
The Hats Information Fusion Challenge Problem

Clayton T. Morrison and Paul R. Cohen

Information Sciences Institute

University of Southern California

4676 Admiralty Way, Suite 1001

Marina del Rey, CA, 90292 U.S.A.

{clayton,cohen}@isi.edu

Abstract - We describe the Hats Simulator as an

information fusion challenge problem. Hats is a vir-

tual world in which many agents engage in individ-

ual and collective activities. Most agents are benign,

some intend harm. Agent activities are planned by

a generative planner. Playing against the simula-

tor, the goal of the analyst is to identify and ar-

rest harmful agents before they carry out their plans.

The simulator provides both scalar and categorical

information. Information fusion tasks in the Hats

domain include assessing information value, choos-

ing information collection strategies, tracking indi-

viduals and resources, identifying events, hypothe-

sizing group membership, ascribing suspicion, and

identifying plans. After each game, the analyst is

assessed a set of scores including the cost of ac-

quiring information, the cost of falsely accusing be-

nign agents, and the cost of failing to detect harmful

agents. The simulator is implemented and currently

manages hundreds of thousands of agents.

Keywords: Simulation, information cost and quality,

tracking and surveillance, sensor management, sensor mod-

eling

1 Introduction

The Hats Simulator [1, 2] was designed originally to
meet the needs of academic researchers who want to
contribute technology to Homeland Security efforts but
lack access to domain expertise and classified problems.
Most academic researchers do not have security clear-
ances and cannot work on real data, yet they want to
develop tools to help analysts. In any case, real data
sets are expensive: They cost a lot to develop from
scratch or by “sanitizing” classified data. They also are
domain-specific, requiring classified expertise to under-
stand. Because data sets are expensive, many that
have been made available to researchers are relatively
small and the patterns to be detected within them are
fixed, few, and known, so working with these data sets
is a bit like solving a single “Where’s Waldo” puzzle.
Sometimes there also is the problem that real data sets
model “signal” (terrorist activities) not “noise” (every-
thing else), while extracting signal from noise is a great
challenge. Data sets in general are static, whereas data

become available to analysts over time. It would be
helpful to have a data feed, something that generates
data as events happen.

To validate information fusion tools, we need a gen-
erator of a variety of multi-signal information sources,
all of which represent meaningful, goal-directed behav-
ior, but only a small portion of which represents the
target activities we care about. The generator should
be parameterized for experimental purposes (e.g., vary-
ing the distinctiveness of target activities, to make
them more or less easily recognizable); and it should
come up with novel activities, requiring analysts and
their tools to both recognize known patterns and rea-
son about unanticipated suspicious patterns.

The Hats Simulator is home to hundreds of thou-
sands of agents (hats) which travel to meetings. Some
hats are covert terrorists and a very few hats are known
terrorists. All hats are governed by plans generated
by a planner. Terrorist plans end in the destruction of
landmarks. The object of a game against the Hats sim-
ulator is to find terrorist task forces before they carry
out their plans. One pays for information about hats,
and also for false arrests and destroyed landmarks. At
the end of a game, one is given a score, which is the
sum of these costs. The goal is to play Hats rationally,
that is, to catch terrorist groups with the least com-
bined cost of information, false arrests, and destroyed
landmarks. Thus Hats serves as a testbed not only
for analysts’ tools but also for new theories of rational
information fusion that take into account information
source assessment and cost in the context of analysis
goals and decisions. Hats encourages players to ask
only for the information they need, and to not accuse
hats or issue alerts without justification.

The Hats simulator is lightweight: Agents have few
attributes and engage in few elementary behaviors;
however, the number of agents is enormous, and plans
can involve simultaneously many agents and a great
many instances of behaviors. The emphasis in Hats is
not domain knowledge but managing enormous num-
bers of hypotheses based on scant, often inaccurate
information. By simplifying agents and their elemen-
tary behaviors, we de-emphasize the domain knowl-
edge required to identify terrorist threats and empha-
size covertness, complex group behaviors over time,
and the frighteningly low signal to noise ratio.

The Hats Simulator consists of the core simulator



A n a l y s tH a t s S i m u l a t o r I n f o r m a t i o nB r o k e r• M e e t i n gP l a n n e r• S c o r i n g • C o s t• N o i s e M o d e l A n a l y s t ' s T o o l s
Figure 1: Information Broker Interface to the Hats
Simulator

and an information broker. The information broker is
responsible for handling requests for information about
the state of the simulator and thus forms the interface
between the simulator and the analyst and her tools
(see Figure 1). Some information has a cost, and the
quality of information returned is a function of the “al-
gorithmic dollars” spent. Analysts may also take ac-
tions: they may raise beacon alerts in an attempt to
anticipate a beacon attack, and they may arrest agents
believed to be planning an attack. Together, informa-
tion requests and actions form the basis of scoring ana-
lyst performance in identifying terrorist threats. Scor-
ing is assessed automatically and serves as the basis
for analytic comparison between different analysts and
tools. The simulator is implemented and manages the
activities of hundreds of thousands of agents.

The following sections outline the Hats domain, in-
cluding how we generate populations of hats and how
the planner schedules meetings for hats to attend. We
describe the information request framework, the ac-
tions the analyst may take, and scoring. We then ana-
lyze the space of relevant hypotheses and their relations
in fusion tasks. We conclude with a discussion of the
future of the Hats Simulator.

2 The Hats Domain

The Hats Simulator models a “society in a box” con-
sisting of many very simple agents, hereafter referred to
as hats. (Hats get its name from the classic spaghetti
western, in which heroes and villains are identifiable
by the colors of their hats.) The Hats society also has
its heroes and villains, but the challenge is to iden-
tify which color hat they should be wearing, based on
how they behave. Some hats are known terrorists; oth-
ers are covert and must be identified and distinguished
from the benign hats in the society.

Hats is staged in a two-dimensional grid on which
hats move around, go to meetings and trade capabili-
ties. The grid consists of two kinds of locations: those
that have no value, and high-valued locations called
beacons that terrorists would like to attack. All bea-
cons have a set of attributes, or vulnerabilities, cor-
responding to the capabilities which hats carry. To
destroy a beacon, a task force of terrorist hats must
possess capabilities that match the beacon’s vulner-
abilities, as a key matches a lock. In general, these
capabilities are not unique to terrorists, so one cannot
identify terrorist hats only on the basis of the capabil-
ities they carry.

The Hats society is structured by organizations. All

hats belong to at least two organizations and some
hats belong to many. Terrorist organizations host only
known and covert terrorist hats. Benign organizations,
on the other hand, may contain any kind of hat, includ-
ing known and covert terrorists.

2.1 Population Generation

Hats populations may be built by hand or generated by
the Hats Simulator. Because the constitution of a pop-
ulation affects the difficulty of identifying covert ter-
rorists, population generation is parameterized. There
are four sets of population parameters. The first set
specifies the total number of known terrorists, covert
terrorists and benign hats in the population. Another
set defines the number of benign and terrorist orga-
nizations. Not all organizations have the same num-
ber of members, so a third set of parameters assigns
the relative numbers of hats that are members of each
organization, represented as a ratio among organiza-
tions. For example, the ratio 2:1:1 means that the first
organization has twice as many members as the other
two. Finally, hats may be members of two or more
organizations. An overlap parameter determines the
percentage of hats in each organization that are mem-
bers of two or more other organizations. Since hat
behaviors are governed by their organization member-
ship, as we will see in the next section, organization
overlap affects how difficult it is to identify covert ter-
rorist hats. To generate populations with hundreds of
thousands of hats and thousands of organizations, we
use a randomization algorithm that estimates organi-
zation overlap percentage and membership ratios while
matching the total number of organizations and hats
in the population. When the population is generated,
each hat is assigned a native capability that they will
carry throughout the duration of the simulation, and
a set of traded capabilities that are temporary, expir-
ing after some number of ticks (e.g., within 40 ticks).
Hats are also assigned random locations in the Hats
grid world. An efficient, approximate population gen-
eration algorithm is described in [3].

2.2 Meeting Generation

Hats act individually and collectively, but always plan-
fully. In fact, the actions of hats are planned by a gen-
erative planner. Benign hats congregate at locations
including beacons. Terrorist hats meet, acquire capa-
bilities, form task forces, and attack beacons. The pur-
pose of the planner is to construct an elaborate “shell
game” in which capabilities are passed among hats in
a potentially long sequence of meetings, culminating
in a final meeting at a target. By moving capabilities
among hats, the planner masks its intentions. Rather
than directing half a dozen hats with capabilities re-
quired for a task to march purposefully up to a beacon,
instead hats with required capabilities pass them on to
other hats, and eventually a capable task force appears
at the beacon.

Each organization has a generative planner that
plans tasks for its members. Hats that are currently



participating in a task are reserved; hats not currently
part of a task are free. At each tick, each organiza-
tion has a chance of beginning a new task. When a
new task is started, the Hats meeting planner creates
a task force, a subset of hats selected from the free
hats of the organization. The size of a task force is
controlled by a parameter. The planner next selects a
target location in the Hats world. With some probabil-
ity, that location may be a beacon, otherwise a random
location is selected. If a beacon is selected as the tar-
get, the goal of the task is to bring to that location
the set of required capabilities that match the vulner-
abilities of the beacon. If the location is not a beacon,
a random set of required capabilities is selected as the
set to bring to the location.

Figure 2: Example of a generated meeting tree. Each
box represents a meeting and contains a list of partic-
ipating hats. Arrows indicate planned temporal order
of meetings.

Task force members may or may not already possess
the required capabilities; usually they don’t. The plan-
ner creates a set of meetings designed to ensure that
the task force acquires all of the required capabilities
before going to the target location. This is accom-
plished by constructing a meeting tree that specifies
meetings and their temporal order. Figure 2 shows an
example meeting tree, where boxes represent planned
meetings among hats and arrows represent the planned
temporal partial order of meetings. The tree is “in-
verted” in the sense that the arrows point from leaves
inward toward the root of the tree. Parent meetings,
where arrows originate, are executed first. When all of
the parent meetings of a child meeting have completed,
then the child meeting happens. This ensures that
none of the hats that participate in the child meeting
are busy in other meetings. Meeting execution means
that the hats participating in the meeting begin mov-
ing toward the meeting location. The final, root meet-
ing takes place at the task target location and includes
all of the task force hats. The locations of the other
meetings in the tree are selected randomly.

Initially, the meeting tree is skeletal, containing
meetings whose only participants are the task force
members themselves. From the organization’s remain-
ing free hats, the planner selects a second group of
resource hats that carry required capabilities not cur-
rently carried by the task force. Resource hats are
randomly assigned to existing meetings, and trades of
required capabilities from resource to task force hats

are scheduled to take place during the meeting. The
planner finishes tree construction by adding “decoy”
meetings, trades and other free hats not directly in-
volved in moving required capabilities to the goal. A
constraint maintained throughout tree construction is
that at least one hat from a parent meeting will go on
to meet in a child meeting. These hats will either be
task force members, resource hats carrying required ca-
pabilities to trade in the next meeting, or will be decoy
hats arriving from decoy meetings.

Completed meeting trees are added to a queue of
pending tasks. At each tick, the simulator engine
searches the task queue for meetings with no currently
executing parent meetings. These meetings are then
assigned to a queue of currently executing meetings
and the participant hats are incrementally moved to-
ward the meeting location. When all of the partici-
pants have arrived at the meeting location, the meeting
itself lasts for two ticks, after which all hats not par-
ticipating in more meetings are set “free” and become
available to participate in new meetings.

Meeting trees typically have a depth of 2 to 7. The
frequency of new tasks depends on both the probability
of starting a new task as well as the number of hats in
each organization.

3 The Information Broker

As an analyst playing the game, your job is to pro-
tect the Hats society from terrorist attacks. You need
to identify terrorist task forces before they attack bea-
cons, but you also need to avoid falsely accusing in-
nocent hats. The only way to do this successfully is
to gather information about hats, identify meetings,
track capability trades and form hypotheses about the
intentions of groups of hats. The information broker
provides information about the state of the Hats world.
The information broker will respond to questions such
as “Where is Hat27 right now?” It will also provide in-
formation by subscription to analysts’ tools, which in
turn make information broker requests. For example,
a tool might process requests like, “Identify everyone
Hat27 meets in the next 100 steps,” or, “Tell me if
Hat27 approaches a beacon with capabilities C1, C7 or
C29.”

Some information is free, but information about
states of the simulator that change over time is costly.
The quality of the information obtained is determined
by the amount paid. The following two sections de-
scribe the two central components of the request frame-
work: the cost of information and noise. Together,
these components make the Hats simulator an experi-
mental environment for studying the economics of in-
formation value in the context of intelligence analysis.

3.1 The Cost of Information

Some information from the broker is free. This includes
information about the population (who the known ter-
rorists are), the simulator world (world-map dimen-
sions), and some event bookkeeping (locations of at-



tacks, a list of currently arrested hats). Other types
of information require payment and the amount paid
sets a base probability that is used to determine the
accuracy of the information. In the current imple-
mentation, increasing accuracy requires exponentially
more “algorithmic dollars”; Equation 1 maps payment
to probability. The same function is applied to every
payment-based request.

probability = 1 −

[

1

log (payment)

]

(1)

3.2 Making Requested Information

Noisy

Modeling noise is a topic suitable for an entire research
program. Among the issues to consider are: Can the
analyst request the same information multiple times,
and if so, how does information quality change? Can
the analyst get accurate information about events that
occurred in the past? Can the analyst tell which infor-
mation sources are reliable by asking the same question
several times? And so on. We have started simply, im-
posing the constraint that the analyst may request a
particular piece of information only once. This means
that the analyst must select the level of payment for
the information at the time of the request and there
is no going back once the request is made. Informa-
tion that updates from one tick to the next, such as
the current location of a hat, may be requested again
at the next tick. However, information that is fixed in
time, such as when or where a meeting took place, can
be requested only once. This model allows us to avoid,
for now, the thorny issue of how to “noise up” multiple
requests for the same information.

Using the payment function described in the previ-
ous section, a payment amount is mapped to a “base”
probability p. With probability p, the information re-
quested is returned in its entirety or subject to noise.

Eight basic information requests can may be made:
the hats at the location (if any), participants in a meet-
ing, capabilities carried by a hat, capability trades,
meeting times, hat death time, meeting locations and
hat locations. The first five requests return lists of
things, such as hats, capabilities, times, etc. The lat-
ter three are scalar values. How we add noise to re-
sponses to these requests depends on the type of thing
requested as well as whether they involve single ele-
ments or lists of elements.

For scalar values, noise is modeled by sampling from
a normal distribution, where the mean is the location
or time of the requested item, and the variance is a
function of the size of the Hats world (for locations)
or the amount of time since beginning the simulation
(for times). Adding noise to reports about a hat or
capability requires sampling from the original set of
hat and capability IDs defined for the scenario.

Information about lists of elements is made noisy in
two stages. First, the list itself is modified by discard-
ing or adding elements. Then, with probability p, each
element of the resulting list is subject to a noisy pro-
cess such as selecting an element at random instead of

the true list element (e.g., selecting a random hat ID).

Information that is requested about events or enti-
ties that do not exist are subject to noise in much the
same way as above. If the request is determined to be
non-noisy, then a query accurately returns the response
that the requested information does not exist. If, how-
ever, the requested information is to be made noisy,
then random information of the same type requested
is returned.

3.3 Exporting Data

The Hats Simulator and Information Broker are de-
signed to provide an online data feed and allow for
interaction between the analyst and simulation. How-
ever, we also have implemented facilities to export
batch data from the Information Broker. Hats data
stored in the Information Broker can be exported as
perfect information (ground truth) or noisy data sets.
Application of noise for batch data works differently
because there is no analog of online requests with user-
varied payment levels. Noise is applied to exported
data in three ways: exclusion of perfect information,
inclusion of false information and corruption of perfect
information. The level and type of noise is param-
eterized. Exported Hats data has been used in sev-
eral projects, including DARPA EELD and AFRL EA-
GLE Program mini-TIEs, and controlled experiments
with Iterative Node Classification [4], Group Finder
[5], Proximity [6], Aleph [7], and a variety of social
network analysis tools.

4 Actions

In addition to requesting information, the analyst play-
ing the Hats game can also change a beacon’s alert
level and arrest hats. Both actions affect an analyst’s
performance score (discussed in Section 5).

4.1 Raising Alerts

We may not be able to stop an attack, but if we know
it is coming, we can prepare and minimize loss. This
is the inspiration behind modeling alerts. Each beacon
can be in one of three alert levels: off (default), low, or
high. These correspond to the conditions of no threat,
a chance of an attack, and attack likely. The analyst
decides which level a beacon alert is set to, but the
Hats Simulator keeps track of alert states over time
and whether an actual attack occurs while the state
is elevated. The simulator keeps statistics including
counts of hits (occurrences of attacks during elevated
alerts) and false positives (elevated alerts that begin
and end with no beacon attack occurring). The goal
of the analyst is to minimize the time beacon alerts
are elevated. High alerts are more costly than low ones.
On the other hand, if an attack does occur on a beacon,
a high alert is better than a low alert, and a low alert
is better than none.



4.2 Arresting Hats

Analysts can also issue arrest warrants for hats in or-
der to prevent beacon attacks. Arrests are successful
only when the targeted hat is currently a member of
a terrorist task force. Attempted arrests under any
other conditions, including hats that are terrorists but
not currently part of a terrorist task force, result in
a false arrest (a false positive). Under this model, a
hat can be a terrorist but not be guilty of any crime.
Unless terrorist hats are engaged in ongoing terrorist
activities, their arrest incurs penalties. While this is
a simple model, it places realistic constraints on the
analyst’s choice of actions.

Successful arrests do not guarantee saving beacons.
A beacon is only attacked when some subset of mem-
bers from a terrorist task force successfully carry the
capabilities matching the target beacon’s vulnerabili-
ties to a final meeting at on that beacon. It is possible
to successfully arrest a terrorist task force member but
the other terrorist task force members still have the
capabilities required to attack the beacon. However,
if the analyst successfully arrests a terrorist task force
member carrying required capabilities that no other
task force member has, then the final meeting of the
task force will take place but not result in an attack.
This is counted as a beacon save.

5 Scoring Analyst Performance

The Hats Simulator and Information Broker together
provide an environment for testing analyst tools. The
object of the game is to identify terrorist task forces
before they attack beacons. Three kinds of costs are
accrued:

1. The cost of acquiring and processing information
about a hat. This is the “government in the bed-
room” or intrusiveness cost.

2. The cost of falsely arresting benign hats.

3. The cost of harm done by terrorists.

The skill of analysts and the value of analysis tools can
be measured in terms of these costs, and they are as-
sessed automatically by the Hats Simulator as analysts
play the Hats game. At the end of a simulation run,
a final report is generated that includes the following
four categories of scores:

1. Costs: the total amount of “algorithmic dollars”
spent on information from the Information Bro-
ker.

2. Beacon Attacks: including the total number of ter-
rorist attacks that succeeded and the total number
of attacks that were stopped by successful arrests.

3. Arrests: the number of successful arrests and the
number of false arrests (false positives).

4. Beacon Alerts: the number of low and high alert
hits and false positives.

C a r r i e d c a p a b i l i t i e sm a t c h v u l n e r a b i l i t i e s G r o u p o f h a t sG r o u p I n t e n tL o c a t i o n o fG r o u p M e m b e r s

H a t : H 0 2 3 4C a p : C 1 4M a l i c i o u s n e s sL o c a t i o n H a t : H 0 2 3 4C a p : C 1 4M a l i c i o u s n e s sL o c a t i o n H a t : H 0 2 3 4C a p : C 1 4M a l i c i o u s n e s sL o c a t i o n H a t : H 0 2 3 4C a p : C 1 4 , . . .M a l i c i o u s n e s sL o c a t i o nH a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p :C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p :C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p :C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p :C 0 8M a l ic io u sL o c a t io n H a t : H 1 0 3 2C a p : C 0 8 , . . .M a l ic io u sL o c a t io n
H a t s

O r g a n i z a t i o n s

T a s k f o r c e s& G r o u p s
B e a c o n s

M e e t i n g M e m b e r sC a p a b i l i t y T r a d e s

O r g a n i z a t i o nM e m b e r sO r g a n i z a t i o nI n t e n t

M e e t i n g sD u r a t i o n o f s c e n a r i o~ 1 5 0 t i c k s~ 2 5 t i c k sE v e r y t i c k
H y p o t h e s i sR a t e o f C h a n g e

I n t e n tC a p a b i l i t i e s

B e a c o nT h r e a t e n e d ?

Figure 3: Schematic representation of Hats domain hy-
pothesis types, their relations, and the approximate
duration that instances of hypothesis types remain
valid.

6 The Space of Hats Hypotheses

and Fusion Tasks

As mentioned at the beginning of Section 3, success-
ful play in the Hats game requires tracking and fusing
a variety of information types. Analysts rely on re-
ports returned by the information broker to construct
a model of observed events that can explain and predict
hat behaviors. The goal of this analysis is to identify
threats to beacons and, if possible, arrest terrorist task
force hats before they carry out an attack.

Figure 3 provides a schematic representation of the
variety of classes of hypotheses, along with how hy-
potheses are related to one another and the approxi-
mate rate at which they change.

Each colored oval in the figure represents a hypoth-
esis type, and these are grouped into five larger cat-
egories that include hypotheses about hats, meetings,
groups (task forces), beacon threat and organizations.
Links between ovals indicate dependency relations be-
tween hypothesis types. In general, information flows
up from the bottom the figure. The four ovals with
bold black outlines indicate information that may be
requested directly from the information broker. For in-



formation about the location and capabilities carried
by a hat, the analyst need only specify the hat ID.
For information about meeting members and capabil-
ity trades, the analyst must specify the time and loca-
tion of the meeting. This makes requests for informa-
tion about meetings depend on first identifying where
and when a meeting took place. Further up, a hypoth-
esis that there exists a task force of hats depends on
an observed pattern of meetings between hats; hats
that are members of a task force are, in turn, likely
members of the same organization.

The primary target hypothesis concerns whether a
beacon is currently threatened. (This hypothesis is
highlighted with bold red outline.) This hypothesis
depends on information that includes belief in the ex-
istence of a group, whether the capabilities shared by
group members overlap with the beacon’s vulnerabili-
ties, the location of the group members relative to the
beacon, and finally the intent of the group.

Figure 3 also shows that information supporting hy-
pothesis changes at different time scales. The figure
represents for different relative time scales using col-
ors; the legend on the left indicate the approximate
time at which a specific hypothesis would likely need
to be updated, in simulator ticks. For example, the lo-
cation of a hat changes almost every tick (green), the
set of capabilities a hat is carrying updates roughly
every 25 ticks (blue), but the intent of a hat (whether
it is terrorist or benign) remains constant throughout
the game (pink).

7 Conclusion

Despite the simplicity of the domain ontology, Hats
provides a number of nontrivial information fusion
challenges. Taken as a whole, the Hats fusion chal-
lenge includes the following dimensions:

• Information access is not uniform. The analyst
must determine both what queries are worth mak-
ing as well as navigate the tradeoff between infor-
mation cost and quality.

• Hats represents events unfolding over time.
Rather than selecting queries over a static
database of information, the analyst must consider
how information changes and update her represen-
tation of the current state of the simulation. Fur-
thermore, the rate at which information changes
over time varies depending on the type of infor-
mation.

• Hats generates a variety of types of information
that include both scalar and categorical values:
locations (of hats, beacons and meetings), re-
sources (capabilities), behaviors over time (hat
movements, capability trades, plans to transport
capabilities to a target), and hidden group (task
force) and organization membership.

• All behaviors are planned and therefore meaning-
ful in the sense that they are goal-directed. These

goals cannot be inferred from just one type of in-
formation; identifying plans requires incorporat-
ing information about the individuals involved in
the plan (group membership), member locations
(vicinity to a beacon or heading to another meet-
ing), capabilities carried and traded, and hypothe-
ses about intention (suspicion based on association
with other known terrorists).

In Section 3.3 we noted experimental studies that
have used Hats data to test a variety of data mining
and information fusion tools. We are also using Hats as
a challenge problem domain in the Colab system [8],
a laboratory environment designed for analyst train-
ing and the study of distributed analyst collaboration.
Within Colab, multiple human analysts in different
physical locations can collaborate to build hypotheses
of unfolding Hats scenarios using a variety of tools.
Colab consists of two components: an instrumented
analysis working environment built on a blackboard
system, and a web-based user interface that integrates
the Trellis [9] hypothesis authoring and management
tool with a query language. On the blackboard, ana-
lysts collect data and perform analyses using relational
database queries and a set of analysis tools that in-
clude group identification and suspicion scoring algo-
rithms. Analysts may also define automated agents,
instructing them to look for conditions that may arise
in data, or carry out routine tasks such as automated
queries for tracking specific hats. Evidence extracted
from data analysis on the blackboard may then be in-
corporated in hierarchical structured arguments in the
Trellis tool, combining evidence sources with user-
supplied free text. Trellis arguments may be shared
between analysts and collaboratively authored. Co-

lab has been integrated with the Hats Simulator and
serves as a prototype mixted-initiative information fu-
sion system.

We are told by intelligence analysts that Hats has
many attributes of “the real thing.” Some say in the
same breath that Hats ought to have other attributes,
for instance, telephone communications, rapid trans-
portation of hats around the board, different kinds of
capabilities, and so on. We resist these efforts to make
Hats more “realistic” because for us, the purpose of
Hats is to provide an enormously difficult detection
problem without the overhead of building rich (and
probably classified) models of real domains. No doubt
Hats will change over time, but we will strive to keep
it simple. The other goal that guides our development
of Hats is what we might call the “missing science”
of intelligence analysis. To the best of our knowledge,
in the current climate, analysts penalize misses more
than false positives. This sort of utility function has
consequences – raised national alert levels, lines at air-
ports, and so on. Hats is intended to be a simulated
world in which analysts can experiment with different
utility functions. It is a laboratory in which scientific
models of intelligence gathering, filtering, and use –
models based on utility and information theory – can
be tested and compared.



8 Acknowledgements

The Hats Simulator was conceived of by Paul Cohen
and Niall Adams at Imperial College in the summer
of 2002. Dr. Cohen implemented the first version of
Hats. Work on this project was funded by the Air Force
Research Laboratory, account number 53-4540-0588.

References

[1] P. R. Cohen and C. T. Morrison. The hats simula-
tor. In Proceedings of the 2004 Winter Simulation
Conference, 2004.

[2] C. T. Morrison, P. R. Cohen, G. W. King, J. J.
Moody, and A. Hannon. Simulating terrorist threat
with the hats simulator. In Proceedings of the First
International Conference on Intelligence Analysis,
2005.

[3] A. C. Hannon, G. W. King, C. T. Morrison, A. Gal-
styan, and P. R. Cohen. Population generation in
large-scale simulation. In Proceedings of AeroSense
2005, 2005.

[4] A. Galstyan and P. R. Cohen. Identifying covert
sub-networks through iterative node classification.
In Proceedings of the First International Confer-
ence on Intelligence Analysis, 2005.

[5] J. Adibi, P. R. Cohen, and C. T. Morrison. Measur-
ing confidence intervals in link discovery: a boot-
strap approach. In Proceedings of the ACM Special
Interest Group on Knowledge Discovery and Data
Mining (ACM-SIGKDD-04), 2004.

[6] J. Neville and D. Jensen. Supporting relational
knowledge discovery: Lessons in architecture and
algorithm design. In Papers of the ICML 2002
Workshop on Data Mining Lessons Learned, 2002.

[7] A. Srinivasan. The aleph manual.
Technical report, Oxford University,
http://www.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/, 1999.

[8] C. T. Morrison and P. R. Cohen. Colab: A labo-
ratory environment for studying analyst sensemak-
ing and collaboration. In Proceedings of the Tenth
International Command and Control Research and
Technology Symposium (10th ICCRTS), 2005.

[9] T. Chklovski, V. Ratnakar, and Y. Gil. User in-
terfaces with semi-formal representations: a study
of designing argumentation structures. In Proceed-
ings of the Conference on Intelligent User Inter-
faces (IUI05), 2005.


