
The Colab Mixed-Initiative Analysis Enviroment

Clayton T. Morrison and Paul R. Cohen

Information Sciences Institute

University of Southern California

4676 Admiralty Way, Suite 1001

Marina del Rey, CA, 90292 U.S.A.

{clayton,cohen}@isi.edu

Abstract - COLAB is an analysis environment in

which multiple human analysts in different physical

locations can collaborate to build hypotheses of un-

folding scenarios. COLAB consists of two compo-

nents: an instrumented analysis working environ-

ment built on a blackboard system, and a web-based

user interface that integrates the Trellis hypothesis

authoring and management tool with a query lan-

guage. On the blackboard, analysts collect data and

perform analyses using relational database queries

and a set of analysis tools that include group identi-

fication and suspicion scoring algorithms. Evidence

extracted from data analysis on the blackboard may

then be incorporated in hierarchical argument struc-

tures in the Trellis tool, combining evidence sources

with user-supplied free text. Trellis arguments may

then be shared between analysts and collaboratively

authored. COLAB has been integrated with the Hats

Simulator challenge domain and serves as a proto-

type mixed-initiative information fusion system.

Keywords: Fusion architecture; application of fusion;

sensor management; tracking and surveillance; command,

control and operations research

1 Introduction

The COLAB Project brings together the Hats Simula-
tor, a collaborative intelligence analysis environment,
and a user interface to produce a prototype end-to-end
system for intelligence analysis. Hats has been oper-
ational for three years and has been used in several
studies, including providing data for part of the AFRL
EAGLE project and assessing algorithms for relational
data mining [1, 2]. The prototype intelligence analysis
environment [3] and interface are implemented. The
complete system has three intended applications:

1. A testbed for studying distributed intelligence
analysis and information fusion tools

2. An environment for training intelligence analysts

3. A configurable laboratory to test models of com-
mand and control organization structure in an in-
telligence analysis setting.

Consider the following scenario. Several human an-
alysts1 work together in the COLAB environment to
develop an interpretation of events in the Hats Simu-
lator world. Their goal is to identify and stop terrorist
agent activities in the simulator while trying to keep
their costs low. Obtaining information about the sim-
ulation is expensive and there are penalties for making
false arrests and failing to identify terrorist plots. By
design, each player has a different view of the informa-
tion in the simulated world and none has all the rele-
vant information. Each player has her own workspace
where she can store and process information that she
gathers from the simulator. The players collaborate
via a shared workspace where they can post hypotheses
and data they think is relevant to the larger analysis.
This shared space becomes the collective interpreta-
tion of the state of the simulator. By monitoring this
interpretation a player can identify trends, patterns,
and gaps in the corporate intelligence. She will also
develop trust (or mistrust) in her colleagues by noting
the quality of their analyses.

In the following sections, we present the components
of the COLAB system. We begin by very briefly de-
scribing the Hats Simulator. We then describe the
blackboard system that serves as the integration model
for the analysis working environment. We then turn
to the web-based interface to COLAB. The interface
incorporates the Trellis argument authoring tool as a
tool for hypothesis representation, and the query and
agent definition language for accessing and manipulat-
ing information on the blackboard.

2 The Hats Simulator

The Hats Simulator poses a set of information fusion
challenges that include integrating multi-source tem-
poral data to infer group membership and structure,
suspicion scoring, and plan inference. The Hats Simu-
lator (described in [1, 2]) models a “society in a box”
consisting of hundreds of thousands of simple agents,
referred to as hats. A few hats are known terrorists;
others are covert and must be identified and distin-
guished from the preponderance of benign hats. Before

1In the rest of this paper, we will use the terms “analyst”
and “user” interchangeably to refer to a human analyst using
the COLAB system.



a Hats game begins, the hats in the population are as-
signed to organizations, most of which are benign. All
hats belong to multiple organizations and neither the
organizations nor their members are known at the be-
ginning of a game. All hats are governed by plans
generated by a planner. Terrorist plans end in the
destruction of landmarks. The planner constructs an
elaborate “shell game” to transfer resources and skills
through a series of meetings, culminating in a final
meeting at a target. In this way the planner hides its
intentions.

The object of a game against the Hats simulator is
to minimize the sum of three costs. Through the Hats
Information Broker interface, the player pays for in-
formation about hats, and more accurate information
costs more. Players are also assessed costs for making
false arrests and not stopping terrorists before they at-
tack landmarks. At the end of a game, the player’s
score is the sum of these costs. In general, one cannot
reduce the costs of successful attacks without increas-
ing the costs of information and false arrests.

COLAB has been interfaced with the Hats Infor-
mation Broker. The interface defines a set of basic
information request types that may be initiated from
within COLAB and sent to the Hats Information Bro-
ker. The eight request types are: the hats (if any) at a
location, participants in a meeting, capabilities carried
by a hat, capability trades, meeting times, hat death
time, meeting locations and hat locations.

3 The COLAB Analysis Envi-

ronment

The Hats game is very challenging. There is a vast
amount of information to keep track of. There are hun-
dreds of thousands of entities. The properties of these
entities change from one time step to the next. There
is considerable hidden structure, including organiza-
tion membership, task force membership, coordinated
task goals, and benign or malevolent intention. Iden-
tifying any of this structure will require keeping track
of individual and group behavioral histories. Interact-
ing with the Information Broker alone makes the task
nearly impossible. Any analysis environment worth its
salt must help the analyst manage and explore this
information. This is the goal of COLAB analysis envi-
ronment.

The COLAB analyst environment is built on a
blackboard architecture designed to represent rela-
tional data and integrate a variety of intelligence analy-
sis algorithms as problem solving components. We first
introduce the blackboard system architecture and why
we believe it is well-suited for this kind of task, and
then describe the COLAB blackboard components.

3.1 Blackboard Systems

Blackboard systems are knowledge-based problem
solving environments that work through the collabo-
ration of independent reasoning modules [4, 5]. More

recently blackboards have been recognized as platforms
for data fusion [6]. They were developed in the 1970s
and originally applied to signal-processing tasks. The
first, HEARSAY-II [7], was used for speech recogni-
tion, employing acoustic, lexical, syntactic, and seman-
tic knowledge. Other systems were applied to problems
as diverse as interpretation of sonar data, protein fold-
ing, and robot control [4].

Blackboard systems have three main components:
the blackboard itself, knowledge sources, and control.
The blackboard is a global data structure that contains
hypotheses or partial solutions to problems. The black-
board is typically organized into spaces representing
levels of abstraction of the problem domain. For ex-
ample, HEARSAY-II had different levels for phrases,
words, syllables, and so forth. Knowledge sources (KSs)
are modular, self-contained programs which post re-
sults of local computations to the blackboard. Differ-
ent KSs use different types of knowledge: for exam-
ple, one might use a grammar to generate words which
are likely to occur next, while another might detect
phonemes directly from the acoustic signal. While no
single knowledge source can solve the problem, working
together they can. Getting knowledge sources to “work
together” is the task of blackboard control [8]. Gener-
ally it works like this: KSs watch for particular kinds
of results on the blackboard (a trigger condition); for
instance, a phrasal KS might look for hypotheses about
adjacent words. When a KS is “triggered” it creates a
knowledge source activation record (KSAR) in which it
requests the opportunity to run, make inferences, and
modify the blackboard. These KSARs are ranked, and
the top-ranked KSAR is invited to do its work. Just
as knowledge sources are used for manipulating data
on the blackboard, the control framework of the black-
board may also be broken up into control knowledge
sources, each representing knowledge about aspects of
the control problem.

The blackboard architecture is ideal for prototyp-
ing an intelligence analysis and information fusion sys-
tem. First, blackboard processing is opportunistic. In-
telligence information arrives at different times, out
of order and in varying quality and quantity. Black-
boards allow “islands” of hypotheses in varying stages
of processing to exist simultaneously. These islands
are augmented as new information becomes available
and at any time they have the potential to contribute
to the overall representation of the situation, even
if they are incomplete. Second, blackboards allow
both bottom-up (data-driven) and top-down (hypoth-
esis and knowledge-driven) processing. Data from the
environment can trigger KSs to steer attention to new
events, while at the same time knowledge from higher
levels may be brought to bare, potentially biasing
search and lower-level evidence evaluation. Finally,
blackboards are an integration architecture: knowl-
edge sources can encapsulate many different functions,
knowledge, and reasoning, only participating when
their preconditions are met. We can wrap a wide vari-
ety of different analysis tools in a KS and define the ap-
propriate conditions under which they should do their



work. Taken together, the properly configured black-
board architecture supports distributed, opportunistic
intelligence analysis that can incorporate multiple dif-
ferent analysis algorithms, including human analysts.

3.2 The COLAB Blackboard

The COLAB blackboard follows the same architectural
principles of a standard blackboard except that human
users interact with the blackboard, playing the same
role as other domain and control knowledge sources.
The COLAB blackboard is the analyst’s “workspace,”
representing and managing information that the an-
alyst gathers from the the Hats Information Broker.
In this workspace, the analyst views, manipulates and
processes Information Broker reports to extract evi-
dence supporting hypotheses about ongoing on poten-
tial future events. Analysts are also provided an in-
terface to define and manage their own KS assistants,
agents that can handle routine querying, watching for
user-defined conditions of interest, and sending alerts
or reminders when conditions are satisfied.C o l a b B l a c k b o a r d W o r k s p a c e

R a w R e p o r t sP r o c e s s e d R e p o r t sL a b e l s
H y p o t h e s e sU s e r $ d e f i n e dT a b l e s B a s eT a b l e s

I n f o r m a t i o nB r o k e r R e p o r tT r i a g eQ u e r yP r o c e s s o rA n a l y s i sT o o l sA g e n t s :S e n s o r s& A l e r t sK ST y p e s

Figure 1: The COLAB blackboard. Each box on the
blackboard represents a blackboard space; the Hypoth-
esis space contains two subspaces. The oval at the
bottom of the figure represents the Information Bro-
ker (the interface to the Hats Simulator), and the tabs
to the right represent types of KSs. Arrows indicate
flow of information between spaces that results from
knowledge source processing.

3.2.1 Blackboard Spaces

Figure 1 depicts the COLAB blackboard and its com-
ponent spaces. The Raw Reports, Processed Reports
and Labels spaces are responsible for representing re-
ports from the Hats Information Broker as atomic as-
sertions about entities and relations in the Hats do-
main. For example, the analyst may request from the
Information Broker information about the members of
a meeting hypothesized to have taken place. In re-
sponse, the Information Broker returns a report that
is then posted to the Raw Reports space.

This single report represents several entities and
atomic relations: the set of meeting participants, the
meeting event, the time and location of the meeting,
and also the individual assertions that the participat-
ing hats were at that location at that time. COLAB
report triage knowledge sources decompose the report
into these atomic assertions so that the analyst and
other KSs will be able to refer to each component indi-
vidually and manipulate and combine the components
in novel ways. For example, the analyst may want to
later ask how many meetings a given hat was in over
a period of time; or she may only want to know where
that hat was at that time, irrespective of what meeting
the hat was in. In Section 4.2 we describe the query
language that makes this possible.

Next, each atomic assertion is stored on the Pro-
cessed Reports space along with (1) the time at which
the information broker request was made, (2) the time
at which the event was reported as having taken place
in the Hats world, and (3) the level of payment. Pay-
ment level serves as a proxy for the reliability of the
information derived from the report.

Finally, each atomic relation and entity is repre-
sented by a label in the Labels space. Labels are linked
to each report that references them. For example,
if Hat27 took part in the meeting from the example
above, then a label for Hat27 is linked to two atomic
reports, one asserting that it participated in the meet-
ing and the other asserting that it was at that location
at that time. (In the same way, there is a label repre-
senting the meeting, and it is linked to reports about
the meeting.) If a referenced entity or relation does
not already exist, a new label is created for it when
the report is processed.

The Hypotheses space of the COLAB blackboard is
reserved for representing analyst work. All contents
of this space are represented as relational database ta-
bles. A wide variety of data and knowledge represen-
tation schemes is available, many more powerful than
the basic relational database model. However, we have
chosen the relation model as the standard data repre-
sentation because the format for storing data is simple,
it provides a relatively small set of operators for data
manipulation, and the model has wide use and a long
successful history [9].

Labels on the Labels space serve to define base tables
in the Hypothesis space. These base tables are an index
into the space of processed reports and are used in
query processing and Hypothesis space browsing. The
results of all user-initiated queries are stored in the
User-defined Tables space.

The blackboard schematic of Figure 1 represents
the blackboard workspace for a single human user.
In multi-user configurations, each user has their own
workspace blackboard structure in the same configu-
ration as Figure 1. Shared blackboard spaces are then
provided as hypothesis spaces that multiple users can
view, post and edit user-created relational database
tables. This makes it possible for users to share anal-
yses in the form of evidence represented in relational
tables. In Section 4.1, we also describe how argument



structures incorporating this evidence may be shared
through the Trellis interface.

3.2.2 Knowledge Sources

A class of KSs called report triage KSs handle pro-
cessing information broker reports and updating the
Labels and Processed Reports spaces. Another class
consists of KS interfaces or wrappers for algorithms
available to the analyst as analysis tools or “services.”
The beauty of the blackboard architecture is that it is
specifically designed to facilitate collaborative software
[6]; as long as these algorithms can read representations
on the blackboard and write output to the blackboard
that is interpretable by other KSs, they can participate
in blackboard processing. Some examples of analy-
sis services include algorithms for assigning suspicion
scores to hats [10, 11], identifying community struc-
ture [12, 13], and reasoning about behaviors over time.
Some services may require their own blackboard spaces
for specialized processing, such as a graph representa-
tion used for community finding, but the results of any
service are reported to the Raw Reports space as a
report, just like a report from the Hats Information
Broker.

We are currently prepared to offer an implementa-
tion of Mark Newman’s modularity-based community
finding algorithm [13] as an example service and plan
to add more services in the future; service configura-
tions will also depend on the role of the laboratory in
experimental design. The analyst will be responsible
for running or scheduling any services as well as speci-
fying what data on the blackboard they take as input.

Another class of KSs consists of the user-defined
“agents” that perform simple tasks. Like other KSs,
agents have a trigger condition and action that is taken
if the condition is met, but triggers and actions are re-
stricted to what can be expressed in components of
the COLAB query language, described in Section 4.2.
These agents may issue there own queries, check for
conditions, and either trigger other KSs or send mes-
sages to the users. They may be scheduled for repeated
activation and run in the background, automating rou-
tine checks of conditions such as whether a hat on a
watchlist has moved within some distance of a beacon.

3.2.3 Control

Current blackboard control in COLAB is basic, con-
sisting of a priory queue-based agenda shell. Report
and query processing has high priority, pushing infor-
mation onto the blackboard for use as soon as reports
arrive and queries are made. Users will then be able to
assign priorities to sensors, alerts and other available
analysis algorithms. One approach to blackboard con-
trol we are investigating includes assessing the value
of the information we may request from the Informa-
tion Broker [14]. In some cases, the utility of certain
information is overshadowed by its cost. Value of in-
formation is a kind of control knowledge and would
be embodied in a control knowledge source, provid-
ing suggestions to the analyst for how much to spend

on a query, or automatically adjusting cost of auto-
mated queries. In general, we treat control as an open
development issue in COLAB that will be shaped by
performance with multiple users and increasing data
and processing loads.

4 The COLAB Interface

Up to this point we have described the problem do-
main and the core architecture supporting the analyst
working environment. We now describe the third com-
ponent of COLAB: the web-based user interface.

The first decision we had to make was what plat-
form to implement the interface in. Making it native
to our development platform2 would enable tight inte-
gration with the COLAB blackboard and provide high
performance, interactive graphics. However, we want
the laboratory to be easily deployed in a variety of
different conditions depending as little as possible on
specific hardware and software. For this reason, we
decided to make the interface web-based, running in a
standard web browser. In this configuration, AIID and
the Hats Simulator run on their own server and anyone
with a computer connected to the internet and running
a modern web browser will be able to connect to CO-
LAB and participate as an analyst. Figure 2 shows a
snapshot of the COLAB web interface running in the
free Firefox3 web browser.

The goal of COLAB interface design is intuitive in-
formation management. This means making informa-
tion stored on the blackboard as accessible as possi-
ble and providing mechanisms for analysts to author
and manage their hypotheses. Information manage-
ment is an open research challenge that includes issues
in knowledge engineering, query languages, data min-
ing and data visualization. Our design philosophy is
to start simple and start with existing technologies.
For hypothesis representation, COLAB uses the Trel-
lis argument authoring tool. For information access
we have implemented a subset of standard SQL with
small extensions. And our initial interface for browsing
blackboard contents will be hypertext-based.

4.1 Trellis

Trellis [15] is an interactive web-based application for
argumentation and decision-making. Trellis has its
roots in the Knowledge Capture AI community, whose
aim is to make it possible for unassisted users to rep-
resent their knowledge in a form that can be use by
knowledge-base AI systems. Trellis takes a step in this
direction by allowing the user to express herself using a
combination of semi-formal argument terms and rela-
tions to structured combinations of free text and docu-
ments found on the web (including text, images, video
and other media). Users individually or collaboratively
author structured arguments and analyses. The tool

2Macintosh Common Lisp 5.1 running on Macintosh OS X
10.3.9

3http://www.mozilla.com/firefox/



Figure 2: The COLAB web interface. The left half of the browser window contains the interface to the Trellis
argument authoring tool. An argument about whether beacon B12 is threatened is currently being edited. The
upper right of the browser window contains the field for entering commands and queries. The Author Query
command template is currently selected. The bottom right provides a history of COLAB events, including
events created by user input, events initiated by other users (such as making a table public) and Hats Simulator
world-state events, such as advancing a tick.

is domain independent, permitting general structured
argumentation about any topic.

Trellis analyses can be built using several different
formats. A Trellis analysis involves constructing a tree
structure, where each “node” in the tree is a statement,
consisting of free text and evidence sources (including
web documents). Composite statements are formed
using semi-formal links such as ‘causes’, ‘depends on’,
‘has attributes’ and ‘is elaborated in’. Analyses them-
selves may also be linked with one another. An anal-
ysis is typically authored by a single user, but it may
be exported or made public so that other analysts can
use or comment on it.

A Trellis discussion is also structured as a tree
of Trellis statements, but parent/child links are re-
stricted to pro/con relationships, expressing that the
child statement either supports or contradicts the par-
ent. Multiple users may vote on a discussion state-
ment to record whether they agree or disagree with
it. A tally is kept of the votes to indicate whether a
statement is believed by the group to be true, false or
contentious.

Evidence associated in any of the above Trellis
structures is gathered from source documents on the
web. An interface allows the user to select an entire
web document or portions of a web page. Sources are

collected in a database for later possible inclusion in
analyses. The Trellis web interface makes it an at-
tractive, lightweight and powerful tool for conducting
individual and collaborative analyses. The ability to
associate free text with semi-formal terms and connec-
tives is intuitive and also allows user input to have a
more machine-readable form. Also, being designed for
general web document inclusion, Trellis is already ca-
pable of open source intelligence analysis authoring.

We have chosen to adopt Trellis as the COLAB hy-
pothesis authoring tool because it expresses the ba-
sic hierarchical support/dissent relationships between
statements that we believe will be useful to analysts.
Trellis also provides a well-designed, intuitive user in-
terface. The left half of the COLAB browser window
in Figure 2 shows an example of the Trellis Discussion
interface. The interface currently displays an argu-
ment supporting the hypothesis that beacon B012 is
threatened. The top-level statement (the “target hy-
pothesis”) asserts that Task-force-34 threatens bea-
con B012. This claim is supported by three addi-
tional statements, that Task-force-34 has capabili-
ties that overlap the vulnerabilities of the beacon, that
Task-force-34 is malicious, and that the members of
Task-force-34 are near the beacon. Capability over-
lap is further elaborated by evidence that the capabil-



ities are carried by individual hats in the group. The
example also includes a “Con” relationship, express-
ing a statement against the group having the required
overlapping capabilities: hat H0895 is no longer car-
rying the remaining required capability C14, having
apparently expired at tick 316. The Trellis window
also represents, by the colored bars to the right of
each statement, a tally of votes provided by other an-
alysts indicating whether they agree or disagree with
the statement. In this case, only one other analyst has
voted; green indicates they agree, red indicates they
do not agree with the statement.

4.2 Query Language

During an analysis session, the blackboard will rapidly
fill with many reports about events in the Hats world,
the results of analysis tools and analyst-authored hy-
potheses. In order to gather, manipulate and manage
this data, we have implemented a subset of SQL, an
intuitive, well-studied language with a long, successful
history in practical database applications [9]. In the
relational model, an individual fact is represented as a
set of attribute values. Facts are collected in tables in
which each row represents a fact, each column corre-
sponds to an attribute, and the cell at the row/column
intersection holds the the attribute value for the fact.
Queries specify what information to extract from ta-
bles, and the results of queries are expressed in new
tables. In the COLAB blackboard, hypothesis spaces
are treated as tables and all queries result in tables
stored on the (relational) User-define Tables space of
the blackboard.

The upper-right frame of the browser window in Fig-
ure 2 shows the query entry field. The query example
in the window requests a table containing the hat ids
and hat capabilities for hats from the watch list

table – but only for those hats that are within dis-
tance 4 of a beacon and have a suspicion greater than
75%. The table has also been assigned the name
WatchList Hats Near Beacons by the user.

select giver, taker, capability,

meeting, tick

from suspicious_trade_reports

where (between tick (current_tick - 10)

and current_tick);

Figure 3: Example query to the Workspace retrieving
all trade reports in the suspicious trade reports table
the past 10 ticks

Because all reports are indexed by time, COLAB
also provides facilities for specifying individual time in-
tervals. Figure 3 shows an example query that uses the
special constant current time to request all reported
trade events in the past 10 ticks. The requested ta-
ble includes attributes representing the hat that gave
the capability, the hat that received the capability, the
capability itself, the label representing the meeting in
which the trade took place, and the time when the
trade took place.

select hat_location

from ib

where hat_id = (select hat_id

from watch_list)

and payment = 2000;

Figure 4: Example query to the Information Broker
asking for location of all hats on the watch list.

Finally, Figure 4 shows how to use the same query
language to send a request to the Information Bro-
ker. The user specifies in the from clause the source
information broker (or ib for short). The select

clause, rather than specifying the names of attributes
to retrieve, instead specifies one of the eight pre-
defined Information Broker report types. Finally,
the where condition sets the argument values for the
hat location report type. Queries to the Information
Broker may be augmented by queries to the Hypothesis
space. The query in Figure 4 demonstrates this with a
sub-query used to first select the hat ids of all hats on
the watch list table and then pass those as arguments
to the outer hat location Information Broker query.
In this way the user can ask for all hat location re-
ports at once, rather than specifying each location re-
port separately for each hat.

4.3 Agents: User-defined KSs

Knowledge sources provide another facility for ana-
lyst information management. As mentioned in Sec-
tion 3.2.2, users may use the query language to spec-
ify KS triggers and actions. When the user defines an
agent, they are presented with a template for speci-
fying agent settings. The three main components are
the agent activation condition, the trigger condition
and the action.

An activation condition has two components. The
user enters a natural number in the schedule field
to specify the frequency with which the agent will be
triggered. For example, entering 3 means the agent
will run every three ticks: on one tick, then sleeps for
two before being triggered again. Entering 0 means
the agent won’t be triggered on a schedule. The sec-
ond field allows the user to specify KS activation

messages, a list of zero or more user-defined names4

that may be posted to the blackboard by other user-
defined agent KSs. When another KS posts any one of
the matching trigger message to the blackboard, this
agent will then be triggered. One or both of the ac-
tivation conditions may be specified. A combination
entails that the agent will be activated on a regular
schedule, and perhaps sooner if a matching activation
message is posted.

Finally, the predicate field determines whether,
when activated, the action will be taken. Since the

4A name can be any string of letters following the same rules
for naming a table: any combination of upper or lower case
letters, underscores or numbers that are together do not form
a reserved word; analysts are provided with a list of COLAB
reserved words.



where clause of a standard query is used to express
a statement that is either true or false depending on
values, trigger predicates are specified using the same
clause syntax. The predicate is optional; if left blank,
an activated agent will always execute its action.

The action component of the agent consists of any
combination of (1) a standard blackboard or Informa-
tion Broker query, (2) a COLAB event message, or a
KS activation message. When a query is specified,
it is executed when the agent action is taken. A CO-
LAB event message is a string that is posted to the
COLAB Event History, alerting the user to the agent’s
triggering condition having been satisfied. And the KS

activation messagewill be posted to the blackboard,
possibly triggering other user-defined agents.

The following is a set of example tasks that can be
expressed as agents, to help with routine monitoring
of events in the Hats Simulator:

• Meeting Alert Any time two or more hats from
a specified set of hats (e.g., all hats whose loca-
tions have just been reported) meet at the same
location for more than two ticks, send an alert to
the user that a meeting may have just taken place
(Along with location and time). Another agent
may be defined to trigger when the meeting alert
is issued; this sensor may then send a query to the
Information Broker asking whether a meeting has
taken place at that location.

• Watchlist Scheduled Query This KS updates
a “watchlist” dynamic table to include any hats
whose number of meetings with known terrorists is
above some threshold. Alternatively, the KS may
schedule execution of a suspicion scoring analysis
service and the suspicion scores of hats above some
threshold are included in the Watchlist table.

• Beacon Vulnerability Sensor After each up-
date to the watchlist above, check whether any
hats on the watchlist have capabilities that overlap
a specified beacon’s vulnerabilities. If so, trigger
a beacon threat alert KS.

• Beacon Threat Alert Triggered by the Beacon
Vulnerability Sensor, this KS tests whether hat(s)
triggering the vulnerability sensor are within some
distance of the beacon. If so, then send an alert
to the analyst.

Using the agent specification template, the analyst
can build up a toolkit of useful, special purpose knowl-
edge source, blurring the line between human control
and blackboard automation.

4.4 Blackboard Browsing

The Trellis hypothesis authoring tool and the query
language allow the analyst to visualize relations be-
tween hypotheses and evidence stored as relational ta-
bles on the blackboard. Relational tables are viewed
a HTML generated tables, and these are incorporated
as evidence linked to a Trellis statement by using the
Trellis web page content extraction tool.

The user is also provided with indexes of blackboard
contents, such as the list of tables currently defined
on the User-defined Hypothesis space, or on the Base-
tables space. The user may also view the current status
of user-defined agents and have the option to turn them
on or off.

Finally, to help keep track of Hats world and CO-
LAB events, the lower-left window of the COLAB in-
terface keeps a history of all events. Each event is
given one line in the history. The left-hand cell gives
the current tick, which consists of the Hats world-state
tick and the current user-event number for that tick.
For example, the grey bar in the event history window
of Figure 2 denotes the Hats world event that the tick
has advanced to 348 and a new set of Hats events are
reported, one of which is the attack of Beacon 012. The
next event, during tick 348, the first event initiated by
the user, is a query that has resulted in the table named
“Query capabilities of H0895” (quoted names have im-
plicit underscores for spaces). This was followed by the
event that another user has made public a new table on
a shared workspace. This, in turn, is followed by an at-
tempted query by the user that has failed because of an
error. It is expected that not all command entry will be
correct and COLAB attempts to help the user identify
the problem. On the right-hand column are hyperlinks
to view or edit Hats events details, tables that result
from queries or posts by other users, agent definitions,
and any failed query attempts. When the edit link is
available and selected, the original entered command
text is provided and the user may make changes and
resubmit the query or new, modified agent.

4.5 Implementation

COLAB is was developed in Macintosh Common Lisp
(MCL) 5.1 (http://www.digitool.com/) and openMCL
1.0 (http://www.openmcl.org/) running on Macin-
tosh OS X. For the blackboard we used the GB-
Bopen blackboard framework (http://gbbopen.org/).
The web interface server is also written in Common
Lisp, built on top of the lightweight Araneida server
(http://www.cliki.net/araneida). Except for MCL and
Mac OS X, all of these software packages are open
source.

5 Concluding Remarks

In the introduction we described three target uses for
COLAB: an environment for studying analyst collab-
oration and analysis tools, an environment for train-
ing analysts, and a configurable laboratory to study
varying command and control structures for network-
centric, distributed intelligence analysis. All three are
very ambitious goals and COLAB is still an early pro-
totype. However, the facilities described in this paper
are implemented and we are beginning user testing.
COLAB provides and interesting, novel information fu-
sion architecture for intelligence analysis that is unique
in its pairing of a hypothesis authoring tool, provided
in Trellis, a configurable multi-user information man-



agement system, provided by the COLAB blackboard,
and a challenging, discrete-time simulated problem do-
main that can be played online.

6 Acknowledgements

Work on this project was supported by the Office of the
Assistant Secretary of Defense for Networks and In-
formation Integration (OASD/NII), through its Com-
mand & Control Research Program (CCRP), USC
subcontract CCRP-COLAB 53-4540-7723. We are
indebted to Dr. David S. Alberts, Dr. Mark Nis-
sen and the Naval Postgraduate School’s Center for
Edge Power for leading and coordinating the Edge
Power Projects. We thank Dr. Yolanda Gil, Dr. Tim
Chklovski and Varun Ratnakar for discussions and help
with integrating COLAB with Trellis, and Dr. Dan
Corkill and Gary W. King for help with GBBopen and
Ijara. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes
notwithstanding any copyright notation hereon.

References

[1] P. R. Cohen and C. T. Morrison. The hats simula-
tor. In Proceedings of the 2004 Winter Simulation
Conference, 2004.

[2] C. T. Morrison, P. R. Cohen, G. W. King, J. J.
Moody, and A. Hannon. Simulating terrorist
threat with the hats simulator. In Proceedings of
the First International Conference on Intelligence
Analysis, 2005.

[3] C. T. Morrison and P. R. Cohen. Colab: A lab-
oratory environment for studying analyst sense-
making and collaboration. In Proceedings of
the Tenth International Command and Control
Research and Technology Symposium (10th IC-
CRTS), 2005.

[4] H. P. Nii. Blackboard systems. In A. Barr, P. R.
Cohen, and E. A. Feigenbaum, editors, The Hand-
book of Artificial Intelligence, Volume IV, chapter
17 (XVII), pages 1–82. Addison-Wesley Publish-
ing Company, Inc., 1989.

[5] D. D. Corkill. Blackboard systems. AI Expert,
6(9):40–47, September 1991.

[6] D. D. Corkill. Collaborating software: Blackboard
and multi-agent systems & the future. In Proceed-
ings of the International Lisp Conference, New
York, October 2003.

[7] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and
D. R. Reddy. The hearsay-ii speech understand-
ing system: Integrating knowledge to resolve un-
certainty. ACM Computing Survey, 12:213–253,
1980.

[8] N. Carver and V. Lesser. The evolution of
blackboard control architectures. Expert Systems

with Applications–Special Issue on the Blackboard
Paradigm and Its Applications, 7(1):1–30, Jan-
uary 1994.

[9] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Boston: Addison Wesley, 4th
edition, 1999.

[10] A. Galstyan and P. R. Cohen. Identifying covert
sub-networks through iterative node classification.
In Proceedings of the First International Confer-
ence on Intelligence Analysis, 2005.

[11] S. A. Macskassy and F. Provost. Simple mod-
els and classification in networked data. CeDER
Working Paper 03-04, Stern School of Business,
New York University, 2002.

[12] J. Adibi, P. R. Cohen, and C. T. Morrison. Mea-
suring confidence intervals in link discovery: a
bootstrap approach. In Proceedings of the ACM
Special Interest Group on Knowledge Discovery
and Data Mining (ACM-SIGKDD-04), 2004.

[13] M. E. J. Newman. Fast algorithm for detecting
community structure in networks. Phys. Rev. E,
69(066133), 2003.

[14] C. T. Morrison and P. R. Cohen. Noisy infor-
mation value in utility-based decision making. In
Proceedings of the First International Workshop
on Utility-Based Data Mining (UBDM SIGKDD
2005), pages 34–38, 1515 Broadway, New York,
New York 10036, 2005. The Association for Com-
puting Machinery, Inc.

[15] T. Chklovski, V. Ratnakar, and Y. Gil. User in-
terfaces with semi-formal representations: a study
of designing argumentation structures. In Under
Review for the Intelligent User Interfaces Confer-
ence 2005, 2005.


