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Does Prior Knowledge Facilitate the Development of

Knowledge-based Systems?

Tracking Number: A261

Abstract
One factor that affects the rate of knowledge base
construction is the availability and reuse of prior knowledge
in ontologies and domain-specific knowledge bases.  This
paper reports an empirical study of reuse performed in the
first year of the High Performance Knowledge Bases
(HPKB) initiative.  The study shows that some kinds of
prior knowledge help more than others, and that several
factors affect how much use is made of the knowledge.

Introduction

One hypothesis of recent knowledge sharing efforts has
been that significant productivity gains can be realized by
reusing prior knowledge in ontologies and domain-specific
knowledge bases (Patil et al. 1992).  Until now, there have
been no systematic studies of knowledge reuse.  This paper
reports an empirical study performed in the first year of the
High Performance Knowledge Bases (HPKB) initiative
sponsored by the Defense Advanced Research Projects
Agency (Cohen et al., 1998)1.  By comparing the efforts of
two HPKB groups under different conditions, we find that
prior knowledge in the form of ontologies does help,
though many factors affect how much it helps.  This work
also introduces metrics and methods for evaluating the
contribution of prior knowledge to knowledge-based
systems.

By prior knowledge we mean the knowledge one has
available in an ontology or knowledge base prior to
developing a knowledge-based system.  Several large
ontologies have been developed including Cyc
(Lenat,1995), Sensus (Knight, 1994), Ontolingua
(Farquhar, 1996). All these systems contain hierarchies of
knowledge.  At the upper levels, one finds knowledge that
is general to many applications, such as knowledge about
movement, animate agents, space, causality, mental states,
and so on.  The lower levels contain knowledge specific to
domains; for example, rules for inferring the effects of
tactical military operations. Bridging general and specific
knowledge, one finds middle-level knowledge (Lenat and
Guha, 1990); collections of terms and axioms about
phenomena such as human physiology, more general than a
particular medical expert system but less general than, say,
knowledge about physical systems. In addition to

                                    
1See http://www.teknowledge.com/HPKB for a collection of
documents about HPKB including the Challenge Problem
specifications.

hierarchies of terms, all the ontologies cited above contain
axioms or rules, for instance, “if x is an educational
institution then x pays no taxes”; and inference methods
such as resolution or more specialized forms of theorem-
proving.  Axioms and rules confer a functional kind of
meaning on the terms they contain, that is, the meaning of
a term is the things one can legitimately say (infer) about it.

One claim of ontologists is that it is easier to build a
domain-specific knowledge base KB inside an ontology O,
or informed by O, than without O.  Some of the ways that
O can help are illustrated in Figure 1.  First, a term p that
you wish to add to KB might already exist in O, saving
you the trouble of adding it.  Second, axioms or rules
relating to p might already exist in O, saving you the
trouble of thinking them up and encoding them.  Third,
within O, p might be a subclass of v, so you also have the
benefit of axioms about v inherited through p.

Now suppose you want to add a concept p’ to KB, and p’
is not exactly p, but is similar in some respects.  For
instance, p might be part of a microtheory about
economics, and p’ might belong to a microtheory  about
fluid flows, but both p and p’ represent the concept
“source.”  More generally, suppose the structure of the
theory of economics in O parallels the structure of the
theory of fluids that you are trying to build in KB.  Thus, a
fourth way that O can help you to build KB is to help you
structure the theory in KB.  Designing the structure of
microtheories is very time consuming, so this kind of help
may be the most important of all.

Figure 1. Some ways an ontology O can help one build a
knowledge base KB.

Unfortunately it is difficult to assess experimentally how
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structure, so we focus here on the first three ways that O
can help one build KB.

A Metric

Suppose one wishes to add an axiom, “If x is a state then x
maintains an army,” to KB.  This axiom contains three
terms, nation, maintains, and army.  Suppose the first two
terms already exist in O but army does not.  As two thirds
of the terms required to add the axiom to KB exist in O, we
say the support provided by O in this case is 2/3.  In
general, every item i one wishes to add to KB contains n(i)
terms, k(i) of which are already in O,  and support is
s(i)=k(i)/n(i). Of course, adding army to O changes O, and
the support offered by O for future axioms might be higher
because army was added.  Therefore, support is indexed
by versions of the ontology: s(i,j)=k(i,j)/n(i) is the support
provided by version Oj of the ontology for concept i.

Experiment Design

We evaluated the support provided by ontologies during a
month-long process called the Crisis Management
Challenge Problem (CMCP).  The CMCP was designed by
a team led by IET, Inc. and PSR Corp. Two integrated
knowledge-based systems were developed to answer
questions about international crises, such as, “What will the
US response be if Iran closes the Strait of Hormuz?”
(Cohen et al., 1998).  The systems were developed by
teams led by Teknowledge and SAIC.  The CMCP had
several phases:

1. Some months before any testing began, a crisis scenario
was released.  The scenario bounded the domain and
thus the scope of the problems to be solved by the
Teknowledge and SAIC systems.

2 .  Several weeks before testing, a batch of sample
questions (SQs) was released.

3. On the first day of the evaluation, a batch of 110 test
questions, TQA, was released, and the Teknowledge
and SAIC systems were immediately tested.  After
four days for improvements, the systems were re-
tested on TQA.

4. Batch TQB was released at the time of the retest.  The
purpose of TQB, which contained questions similar to
those in TQA, was to check the generality of the
improvements made to the systems.

5. After a brief respite, a change was made to the crisis
scenario, increasing the scope of the problems that the
Teknowledge and SAIC systems would have to solve.
Several days were allowed for knowledge entry prior
to the release of a new batch of questions, TQC,
reflecting the new scope. The systems were tested
immediately.

6. Four days were allowed to extend the systems to the new
crisis scenario, then the systems were re-tested on
TQC.  To check the generality of these extensions, the
systems were also tested on batch TQD, which was

similar to TQC.

One of the methodological innovations of this experiment
was to generate all the batches of questions from a question
grammar – a set of parameterized questions, or PQs –
which had been made available to the participants in the
experiment several months before testing began.  Batches
SQ, TQA and TQB were generated by one grammar.  The
grammar was extended to reflect the change in the crisis
scenario and used to generate batches TQC and TQD.
Figure 2 shows one of the parameterized questions (PQ53)
from the grammar.  Many billions of questions could be
generated by the question grammar, so it would not have
made sense to develop systems to solve particular
questions; however, by getting the PQs early, the system
developers could limit the scope of their systems to the
subjects mentioned in the PQs (e.g., terrorist attacks,
EconomicSector, etc.)
_______________________________________________
PQ53 [During/After <TimeInterval>,] what {risks, rewards}
would <InternationalAgent> face in <InternationalActionType>?

<InternationalActionType> =
{[exposure of its] {supporting,
sponsoring} <InternationalAgentType in
<InternationalAgent2>, successful terrorist attacks
against <InternationalAgent2>'s <EconomicSector>,
<InternationalActionType>, taking hostage citizens of
<InternationalAgent2>, attacking targets
<SpatialRelationship> <InternationalAgent2> with
<Force>}

<InternationalAgentType> =
{terrorist group, dissident group, political party,
humanitarian organization}

Figure 3.  A parameterized question suitable for
generating sample questions and test questions.
_______________________________________________

In the following section we analyze how prior ontology –
what was available before SQs, TQA and TQC were
released – supported the development of the Teknowledge
and SAIC systems.  The former system was based on Cyc,
and much of its development was done at Cycorp, so we
call it Cyc/Tek here.  The SAIC system was a collection of
component systems, none of which answered all the
questions in any test batch.  The one we analyze here,
developed by SRI International, answered roughly 40 of
the 110 questions in each batch; we lack data for the other
components of the SAIC system.  To compare the Cyc/Tek
and SRI systems properly we will report two sets of results
for Cyc/Tek, one for all the test questions and another for
the subset of questions answered by the SRI system.

The Cyc/Tek and SRI systems also differed in the prior
ontologies available to them.  Long before testing began,
Cycorp, the developers of Cyc, released their upper
ontology (UO), which contains very general class names;
subclass relationships; instance-type relationships; relation



names and their argument types; function names, their
argument types, and the types of value they return; as well
as English documentation of every class, function and
relation; and a mapping to terms in the Sensus ontology
developed by ISI.  Whereas the SRI team had access to the
UO, only, Cyc/Tek had access to all of Cyc.

Results

The performance of the Teknowledge and SAIC integrated
systems is analyzed thoroughly in (Cohen et al., 1998).
Performance is not the focus of this paper – support
provided by ontologies is – but two performance results set
some context for the following discussion of support and
reuse:  Both systems performed better on the sample
questions (SQs) than on TQA, and both performed better
when re-tested on TQA and TQC than on the original tests
performed four days earlier.  In the four days between test
and retest, significant improvements were made to the
systems.  The question is, how much did the prior
ontologies help in making these improvements?

We present results for two kinds of knowledge
development.  One is the development of knowledge
sufficient to encode in a formal language the test questions
in each batch, the other is the development of knowledge to
answer the test questions.  Results for the former are
summarized in Table 1.  The columns of the table represent
the SRI system, which was tested on roughly 40 questions
in each batch of 110; the Cyc/Tek system tested on the
same questions as the SRI system; and the Cyc/Tek system
tested on all 110 questions in each batch.  Three numbers
are reported for each system:  n is the number of terms
needed to encode all the questions attempted (i.e., roughly
40 or 110); k is the number of terms available in a prior
ontology; and s is the ratio of k to n.  The rows of Table 1
represent the batches of questions and the help provided by
different prior ontologies.  For example, the notation SQ |
UO means “the help provided by the upper ontology (UO)
in encoding the sample questions (SQ).”  One can see in
this row that SRI needed 104 terms to encode roughly 40
of the sample questions, and 22 of these terms were found
in the UO, so the help provided by the UO is 22/104 =.21.
Encoding the questions in SQ required a number of terms
to be added to the ontologies, and these terms were
available to help encode questions in TQA and TQC.  The
notation TQA | UO denotes the help provided by the UO
only, whereas TQA | SQ denotes the help provided by
everything encoded up through SQ.  Similarly, TQC | TQA
denotes the help provided in encoding the questions in
TQC by the terms in the ontology including those defined
for SQ and TQA.  For the Cyc/Tek system, our data
support only a simpler distinction, between UO terms and
non-UO terms, the latter category including the entire Cyc
ontology and all terms defined while encoding the test
questions.  The category of non-UO terms is reported in
rows labeled “Cyc” in Table 1.  For instance, 418 terms
were required by Cyc/Tek to encode the 110 questions in

TQA, 402 of them were available in Cyc, including some
defined when the sample questions SQ were added.  Note
that SRI used only the public release of the upper ontology,
so all rows in which questions were encoded with the help
of Cyc are marked n/a for SRI.

SRI Cyc/Tek(40) Cyc/Tek(110)
n k s n k s n k s

SQ | UO 104 22 .2 201 75 .3 377 126 .3

SQ | Cyc n/ n/ n/ 201 153 .7 377 280 .7

TQA | UO 104 20 .1 168 67 .4 418 126 .3

TQA | SQ 104 81 .7 n/ n/ n/ n/ n/a n/

TQA | Cyc n/ n/ n/ 168 168 1. 418 402 .9

TQC | UO 106 16 .1 277 81 .2 402 131 .3

TQC | TQ 106 82 .7 n/ n/ n/ n/ n/a n/

TQC | Cyc n/ n/ n/ 277 270 .9 402 395 .9

Table 1.  Support (s) provided by ontologies for the development
of problem solving systems to answer batches of test questions.

The six reuse rates from Table 1, are presented graphically
in Figure 4.  Reuse from the UO on all test question
batches clusters in the lower half of the graph.  The highest
levels of reuse from the UO are achieved by Cyc/Tek on
the roughly 40 test questions encoded by SRI.  The upper
half of the graph represents reuse from the UO and all of
Cyc in the Cyc/Tek conditions; and reuse of terms defined
for earlier test question batches, in the SRI condition.

Figure 4.  Support rates for SRI and Cyc/Tek.  Lines denoted
“UO” represent reuse of terms from the upper ontology.  SRI-SQ
denotes SRI’s reuse of terms from the UO and the SQ-encoding
effort; SRI-SQ&TA adds in terms defined during the TA-
encoding effort.  Cyc/Tek(40)-all and Cyc/Tek(110)-all denote
reuse of terms from all of Cyc.

Cyc/Tek had higher support numbers in all conditions than
SRI, meaning they found more terms in their prior
ontologies than SRI did.  However, we have broken the
data into support provided to Cyc/Tek by all of Cyc vs.
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support provided by just the upper ontology, which SRI
had.  For example, the first row of Table 1 shows that to
encode roughly 40 sample questions, SRI required 104
terms of which it found 22 in the UO; whereas Cyc/Tek
required 201 terms to encode the same questions, and
found 75 in the UO.  Similarly, Cyc/Tek required 377
terms to encode all 110 sample questions, and found 126 in
the UO.

Cyc/Tek required more terms to encode test questions
(3.62 terms/question) than SRI (2.61 terms/question, and
got more support from prior ontologies. For example, for
Cyc/Tek to encode the roughly 40 questions in the TQA
batch that SRI encoded, they required 168 terms, all of
which existed in the Cyc ontology.

In one respect, the SRI and Cyc/Tek results are very
similar.  The reuse rate of terms not in the upper ontology –
terms in Cyc or terms developed for earlier batches of test
questions – was 60%-65% for both SRI and Cyc/Tek,
across question batches TQA and TQC.  This result is
shown in Table 2.  The columns in this table represent the
number of terms needed to encode a test batch, N; the
number found in the upper ontology, K(UO); the number
found elsewhere, K(other); and the ratios of K(UO) and
K(other) to N. That is, the support provided by terms in the
upper ontology is s(UO)=K(UO)/N, while the support
provided by other prior ontology is s(other)=K(other)/N.
Note that s(other) ranges from .59 to .68 for test batches
TQA and TQC.  In fact, the overall reuse of non-UO terms
for Cyc/Tek and SRI was .66 and .60, respectively;
whereas the overall reuse of UO terms for Cyc/Tek and
SRI was .32 and .17, respectively.  Thus, much of the
difference in reuse statistics between SRI and Cyc/Tek is
due to their exploitation of the upper ontology.  Said
differently, 22% of the terms SRI reused came from the
upper ontology while the figure was 33% for Cyc/Tek.

N K(UO) K(othe S(UO) S(other

SRI TQA 104 20 61 .19 .59

SRI TQC 106 16 66 .15 .62

Cyc/Tek TQA(40)168 67 101 .40 .6

Cyc/Tek TQC(40)277 81 189 .29 .68

Cyc/Tek TQA(11 418 126 276 .30 .66

Cyc/Tek TQA(11 402 131 264 .33 .66

Table 2 .  Support provided by terms in UO and terms from other
prior knowledge bases and ontologies.

In addition to encoding test questions, Cyc/Tek and SRI
developed knowledge to answer the questions.  This
knowledge, called axioms generically, is composed of
terms, so we can ask how prior ontologies helped the
development of axioms.  As before the relevant metric is
s(i,j)=k(i,j)/n(i), only here, n(i) denotes the number of
terms required to encode the ith axiom.

SRI provided data on how ontologies supported writing
axioms. The rows of Table 3 represent the phases of the

experiment and the source of prior ontology.  The first row,
SQ | UO shows that 1703 axioms were encoded to solve
the sample questions SQ, and these axioms required 461
terms, of which 51 were in the upper ontology, UO, for a
support value of 0.11.  The second row shows that in the
four days between the test and retest on batch TQA, 123
axioms were encoded, requiring 195 terms.  30 of these
terms were found in the UO.  The third row shows that 109
of the 195 terms were found in all the ontology developed
prior to the test on TQA, namely UO and  SQ.  A
comparison of the second and third rows shows that
109–30=79 reused terms came from SQ.  The same pattern
repeats in the two remaining phases of the experiment:
After the scenario modification but before TQC, 1485
axioms were added to the SRI system.  These required 583
terms of which 40 existed in the UO and 254 were found in
the UO, SQ, and TQA prior ontologies.  Similarly, between
the test and retest on TQC, 215 terms were required for 304
axioms; only 24 of these existed in the UO, and 100 more
were found in the ontologies developed after the UO.

It is unclear why prior ontologies provided significantly
less support for encoding axioms than for encoding test
questions.  In both cases the support came in the form of
terms, but why are the terms required to define axioms less
likely to be in a prior ontology than the terms needed for
test questions?  One possibility is that test questions
include fewer terms that represent individuals (e.g.,
#$HassiMessaoud-Refinery) than do axioms, so terms in
test questions are less specific and more likely to exist in a
prior ontology than terms in axioms.  We will be looking at
our data more closely to see whether this is the case.

SRI

Axiom n k s

SQ | UO 1703 461 51 .11

From TQA to TQA retest | UO123 195 30 .15

From TQA to TQA retest | SQ123 195 109 .56

From TQA retest to TQC | UO1485 583 40 .09

From TQA retest to TQC | TQA1485 583 254 .44

From TQC to TQC retest | UO304 215 24 .11

From TQC to TQC retest | TQC304 215 124 .58

Table 3:  SRI measured the number of terms required to add
problem-solving axioms to their system, and the reuse of terms
from the UO and subsequent ontology efforts.

Discussion

Does prior knowledge in ontologies and domain-specific
knowledge bases facilitate the development of knowledge-
based systems?  Our results suggest that the answer
depends on the kind of prior knowledge, who is using it,
and what it is used for. The HPKB upper ontology, 3000
very general concepts, was less useful than other
ontologies, including Cyc and ontologies developed
specifically for the crisis management domain. This said,



Cyc/Tek made more effective use of the upper ontology:
33% of the terms it reused came from there whereas 22%
of the terms SRI reused came from the upper ontology.
Why is this? One reason is probably that Cycorp developed
the upper ontology and was more familiar with it than SRI.
Knowledge engineers tend to define terms for themselves if
they cannot quickly find the terms in an available ontology.
Once this happens – once a term is defined anew instead of
reused – the knowledge base starts to diverge from the
available ontology, because the new definition will rarely
be identical with the prior one.  Another reason for
disparity in reuse of the upper ontology is that SRI
preferred their own definitions of concepts to the available
ones.

As to the uses of prior knowledge, our data hint at the
possibility that prior knowledge is less useful for encoding
axioms than it is for encoding test questions.

Whereas reuse of the upper ontology depends on who is
using it, other ontologies seem to account for a roughly
constant (60% – 66%) rate of reuse, irrespective of who
developed these ontologies.  For SRI, these ontologies
were just those developed for batches of questions SQ,
TQA, TQB, TQC and TQD.  To be concrete, the 60% of
the terms required for TQC were defined while encoding
SQ, TQA and TQB. The picture is a bit cloudier for
Cyc/Tek because they had the Cyc ontology throughout,
and we have not yet analyzed whether the 66% non-UO
reuse came from terms defined for previous batches or
from Cyc.

Despite this ambiguity we speculate that in the process of
building a domain-specific knowledge-based system, the
rate of reuse of terms defined earlier in the process is 60%-
70%.  Although the rate of reuse of terms from very
general ontologies may be significantly lower (e.g.,
15%–30%), the real advantage of these ontologies probably
comes from helping knowledge engineers organize their
knowledge bases along sound ontological lines.  It is
essential for the ontology community to collect data on this
use of general ontologies.

Conclusion

Although the idea of knowledge sharing has been in the
literature for many years (e.g., Patil et al. 1992), the current
paper presents the first empirical results quantifying
ontology reuse. Many questions remain.  Our data are
crude summaries of reuse of terms, they do not tell us
much about the work that knowledge engineers do when
they build domain-specific knowledge bases.  How long
will a knowledge engineer hunt for a relevant term or
axiom in a prior ontology?  How rapidly do knowledge
bases diverge from available ontologies if knowledge
engineers don’t find the terms they need in the ontologies?
By what process does a knowledge engineer reuse not an

individual term but a larger fragment of an ontology,
including axioms?  How does a very general ontology
inform the design of knowledge bases, and what factors
affect whether knowledge engineers take advantage of the
ontology? Why do prior ontologies apparently provide less
support for encoding axioms than for encoding test
questions? Finally, will the results we report here
generalize to domains other than crisis management and
research groups other than SRI and Cyc/Tek? We expect to
answer some of these questions retrospectively by
analyzing other data from the first year of the HPKB
program and prospectively by designing experiments for
the second year.
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