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Abstract. We present an overview of our work in information fusion
for intelligence analysis. This work includes the Hats Simulator and the
COLAB system. The Hats Simulator is a parameterized model of a vir-
tual world in which hundreds of thousands of agents engage in individual
and collective activities. Playing against the simulator, the goal of the
analyst is to identify and stop harmful agents before they carry out
terrorist attacks on simulated landmarks. The COLAB system enables
multiple human analysts in different physical locations to conduct col-
laborative intelligence analysis. COLAB consists of two components: an
instrumented analysis working environment built on a blackboard sys-
tem, and a web-based user interface that integrates the Trellis hypothesis
authoring and management tool with a query language. COLAB is inte-
grated with the Hats Simulator to provide a complete end-to-end analysis
environment with challenging problem domain.

1 Introduction

The COLAB Project brings together the Hats Simulator, a collaborative in-
telligence analysis environment, and a user interface to produce a prototype
end-to-end system for intelligence analysis. Hats has been operational for three
years and has been used in several studies, including providing data for part
of the AFRL EAGLE project and assessing algorithms for relational data min-
ing [1, 2]. The prototype intelligence analysis environment [3] and interface are
implemented. The complete system has three intended applications:

1. A testbed for studying distributed intelligence analysis and information fu-
sion tools

2. An environment for training intelligence analysts
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3. A configurable laboratory to test models of command and control organiza-
tion structure in an intelligence analysis setting.

Consider the following scenario. Several human analysts1 work together in
the COLAB environment to develop an interpretation of events in the Hats
Simulator world. Their goal is to identify and stop terrorist agent activities
in the simulator while trying to keep their costs low. Obtaining information
about the simulation is expensive and there are penalties for making false arrests
and failing to identify terrorist plots. By design, each player has a different
view of the information in the simulated world and none has all the relevant
information. Each player has her own workspace where she can store and process
information that she gathers from the simulator. The players collaborate via a
shared workspace where they can post hypotheses and data they think is relevant
to the larger analysis. This shared space becomes the collective interpretation of
the state of the simulator. By monitoring this interpretation a player can identify
trends, patterns, and gaps in the corporate intelligence. She will also develop
trust (or mistrust) in her colleagues by noting the quality of their analyses.

In the following sections, we present the Hats Simulator and the components
of the COLAB system. We begin in Section 2 by describing the Hats Simula-
tor, including the Hats domain, the Information Broker interface, and scoring. In
Section 3 describe the blackboard system that serves as the integration model for
the COLAB analysis working environment, the web-based interface to COLAB
that incorporates the Trellis argument authoring tool for hypothesis representa-
tion, and the query and agent definition language for accessing and manipulating
information on the blackboard.

2 The Hats Simulator

The Hats Simulator [1, 2] is home to hundreds of thousands of agents (hats)
which travel to meetings. Some hats are covert terrorists and a very few hats are
known terrorists. All hats are governed by plans generated by a planner. Terror-
ist plans end in the destruction of landmarks. The object of a game against the
Hats simulator is to find terrorist task forces before they carry out their plans.
One pays for information about hats, and also for false arrests and destroyed
landmarks. At the end of a game, one is given a score, which is the sum of these
costs. The goal is to play Hats rationally, that is, to catch terrorist groups with
the least combined cost of information, false arrests, and destroyed landmarks.
Thus Hats serves as a testbed not only for analysts’ tools but also for new the-
ories of rational information fusion that take into account information source
assessment and cost in the context of analysis goals and decisions. Hats encour-
ages players to ask only for the information they need, and to not accuse hats
or issue alerts without justification.

1 In the rest of this paper, we will use the terms “analyst” and “user” interchangeably
to refer to a human analyst using the COLAB system.
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Fig. 1. Information Broker Interface to the Hats Simulator

The Hats Simulator consists of the core simulator and an Information Bro-
ker. The Information Broker is responsible for handling requests for information
about the state of the simulator and thus forms the interface between the simu-
lator and the analyst and her tools (see Figure 1). Some information has a cost,
and the quality of information returned is a function of the “algorithmic dollars”
spent. Analysts may also take actions: they may raise beacon alerts in an at-
tempt to anticipate a beacon attack, and they may arrest agents believed to be
planning an attack. Together, information requests and actions form the basis of
scoring analyst performance in identifying terrorist threats. Scoring is assessed
automatically and serves as the basis for analytic comparison between different
analysts and tools. The simulator is implemented and manages the activities of
hundreds of thousands of agents.

2.1 The Hats Domain

The Hats Simulator models a “society in a box” consisting of many very simple
agents, hereafter referred to as hats. (Hats get its name from the classic spaghetti
western, in which heroes and villains are identifiable by the colors of their hats.)
The Hats society also has its heroes and villains, but the challenge is to identify
which color hat they should be wearing, based on how they behave. Some hats
are known terrorists; others are covert and must be identified and distinguished
from the benign hats in the society.

Hats is staged in a two-dimensional grid on which hats move around, go
to meetings and trade capabilities. The grid consists of two kinds of locations:
those that have no value, and high-valued locations called beacons that terror-
ists would like to attack. All beacons have a set of attributes, or vulnerabilities,
corresponding to the capabilities which hats carry. To destroy a beacon, a task
force of terrorist hats must possess capabilities that match the beacon’s vulner-
abilities, as a key matches a lock. In general, these capabilities are not unique
to terrorists, so one cannot identify terrorist hats only on the basis of the capa-
bilities they carry.

The Hats society is structured by organizations. All hats belong to at least
two organizations and some hats belong to many. Terrorist organizations host
only known and covert terrorist hats. Benign organizations, on the other hand,
may contain any kind of hat, including known and covert terrorists.
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Population Generation Hats populations may be built by hand or generated
by the Hats Simulator. Because the constitution of a population affects the
difficulty of identifying covert terrorists, population generation is parameterized.
There are four sets of population parameters. The first set specifies the total
number of known terrorists, covert terrorists and benign hats in the population.
Another set defines the number of benign and terrorist organizations. Not all
organizations have the same number of members, so a third set of parameters
assigns the relative numbers of hats that are members of each organization,
represented as a ratio among organizations. Finally, hats may be members of
two or more organizations. An overlap parameter determines the percentage of
hats in each organization that are members of two or more other organizations.
Since hat behaviors are governed by their organization membership, as we will
see in the next section, organization overlap affects how difficult it is to identify
covert terrorist hats. To generate populations with hundreds of thousands of hats
and thousands of organizations, we use a randomization algorithm that estimates
organization overlap percentage and membership ratios while matching the total
number of organizations and hats in the population. An efficient, approximate
population generation algorithm is described in [4].

Meeting Generation Hats act individually and collectively, but always plan-
fully. In fact, the actions of hats are planned by a generative planner. Benign
hats congregate at locations including beacons. Terrorist hats meet, acquire ca-
pabilities, form task forces, and attack beacons. The purpose of the planner is
to construct an elaborate “shell game” in which capabilities are passed among
hats in a potentially long sequence of meetings, culminating in a final meeting at
a target. By moving capabilities among hats, the planner masks its intentions.
Rather than directing half a dozen hats with capabilities required for a task
to march purposefully up to a beacon, instead hats with required capabilities
pass them on to other hats, and eventually a capable task force appears at the
beacon.

Each organization has a generative planner that plans tasks for its members.
At each tick, each organization has a chance of beginning a new task. When a new
task is started, the Hats meeting planner creates a task force, the size of which
is controlled by a parameter. The planner next selects a target location in the
Hats world. If a beacon is selected as the target, the goal of the task is to bring
to that location the set of required capabilities that match the vulnerabilities of
the beacon. If the location is not a beacon, a random set of required capabilities
is selected as the set to bring to the location.

Task force members may or may not already possess the required capabilities;
usually they dont. The planner creates a set of meetings designed to ensure
that the task force acquires all of the required capabilities before going to the
target location. This is accomplished by constructing a meeting tree that specifies
meetings and their temporal order. Figure 2 shows an example meeting tree,
where boxes represent planned meetings among hats and arrows represent the
planned temporal partial order of meetings. The tree is “inverted” in the sense
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Fig. 2. Example of a generated meeting tree. Each box represents a meeting and con-
tains a list of participating hats. Arrows indicate planned temporal order of meetings.

that the arrows point from leaves inward toward the root of the tree. Parent
meetings, where arrows originate, are executed first. When all of the parent
meetings of a child meeting have completed, then the child meeting happens.

2.2 The Information Broker

As an analyst playing the game, your job is to protect the Hats society from
terrorist attacks. You need to identify terrorist task forces before they attack
beacons, but you also need to avoid falsely accusing innocent hats. The only
way to do this successfully is to gather information about hats, identify meetings,
track capability trades and form hypotheses about the intentions of groups of
hats. The information broker provides information about the state of the Hats
world. The information broker will respond to questions such as “Where is Hat27

right now?” It will also provide information by subscription to analysts’ tools,
which in turn make information broker requests. For example, a tool might
process requests like, “Identify everyone Hat27 meets in the next 100 steps,” or,
“Tell me if Hat27 approaches a beacon with capabilities C1, C7 or C29.”

Some information is free, but information about states of the simulator that
change over time is costly. The quality of the information obtained is determined
by the amount paid.

Eight basic information requests can may be made: the hats at the location (if
any), participants in a meeting, capabilities carried by a hat, capability trades,
meeting times, hat death time, meeting locations and hat locations. The first five
requests return lists of things, such as hats, capabilities, times, etc. The latter
three are scalar values.

2.3 Actions

In addition to requesting information, the analyst playing the Hats game can
also change a beacon’s alert level and arrest hats. Both actions affect an analyst’s
performance score (discussed in Section 2.4).
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Raising Alerts We may not be able to stop an attack, but if we know it
is coming, we can prepare and minimize loss. This is the inspiration behind
modeling beacon alerts. Each beacon can be in one of three alert levels: off
(default), low, or high. These correspond to the conditions of no threat, a chance
of an attack, and attack likely. The analyst decides which level a beacon alert is
set to, but the Hats Simulator keeps track of alert states over time and whether
an actual attack occurs while the state is elevated. The goal of the analyst is to
minimize the time beacon alerts are elevated. High alerts are more costly than
low ones. On the other hand, if an attack does occur on a beacon, a high alert
is better than a low alert, and a low alert is better than none.

Arresting Hats Analysts can also issue arrest warrants for hats in order to
prevent beacon attacks. Arrests are successful only when the targeted hat is
currently a member of a terrorist task force. Attempted arrests under any other
conditions, including hats that are terrorists but not currently part of a terrorist
task force, result in a false arrest (a false positive). Under this model, a hat can
be a terrorist but not be guilty of any crime. Unless terrorist hats are engaged in
ongoing terrorist activities, their arrest incurs penalties. While this is a simple
model, it places realistic constraints on the analyst’s choice of actions.

2.4 Scoring Analyst Performance

The Hats Simulator and Information Broker together provide an environment
for testing analyst tools. The object of the game is to identify terrorist task
forces before they attack beacons. Three kinds of costs are accrued:

1. The cost of acquiring and processing information about a hat. This is the
“government in the bedroom” or intrusiveness cost.

2. The cost of falsely arresting benign hats.
3. The cost of harm done by terrorists.

The skill of analysts and the value of analysis tools can be measured in terms
of these costs, and they are assessed automatically by the Hats Simulator as
analysts play the Hats game.

3 The COLAB Analysis Environment

The Hats game is very challenging. There is a vast amount of information to keep
track of. There are hundreds of thousands of entities. The properties of these
entities change from one time step to the next. There is considerable hidden
structure, including organization membership, task force membership, coordi-
nated task goals, and benign or malevolent intention. Identifying any of this
structure will require keeping track of individual and group behavioral histories.
Interacting with the Information Broker alone makes the task nearly impossi-
ble. Any analysis environment worth its salt must help the analyst manage and
explore this information. This is the goal of COLAB analysis environment.
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The COLAB analyst environment is built on a blackboard architecture de-
signed to represent relational data and integrate a variety of intelligence analysis
algorithms as problem solving components. We first introduce the blackboard
system architecture and why we believe it is well-suited for this kind of task,
and then describe the COLAB blackboard components.

3.1 Blackboard Systems

Blackboard systems are knowledge-based problem solving environments that
work through the collaboration of independent reasoning modules [5, 6]. More
recently blackboards have been recognized as platforms for data fusion [7]. They
were developed in the 1970s and originally applied to signal-processing tasks.
The first, HEARSAY-II [8], was used for speech recognition, employing acous-
tic, lexical, syntactic, and semantic knowledge. Other systems were applied to
problems as diverse as interpretation of sonar data, protein folding, and robot
control [5].

Blackboard systems have three main components: the blackboard itself, knowl-
edge sources, and control. The blackboard is a global data structure that contains
hypotheses or partial solutions to problems. The blackboard is typically orga-
nized into spaces representing levels of abstraction of the problem domain. For
example, HEARSAY-II had different levels for phrases, words, syllables, and so
forth. Knowledge sources (KSs) are modular, self-contained programs which post
results of local computations to the blackboard. Different KSs use different types
of knowledge: for example, one might use a grammar to generate words which
are likely to occur next, while another might detect phonemes directly from the
acoustic signal. While no single knowledge source can solve the problem, working
together they can. Getting knowledge sources to “work together” is the task of
blackboard control [9].

3.2 The COLAB Blackboard

The COLAB blackboard follows the same architectural principles of a standard
blackboard except that human users interact with the blackboard, playing the
same role as other domain and control knowledge sources. The COLAB black-
board is the analyst’s “workspace,” representing and managing information that
the analyst gathers from the Hats Information Broker. In this workspace, the
analyst views, manipulates and processes Information Broker reports to extract
evidence supporting hypotheses about ongoing on potential future events. Ana-
lysts are also provided an interface to define and manage their own KS assistants,
agents that can handle routine querying, watching for user-defined conditions of
interest, and sending alerts or reminders when conditions are satisfied.

3.3 COLAB Knowledge Sources

A class of KSs called report triage KSs handle processing information broker
reports and updating the Labels and Processed Reports spaces. Another class
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consists of KS interfaces or wrappers for algorithms available to the analyst
as analysis tools or “services.” The beauty of the blackboard architecture is
that it is specifically designed to facilitate collaborative software [7]; as long as
these algorithms can read representations on the blackboard and write output
to the blackboard that is interpretable by other KSs, they can participate in
blackboard processing. Some examples of analysis services include algorithms
for assigning suspicion scores to hats [10], identifying community structure [11,
12], and reasoning about behaviors over time. Some services may require their
own blackboard spaces for specialized processing, such as a graph representation
used for community finding, but the results of any service are reported to the
Raw Reports space as a report, just like a report from the Hats Information
Broker.

Another class of KSs consists of the user-defined “agents” that perform simple
tasks. Like other KSs, agents have a trigger condition and action that is taken
if the condition is met, but triggers and actions are restricted to what can be
expressed in components of the COLAB query language, described in Section 3.4.
These agents may issue there own queries, check for conditions, and either trigger
other KSs or send messages to the users. They may be scheduled for repeated
activation and run in the background, automating routine checks of conditions
such as whether a hat on a watchlist has moved within some distance of a beacon.

3.4 The COLAB Interface

Up to this point we have described the problem domain and the core architecture
supporting the analyst working environment. We now describe the third com-
ponent of COLAB: the web-based user interface. The goal of COLAB interface
design is intuitive information management. This means making information
stored on the blackboard as accessible as possible and providing mechanisms for
analysts to author and manage their hypotheses. Information management is
an open research challenge that includes issues in knowledge engineering, query
languages, data mining and data visualization. Our design philosophy is to start
simple and start with existing technologies. For hypothesis representation, CO-
LAB uses the Trellis argument authoring tool. For information access we have
implemented a subset of standard SQL with small extensions. And our initial
interface for browsing blackboard contents will be hypertext-based.

Trellis Trellis [13] is an interactive web-based application for argumentation and
decision-making. Trellis has its roots in the Knowledge Capture AI community,
whose aim is to make it possible for unassisted users to represent their knowledge
in a form that can be use by knowledge-base AI systems. Trellis takes a step in
this direction by allowing the user to express herself using a combination of semi-
formal argument terms and relations to structured combinations of free text and
documents found on the web (including text, images, video and other media).
Users individually or collaboratively author structured arguments and analyses.
The tool is domain independent, permitting general structured argumentation
about any topic.
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Fig. 3. The COLAB web interface. The left half of the browser window contains the
interface to the Trellis argument authoring tool. An argument about whether beacon
B12 is threatened is currently being edited. The upper right of the browser window
contains the field for entering commands and queries. The Author Query command
template is currently selected. The bottom right provides a history of COLAB events,
including events created by user input, events initiated by other users (such as making
a table public) and Hats Simulator world-state events, such as advancing a tick.

We have chosen to adopt Trellis as the COLAB hypothesis authoring tool
because it expresses the basic hierarchical support/dissent relationships between
statements that we believe will be useful to analysts. Trellis also provides a well-
designed, intuitive user interface. The left half of the COLAB browser window
in Figure 3 shows an example of the Trellis Discussion interface. The interface
currently displays an argument supporting the hypothesis that beacon B012

is threatened. The top-level statement (the “target hypothesis”) asserts that
Task-force-34 threatens beacon B012. This claim is supported by three addi-
tional statements, that Task-force-34 has capabilities that overlap the vulner-
abilities of the beacon, that Task-force-34 is malicious, and that the members
of Task-force-34 are near the beacon. Capability overlap is further elaborated
by evidence that the capabilities are carried by individual hats in the group.
The example also includes a “Con” relationship, expressing a statement against
the group having the required overlapping capabilities: hat H0895 is no longer
carrying the remaining required capability C14, having apparently expired at
tick 316. The Trellis window also represents, by the colored bars to the right of
each statement, a tally of votes provided by other analysts indicating whether
they agree or disagree with the statement. In this case, only one other analyst
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has voted; green indicates they agree, red indicates they do not agree with the
statement.

Query Language During an analysis session, the blackboard will rapidly fill
with many reports about events in the Hats world, the results of analysis tools
and analyst-authored hypotheses. In order to gather, manipulate and manage
this data, we have implemented a subset of SQL, an intuitive, well-studied lan-
guage with a long, successful history in practical database applications [14].
In the relational model, an individual fact is represented as a set of attribute
values. Facts are collected in tables in which each row represents a fact, each
column corresponds to an attribute, and the cell at the row/column intersection
holds the the attribute value for the fact. Queries specify what information to
extract from tables, and the results of queries are expressed in new tables. The
upper-right frame of the browser window in Figure 3 shows the query entry field.
The query example in the window requests a table containing the hat ids and
hat capabilities for hats from the watch list table – but only for those hats
that are within distance 4 of a beacon and have a suspicion greater than 75%.
The table has also been assigned the name WatchList Hats Near Beacons by
the user.

Agents: User-defined KSs Knowledge sources provide another facility for
analyst information management. As mentioned in Section 3.3, users may use
the query language to specify KS triggers and actions.

The following is a set of example tasks that can be expressed as agents, to
help with routine monitoring of events in the Hats Simulator:

– Meeting Alert Any time two or more hats from a specified set of hats
(e.g., all hats whose locations have just been reported) meet at the same
location for more than two ticks, send an alert to the user that a meeting
may have just taken place (Along with location and time). Another agent
may be defined to trigger when the meeting alert is issued; this sensor may
then send a query to the Information Broker asking whether a meeting has
taken place at that location.

– Watchlist Scheduled Query This KS updates a “watchlist” dynamic table
to include any hats whose number of meetings with known terrorists is above
some threshold. Alternatively, the KS may schedule execution of a suspicion
scoring analysis service and the suspicion scores of hats above some threshold
are included in the Watchlist table.

– Beacon Vulnerability Sensor After each update to the watchlist above,
check whether any hats on the watchlist have capabilities that overlap a
specified beacon’s vulnerabilities. If so, trigger a beacon threat alert KS.

– Beacon Threat Alert Triggered by the Beacon Vulnerability Sensor, this
KS tests whether hat(s) triggering the vulnerability sensor are within some
distance of the beacon. If so, then send an alert to the analyst.
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3.5 COLAB Implementation

COLAB is was developed in Macintosh Common Lisp2 (MCL) 5.1 and open-
MCL3 1.0 running on Macintosh OS X. For the blackboard we used the GB-
Bopen4 blackboard framework. The web interface server is also written in Com-
mon Lisp, built on top of the lightweight Araneida5 server. Except for MCL and
Mac OS X, all of these software packages are open source.

4 Concluding Remarks

In the introduction we described three target uses for the Hats Simulator in
conjunction with COLAB: an environment for studying analyst collaboration
and analysis tools, an environment for training analysts, and a configurable lab-
oratory to study varying command and control structures for network-centric,
distributed intelligence analysis. All three are very ambitious goals and COLAB
is still an early prototype. However, the facilities described in this paper are im-
plemented and we are beginning user testing. COLAB provides and interesting,
novel information fusion architecture for intelligence analysis that is unique in its
pairing of a hypothesis authoring tool, provided in Trellis, a configurable multi-
user information management system, provided by the COLAB blackboard, and
a challenging, discrete-time simulated problem domain that can be played online.
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