combina-
tion of propositions; for example, LEFT-OF A B, IS-RED A,

IS-ORANGE B is one such string, in which three bits | corre-
sponding to these propositions | have the value 1 and the
rest have value 0. Although the state space for the robot is
enormous, 247, in practice it encounters only a few of these
states, and in this experiment encountered only 40. For ex-
ample, in the �rst ten steps of an episode, one sees six unique
states, described in Table 2.

Because the robot encountered only 40 unique states,
bcd can represent each episode as a transition probability
table of size 40� 40. Notice that some states are physically
impossible; for example, in the �fth state in Table 2, the
robot is apparently receding from an object and stopped.
The perceptual system is imperfect and has no \common
sense" about the world, so it not infrequently constructs
impossible state descriptions.

Episodes in the experiment were \set pieces" in which
the robot executed a simple program in an environment
controlled by us, such as moving forward past one object
and bumping into another. Each episode lasted between
two and eight seconds. Three replications, with di�erent

starting locations for the robot and objects in its environ-
ment, were run for each of the scenarios described in Table
3. Of course, the robot cannot group and di�erentiate these
episodes based on what we call them, it must do so based
on its perceptions during the episodes. bcd produced a par-
tition of six clusters for these episodes that are displayed in
Table 4. The numbers in parentheses refer to the replications
of episodes; for instance, the �rst cluster contains all three
replicates of PUSH-C and APPROACH-C, whereas the second
cluster contains one of the three replicates of PASS-RIGHT-C.
Clusters 3 and 4 each contain the replicates of just a single
activity, whereas Clusters 5 and 6 contain several activities.

How should we evaluate this partition? Let us note, �rst,
that it was produced by a single run of bcd, with no e�ort
to tune the � parameter, or clean up the perceptual data, or
to \help" bcd in any way. bcd did not produce 14 clusters
(corresponding to the 14 scenarios in Table 3), each con-
taining the three replicates of a single activity, but instead
grouped some activities together. For example, Cluster 4
contains four activities in which the robot moved toward ob-
ject A. Sometimes it stopped short of the object, sometimes
it passed the object (on the left or right), and sometimes it
pushed the object. It is not surprising, nor particularly dis-
appointing, that bcd grouped these activities together, as
they have similar dynamics: they all begin with approaching
the object.

The disappointment is that bcd included
PASS-LEFT-C-THEN-PASS-RIGHT-A (2 3) in Cluster
5, where they clearly do not belong. The story for Cluster 6
is similar: Three of the activities (and nine of the episodes)
involve passing A on the left and then interacting with C,
but one episode, PASS-LEFT-C-THEN-PASS-RIGHT-A (1)

doesn't belong. The case can be made that the remaining
two episodes, PASS-RIGHT-C (1 2), have similar dynamics
to the latter phase of PASS-LEFT-A-THEN-PASS-RIGHT-C

(1 2 3), so grouping them in Cluster 6 is not incorrect.
As to Cluster 1, pushing C involves �rst approaching it,
so grouping these activities together makes sense. Lastly,
Cluster 2 is \pure" but for the inclusion of PASS-RIGHT-C
(1). In sum, we would have been happier had the activities
in Clusters 5 and 6 not been grouped together, and we
have identi�ed four episodes (out of 42) that clearly do not
belong in the clusters to which they were assigned, but on
the whole, the partition above is satisfactory.

In a followup analysis, we ablated the state descriptions
and re-ran bcd, to see how much the partition depended on
particular propositions in the state descriptions. For exam-

((STOP R) (IS-RED A))

((STOP R) (IS-RED A))

((APPROACH A R) (STOP R) (IS-RED A))

((STOP R) (IS-RED A))

((RECEDE A R) (STOP R) (IS-RED A))

((IS-RED A))

((MOVING-FORWARD R) (IS-RED A))

((MOVING-FORWARD R) (IS-RED A))

((MOVING-FORWARD R) (IS-RED A))

((MOVING-FORWARD R) (IS-RED A))

Table 2: An example of propositions returned by the per-
ceptual system of the robot.
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APPROACH-A APPROACH-C

PASS-RIGHT-A PASS-RIGHT-C

PASS-RIGHT-A-THEN-PUSH-C

PASS-RIGHT-C-THEN-PASS-RIGHT-A

PASS-LEFT-A PASS-LEFT-C

PASS-LEFT-A-THEN-PUSH-C

PASS-LEFT-A-THEN-PASS-LEFT-C

PASS-LEFT-A-THEN-PASS-RIGHT-C

PASS-LEFT-C-THEN-PASS-RIGHT-A

PUSH-A PUSH-C

Table 3: Scenarios used in the experiment.

ple, we removed the propositions IS-RED X and IS-ORANGE

X and re-wrote the a�ected state descriptions (so the state
((APPROACH R A)(IS-RED A)) becomes (APPROACH R A)).
Similarly, we removed the propositions MOVING-BACKWARD R

and MOVING-FORWARD R. In these analyses, bcd did not pro-
duce partitions of the episodes identical with the one above,
but many of the clusters' substructures were maintained.
For example, after removing propositions about color, bcd
grouped together the elements in Clusters 1 and 3, above. It
also formed a new cluster from PASS-RIGHT-C (1 2 3) and
PASS-LEFT-A (1 2 3) episodes, which seems odd, although
part of the explanation is that the robot identi�es objects A
and C by color, so with color terms gone, it confuses activi-
ties with objects A and C.

We have used bcd in other experiments with the robot,
with similar results | it groups together instances of activ-
ities, and groups activities that share components such as
approaching an object | and we have also used it to cluster
simulated engagements in a wargame simulator [24], as well
as time series of �nancial instruments, and Bach's fugues.
In all these cases, we have been pleased with the results,
but we recognize the need for more objective evaluation cri-
teria. Generally it is di�cult to say whether a partition of
episodes is correct: Even if a gold standard partition exists
for a given problem (and it doesn't in these experiments),
we would need a metric that accounts for partially matching
the gold standard. Had we a gold standard, we could use
an approach, due to Schmill [14], which is to consider all
possible pairs of episodes and ask whether the members of
the pair were put in the same cluster or di�erent clusters by
bcd and the same cluster or di�erent clusters by the gold
standard. A di�erent approach would be to assess whether
a partition leads to good or poor results when it is used for
some purpose, such as classi�cation or another predictive
task, using for example a decision theoretic approach or a
scoring system. As yet, we have not put the robot's clusters
to use in the life of the robot, but we shall.

4 Future and Related Work

We are currently implementing two extensions to bcd. First,
the bcd algorithm clusters univariate time series, but a mul-
tivariate version is in the works. Suppose one has a multi-
variate time series of k variable each of which takes, say, v
values. It's trivial to recode this series as one in which a sin-
gle variable takes vk values. The di�culty is computational:
the transition probability table for the univariate case will
have (vk)2 probabilities to estimate, and will tend to be very

Cluster 1 PUSH-C (1 2 3)

APPROACH-C (1 2 3)

Cluster 2 PASS-LEFT-C (1 2 3)

PASS-RIGHT-C (1)

Cluster 3 PASS-RIGHT-A-THEN-PUSH-C (1 2 3)

Cluster 4 PASS-RIGHT-C-THEN-PASS-RIGHT-A (1 2 3)

Cluster 5 APPROACH-A (1 2 3)

PASS-RIGHT-A (1 2 3)

PASS-LEFT-A (1 2 3)

PUSH-A (1 2 3)

PASS-LEFT-C-THEN-PASS-RIGHT-A (2 3)

Cluster 6 PASS-LEFT-C-THEN-PASS-RIGHT-A (1)

PASS-RIGHT-C (2 3)

PASS-LEFT-A-THEN-PUSH-C (1 2 3)

PASS-LEFT-A-THEN-PASS-LEFT-C (1 2 3)

PASS-LEFT-A-THEN-PASS-RIGHT-C (1 2 3)

Table 4: Clusters produced by the bcd algorithm.

sparse unless the time series are quite long. In contrast, the
transition probability tables for the k variables in the multi-
variate case could be quite dense, yielding good probability
estimates, with shorter series. The second extension to bcd
addresses a limitation we have had to impose on the auton-
omy of the robot. bcd clusters episodes, but we have to
identify the episodes for the algorithm. Consequently, in-
stead of letting the robot roam around the lab continuously,
we have it execute one \set piece", then another, and call
these episodes. One way to give the robot back some of the
autonomy we stole from it would be to have the robot itself
label episode boundaries; for example, as the robot switched
from one plan to another it could ag the transition. Then
bcd could work as it does now, but the episodes would be
collected from continuous activity. The alternative we are
pursuing is for bcd to �nd episode boundaries for itself. The
intuition is simply that di�erent episodes have di�erent dy-
namics, so for every consecutive window of data bcd can
ask whether it has the same or di�erent dynamics than the
previous window. bcd learns new Markov chains when none
of its previous Markov chains explain a window of data well.

At �rst glance it may appear that bcd and Hidden
Markov Models are similar technologies, and indeed we
have used Hidden Markov Models for some robot learning
tasks [5], but they are quite di�erent. An Hidden Markov
Model is a state machine with transition probabilities be-
tween states and each state has a probability distribution
over the tokens it emits [16]. Hidden Markov Models are
trained with time series (univariate or multivariate, contin-
uous or categorical), which means the probability distribu-
tions within states and the transition probabilities between
states are estimated. One must specify the number of states
in advance although the algorithm in [5] dynamically splits
Hidden Markov Model states in accordance with a mini-
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mum description length principle. Might one use Hidden
Markov Model technology to �nd maximum likelihood par-
titions of time series, as bcd does? This problem would
have to be transformed into one of �nding the probabilities
of emitting tokens and transition probabilities in a model of
a speci�c number of states. An obvious choice would be to
�t one Hidden Markov Model with n states to each episode
with n unique states, then cluster the Hidden Markov Mod-
els, but it is unclear what advantage this holds over our
current method of estimating Markov chains and clustering
them. Another idea is to have each state represent a cluster
of Markov chains. The di�culty is that, within an Hidden
Markov Model state, one can only model the marginal prob-
abilities of tokens, not the conditional probability of a token
given the previous token. These conditional probabilities are
modeled as state transition probabilities in Hidden Markov
Models, which means that an episode must be modeled as
a sequence of Hidden Markov Model states, not as a single
state.

The Bayesian modeling-based approach used in bcd is
similar to that used, for example, by Raftery [1, 7] to clus-
ter static data. Recent work [18, 26] attempted to extend the
idea to dynamic processes without, however, succeeding in
�nding a closed form solution as the one we have identi�ed.
For example, Ridgway [18] proposed using Markov Chain
Monte Carlo methods, notorious for their slowness. Fur-
thermore, an important novelty of our method is its heuris-
tic search that makes the algorithm feasible. Methodology
aside, bcd is similar in some respects to other algorithms
for clustering time series developed in our lab. To assess the
dissimilarity of a pair of multivariate, real-valued time se-
ries, Oates applies dynamic time warping to force one series
to �t the other as well as possible; the residual lack of �t is
a measure of dissimilarity, and with this, Oates can cluster
episodes [14]. Rosenstein solves the problem by �rst de-
tecting events in time series, then measuring the root mean
squared di�erence between values in two series in a win-
dow around an event [19, 20]. It is worth noting that these
methods and bcd handle time very di�erently. In Rosen-
stein's method, two time series are compared moment by
moment for a �xed interval. In Oates's approach, one se-
ries is stretched and compressed within intervals to make it
�t the other as well as possible. The former method keeps
time rigid, the latter makes time elastic. If the duration of
a sequence within a series is important to the identity of
the series | if clustering should respect durations | the
former method is probably preferrable to the latter. bcd

is even more extreme because it transforms a time series,
in which durations might be important, into a table of state
transitions, which is inherently atemporal. For instance, one
cannot tell by looking at a transition table whether a tran-
sition Xt = jjXt�1 = i occurred before or after a transition
Xt0 = jjXt0�1 = i. We are beginning a study of the relative
strengths and weaknesses of these methods on several kinds
of time series.

5 Conclusion

Our goal is for robots to learn conceptual systems su�-
cient for natural language and planning, without supervi-
sion. By conceptual systems, we mean organizations of
concepts that denote activities and objects in the robots'
world; and knowledge about how activities unfold, and the
roles that objects play in activities. With Lako� and oth-

ers [11, 10, 12, 9, 27, 8, 28, 2] we assert that the �rst step
in building a conceptual system is to say some things are
alike and others are di�erent, based on how we interact
with them, and to organize similar things into classes or
clusters. bcd organizes the robot's activities into clusters.
It searches heuristically for the organization having maxi-
mum probability, conditional on the data. The next step,
currently underway, is to organize the objects in the robot's
environment into clusters based on their roles in activities.
Once we have clusters of activities and objects, we will ap-
ply standard classi�cation algorithms such as c4.5 to �nd
the attributes of activities and objects that predict cluster
membership.
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