
The Duration of Deliberation

Scott D. Anderson

Paul R. Cohen

Experimental Knowledge Systems Laboratory

University of Massachusetts at Amherst

fanderson,coheng@cs.umass.edu

1 Introduction

The two key features of Deliberation Scheduling and Anytime Algorithms are the duration of the compu-

tation and the resulting quality. Clearly, quality can be di�cult to de�ne and highly dependent on the

domain. Duration, on the other hand, seems straightforward: how long the computation takes. But on

what processor? Should the processor matter? What code counts in the computation? How is that code's

duration modeled? These questions are addressed in this paper.

Our work on duration modeling stems from our research on simulation systems for real-time planning [1].

One such system is Phoenix [2], which simulates forest �res burning in Yellowstone National Park. Because

the �re�ghters plan how to put out the �re while the �re is burning, there is time-pressure on their reasoning,

and they may need to think about how much planning to do. The mechanism by which Phoenix integrates

the thinking of agents with the discrete-event simulation of the environment is to advance the simulation

clock depending on the amount of CPU time used by the agent. For example, the default setting in Phoenix

is that one CPU-second corresponds to �ve minutes of simulation time.

This CPU-time approach is standard among AI simulators for real-time planning [1]. Unfortunately,

there are problems with using CPU time, all of which we have su�ered while using Phoenix:

Variance: Small, random variations in the measurement of CPU time result in random variation in the

behavior of the simulation. This can make it di�cult to replicate a particular simulation state, whether

for debugging, demonstration, or experimentation.

Platform-dependence: The simulation behaves di�erently from one Lisp platform to another. This exac-

erbates the variance problem and puts unwanted noise in data from large experiments in which trials

are run on many di�erent machines.

Interference: Adding code to record or print data, say for debugging, demonstrations, or to measure

quality, a�ects the CPU time of the code, which in turn a�ects the behavior of the simulation. This

is something like the Heisenberg principle in physics: the act of observing the code a�ects the code.

While the Heisenberg principle may be true in the real world, it is hardly convenient for experimental

scientists.

Essentially, all these troubles are \noise" that comes from using CPU time. Consequently, we looked for

another way of measuring how much computation an agent has done, one that gives us replicability of

simulation states.

2 Duration Modeling

Our basic idea for modeling a computation's duration is to advance the clock by some amount for each

\primitive" that is executed. If these increments depend only on the code that is executed and not the Lisp

platform, the duration of the code will be invariant. What remains is to decide what a primitive is and how

the increments are determined.

1



2.1 Low-level Models

A \low-level" primitive is a primitive of the Common Lisp language, such as car, +, or subst. By using

low-level models, you can retain much of the avor of the CPU-time approach, because the duration is tied

quite tightly to exactly what code executes. We have implemented a language in which every primitive of

Common Lisp is shadowed, so that the functions have the same semantics but also advance the clock by a

certain amount. (We call this language Timed Common Lisp or tcl.) You program in tcl exactly as in

Common Lisp|the two are essentially the same from the programmer's viewpoint. The di�erence is that

tcl primitives advance the clock.

Of course, we will not want to advance the clock by the same amount for each tcl primitive. We will not

even want to advance it in the same way. For example, car should advance the clock by a small constant;

most primitives fall into this category, although the constants are all di�erent. Functions like +, on the other

hand, should advance the clock depending on the number of arguments they get. (The duration of arithmetic

primitives can also depend on the types of the arguments, although the current tcl implementation does

not do so.) The duration of a function like member, which searches a list for some element, should depend

on the length of the list. For a function like make-array, the duration should depend on the number of

elements in the array.

In implementing tcl, we have de�ned about two dozen classes of such duration models. A duration

model is some measure of the amount of work some primitive does. This measure is then multiplied by

a coe�cient to yield the actual duration of the primitive with that duration model. Duration models are

entirely analogous to the \big-O" notation of complexity theory. A constant time function like car has a

duration model that is O(1), while a function like * has a duration model that is O(n) where n is the arity

(number of arguments) of the function. The duration model of sort is O(n logn), where n is the number of

arguments to be sorted.

Given these duration models, a \duration database" is then de�ned. Here are some excerpts:

(define-cl-primitives

append append-operations 2

butlast :length 2

intersection set-operations 0

make-array array-dims 2

ninth :constant 9

not :constant 1

reverse :length 3

set-difference set-operations 3)

Each line names a primitive of tcl (and Common Lisp), a class of duration model (such as :constant for

functions like not or ninth) and the coe�cient to be used (such as 1 for not or 9 for ninth).

These coe�cients are arbitrary. Any set of values will give us the desired noise-free measure of duration.

However, in our laboratory, we will be de�ning these coe�cients to correspond roughly with the times for

these functions on the Texas Instruments Explorer, so that we can duplicate the behavior of the Phoenix

simulator. Other researchers may choose to duplicate the timing of other platforms on which they are

currently measuring CPU time. tcl will also provide tools to help with determining what coe�cients to

use.

By using these low-level models, tcl can report numbers that look like CPU time, but are noise-free and

can be replicated on any Common Lisp platform, since tcl runs on any Common Lisp.

2.2 High-level Models

The fundamental operations of an AI program need not be reduced to the primitives of Common Lisp|we

can de�ne duration models at a higher level. For example, a chess-playing program might de�ne \evaluating

a board position" or \generating a move" as a fundamental \cognitive primitive." The duration of some

computation is then O(f(n;m)), where m and n are the number of these higher level primitives; for example,

m could be the number of board positions evaluated and n could be the number of moves generated, and f

is some arbitrary function of those numbers, determining the duration of a move.

This is a natural approach to modeling the duration of anytime algorithms, since many anytime algorithms

use iterative improvement or similar approaches where there is a natural \unit" of duration (and quality).

By encapsulating each iteration as a tcl primitive with its own duration model, we can reduce the overhead

of tcl (see section 4) and have a program whose duration is simpler and easier to understand. It's hard to



look at a CPU time and know that it's \right," but if an iterative improvement algorithm reports a duration

of, say, 70, and each iteration takes 5 time units, it's pretty clear what's going on.

Of course, as with the primitives of Common Lisp, we don't want to con�ne ourselves to constant-time

models. tcl allows duration models to be de�ned as arbitrary functions of the primitive's arguments and the

computational state of the system. The model can even be pseudo-random, if that's desirable. To achieve

our goal of replicability, the model need only be a deterministic computation.

An agent doing deliberation scheduling needs a simple, declarative representation of how long thinking

will take. High-level cognitive primitives can help here, especially since the duration models are stored in a

tcl database that is accessible to the agent. If the duration model is not a simple constant, the agent can

still try to predict how long the computation will take by guessing at the aspects of the simulation state

used by the duration model. For example, it might be reasonable to guess at the number of board positions

that will be evaluated during a move. It certainly seems easier to guess at that number than to guess at the

amount of CPU time that the move would take. Of course, a historical approach can also be used, where

the durations that occurred on previous runs are used for prediction; these historical durations can also be

stored in the tcl database.

Using a high-level model also allows for a new class of experiments in which the durations of di�erent

cognitive primitives are independently controlled. For example, if \move generation" and \board evalua-

tion" are two cognitive primitives in a chess agent, we can modify the duration model for one primitive

independently of the other to see the e�ect on performance. In principle, one can also alter the duration

model for car independently of that of cdr, but there are no interesting research questions posed by that

manipulation. By moving to high-level primitives, one can ask sensible questions about duration/quality

tradeo�s.

2.3 Integrating Models

High-level and low-level duration models are not mutually exclusive. In the call-tree of a program, the

durations of higher functions can either be determined by the code they call, even down to the lowest Lisp

primitives, or they can be determined by independent duration models. This boundary is analogous to the

the AjB distinction described by Cooper et al. [3], where the cognitive primitive is above the line (A) while

the algorithm is below the line (B)|the line demarcates the boundary between theoretical commitment and

implementation detail. tcl makes no distinctions between the levels of primitives and so can easily admit a

mixture of both ways to model duration.

3 Non-interfering Code

So far, we've described how the clock advances as each primitive executes. What if we don't want the clock to

advance? Suppose, for example, we put in a print statement either to debug or demonstrate the program's

behavior. We don't want that insertion to a�ect the behavior of the simulation. With a CPU-time approach,

it can be hard to turn o� the clock, but with tcl it's trivial. Anything code that shouldn't advance the clock

is wrapped in a free form. For example, the following reports what the agent is thinking about without

a�ecting its thoughts or their duration:

(defun think ()

...

(free (format t "Thinking about ~s~%" current-thought))

...)

This ability is particularly important in anytime algorithms and deliberation scheduling, since we will

want to insert code to measure and report the quality of the result, yet we don't necessarily want that code

to a�ect the algorithm's behavior. For example, measuring the quality of a tour in the TSP (Traveling

Salesman Problem) might be a non-trivial computation that is entirely separate from the tour-improvement

computation and therefore should be o� the clock. Even if we want the quality computation to be on

the clock, we may also be saving the (duration,quality) pair to a �le or database, for future reference in

deliberation scheduling. tcl allows those operations to be done without interfering with the simulation's

behavior.



Table 1: Timing studies on a DEC Alpha running Harlequin Lispworks. Columns 1 and 2 are two runs of the

benchmarks in ordinary Common Lisp. Columns 3 and 4 are runs of those benchmarks using two versions

of tcl. Columns 5 and 6 are columns 3 and 4 divided by the mean of columns 1 and 2.

raw CL raw TCL relative TCL

1st run 2nd run w/o CW w/ CW w/o CW w/ CW

boyer 1:182 1:142 3:033 2:515 2:6 2:2

browse 1:034 1:103 4:045 2:686 3:8 2:5

ctak 0:079 0:072 0:147 0:100 1:9 1:3

dderiv 0:288 0:322 0:359 0:307 1:2 1:0

deriv 0:338 0:335 0:416 0:347 1:2 1:0

destru-mod 0:118 0:120 0:303 0:140 2:5 1:2

destru 0:124 0:120 0:298 0:151 2:4 1:2

div2 0:273 0:308 0:597 0:339 2:1 1:2

�t-mod 1:413 1:326 1:871 1:382 1:4 1:0

�t 1:949 2:143 2:522 1:980 1:2 1:0

frpoly 2:626 2:562 4:050 3:283 1:6 1:3

puzzle-mod 1:474 1:076 1:876 1:357 1:5 1:1

puzzle 1:195 1:089 1:845 1:307 1:6 1:1

stak 0:113 0:112 0:184 0:146 1:6 1:3

tak-mod 0:183 0:186 0:670 0:430 3:6 2:3

tak 0:184 0:188 0:597 0:454 3:2 2:4

takl 0:106 0:093 0:383 0:260 3:8 2:6

takr 0:090 0:092 0:214 0:138 2:4 1:5

traverse 3:674 3:644 8:213 6:683 2:2 1:8

triang-mod 43:718 36:020 53:170 39:892 1:3 1:0

triang 15:741 16:043 33:002 19:452 2:1 1:2

4 Overhead

What are the disadvantages of using tcl? There are no notational disadvantages, since it looks just like

Common Lisp and requires no commitment to a particular agent- or cognitive-architecture. The advancing of

the clock, however, does entail an inevitable overhead. Quite simply, the code is doing more work. Therefore,

there will be some slowdown of the user's code.

It's di�cult to make any blanket statements about how much slowdown there will be without knowing the

kind of code and duration models. The speed will depend partly on the level of the primitives that the code

uses. For example, if the code is \low-level" code that does a lot of operations like car and cdr, each of those

primitives now has an associated increment of the clock. For such simple functions, incrementing the clock

is a signi�cant slowdown. On the other hand, a function like sort is barely slowed down by measuring the

size of its input (n) and incrementing the clock by cn logn, where c is the duration model coe�cient. If the

user de�nes cognitive primitives at a higher level, the overhead may be even less. In addition, unfortunately,

the speed also depends on the quality of the Lisp compiler.

We can, however, take timings of standard benchmark programs, to get an idea of how much tcl slows

the code down. The data in table 1 were collected using Gabriel's benchmarks [4], which are available by

anonymous FTP from the CMU AI archives or by contacting us. The �rst two columns are raw timings

(that is, CPU seconds) for the benchmark programs running normally in Harlequin Lispworks on a DEC

Alpha. Note the di�erence between the entries in the two columns: this is the variation that we want to be

rid of by using tcl rather than CPU time to de�ne the duration of thinking. The second pair of columns

are raw times for ordinary tcl code and for an optimized version of tcl code that uses a code-walker (CW)

to combine duration increments at compile-time.1 (Therefore, unlike the �rst pair of columns, the second

pair of columns are not two measurements of the same thing. The reduction in times in the fourth column

over the third is the improvement due to the compile-time code-walking.) The third pair of columns is the

1Note that all we needed to do to \port" the benchmark programs to tcl from CL was to load the programs into a di�erent

package. The algorithms across a row are exactly the same.



speed of tcl, with and without the code-walking, relative to the mean CL time. For example, the 2.2 in the

upper right of the table is the speed of tcl with the code-walker (2.515) divided by the mean of 1.182 and

1.142. This data is from just six runs, and, because of the variance in measuring CPU times, we would have

to collect much more data to get very precise estimates. Nevertheless, we can conclude that (1) variance in

measuring CPU time is indeed a problem, and (2) the cost of using tcl appears to be 20 to 120 percent,

depending on the benchmark program. Naturally, we hope that realistic AI programs will tend more towards

the lower end of the range.

We are currently re-implementing Phoenix using a simulation substrate called Mess (Multiple Event

Stream Simulator), of which tcl is a part. At the workshop, we should have some timings available for

the Phoenix agent code, which will undoubtedly be more representative of AI code than these benchmark

programs. Finally, let us note that these results at least indicate that tcl does not have any major omissions.

We will continue to improve the implementation, but we consider its coverage to be nearly complete.

5 Conclusion

Using the Timed Common Lisp language frees a researcher from worrying about noise in measuring CPU

time, from worrying that a new release of the Lisp compiler will cause a change in an agent's behavior

or an algorithm's time/quality curves, from worrying that the system's behavior on an DEC Alpha won't

be the same as on a SUN SPARCstation, and from worrying that adding instrumentation code to collect

statistics will change the behavior of the simulation. This noise may not even be very great; Phoenix's

variance isn't very much, but it is noticeable, and it is enough to prohibit experiments in which we replicate

particular simulation states. Therefore, tcl gives us a signi�cant advantage over a CPU-time approach.

Furthermore, the tcl approach allows us to declaratively represent duration using high-level primitives, so

that deliberation scheduling becomes easier and allows us more control over time/quality tradeo�s.

Acknowledgments

This work is supported by ARPA/Rome Laboratory under contract F30602-93-C-0100 and by NTT Data

Communications Systems Corporation. The U. S. Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright notice contained hereon.

References

[1] Scott D. Anderson. A simulation substrate for real-time planning research: Thesis proposal. Techni-

cal Report 94-84, University of Massachusetts at Amherst, Computer Science Department, Amherst,

MA 01003, 1994.

[2] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe. Trial by �re: Understanding

the design requirements for agents in complex environments. AI Magazine, 10(3):32{48, Fall 1989.

[3] Richard Cooper, John Fox, Jonathan Farringdon, and Tim Shallice. Towards a systematic methodology

for cognitive modeling. Technical Report UCL-PSY-ADREM-TR5, University College London, November

1992.

[4] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press, 1985.


