Physical Planning and Dynamics

Marc S. Atkin and Paul R. Cohen
Experimental Knowledge Systems Laboratory
Department of Computer Science, LGRC, Box 34610
University of Massachusetts, Amherst, MA 01003
{atkin,cohen}@cs.umass.edu

Abstract

The Capture the Flag domain is uncertain, adversarial,
and continuous. It poses several hard planning prob-
lems. We have developed a planner that attempts to
exploit Capture the Flag’s inherent dynamics, instead
of being stymied by them. In particular, it uses the
notion of critical points to define states in this contin-
uous domain. These states are then used to efficiently
evaluate plans.

Capture the Flag

The Capture the Flag project started when we were
asked whether we could build a planner that beats
the Army War College professors in war games. We
said sure, and the next thing we knew, we were off to
Carlisle, PA to meet the professors themselves. Despite
mutual interest and admiration, the Army War College
declined to participate, so we built our own simulation
of a game we call Capture the Flag (CTF). Humans
can play against the machine or let the computer play
against itself; in the future, we envision CTF also as
a vehicle for mixed-initiative planning in which a hu-
man/machine pair plays against a human or the ma-
chine.

In CTF (see Figure 1), there are two teams; each has
a number of movable units and flags to protect. Their
number and starting locations are randomized. They
operate on a map which has different types of terrain.
Terrain influences movement speed and forms barriers.
A team wins when it captures all its opponent’s flags.
A team can also go after its opponent’s units to reduce
their strength and effectiveness. This game is decep-
tively simple. The player must allocate forces for attack
and defense, and decide which of the opponent’s units
or flags he should go after. The player must react to
plans not unfolding as expected, and possibly retreat or
regroup. There are many tactics, from attacking all-out
to trying to sneak by the opponent’s line of defense. In
our current implementation, both players have a global
view of the game; when we add limited visibility many
more strategies, such as ambushes or traps, will emerge.

CTF is in many ways a direct descendent of Phoenix:
a spatial domain, continually changing, in which one
plans in real time against adversaries given incomplete

and inaccurate data (Cohen et al. 1989). Plans will
only rarely be carried out without modification; too
many unexpected events happen. Both sides must con-
stantly check the execution of their plans, make adjust-
ments, and exploit opportunities. They perform con-
tinual planning.

CTF also has a passing resemblance to Robocup, as it
requires that teams of agents coordinate their actions to
achieve a common goal in a (simulated) physical world.

AFS: The Abstract Force Simulator

Capture the Flag is implemented within the framework
of a much larger system for agent simulation and con-
trol, called the Abstract Force Simulator (or AFS) (fur-
ther details can be found in (Atkin et al. 1998)).

It occurred to us some time ago that many of the
simulators we had been writing were just variations
on a theme. Physical processes, military engagements,
games such as billiards, are all about agents moving
and applying force to one another (see, for example,
(Tzu 1988) and (Karr 1981)). Even the somewhat ab-
stract realm of diplomacy can viewed in these terms:
One government might try to apply pressure to another
for some purpose, or intends to contain a crisis before
it spreads.

Furthermore, it became clear that there is a common
set of terms that can be used to describe all the above
domains. Terms like move, push, reduce, contain,
block, or surround. Collectively, we refer to these
terms as physical schemas. If moving an army is con-
ceptually no different than moving a robot, both these
processes can be represented with one move action in
a simulator.

Based on these ideas, we have developed a simula-
tor of physical schemas, the Abstract Force Simulator.
It operates with a set of abstract agents, circular ob-
jects called “blobs,” which have a small set of physical
features, including mass, velocity, friction, radius, at-
tack strength, and so on. A blob is an abstract unit; it
could be an army, a soldier, or a political entity. Every
blob has a small set of primitive actions it can perform,
primarily move and apply-force. All other schemas
are built from these actions. Simply by changing the
physics of the simulator, that is, how mass is affected



L3 I

12}
i » | o

Entech: 0

Figure 1: The Capture the Flag domain.

by collisions, what the friction is for a blob moving over
a certain type of surface, etc., we can turn AFS from
a simulator of billiard balls into one of unit movements
in a military domain.

The blob’s control architecture is hierarchical. We
use the physical primitives move and apply-force to
construct schemas, and schemas to construct domain-
specific actions like convoy or sneak-attack. Our hi-
erarchy is supervenient (Spector & Hendler 1994). This
means that it abides by the principle that higher lev-
els should provide goals and context for the lower lev-
els, and lower levels provide sensory reports, messages,
and errors to the higher levels (“goals down, knowledge
up”). A higher level cannot overrule the sensory infor-
mation provided by a lower level, nor can a lower level
interfere with the control of a higher level. Superve-

nience structures the abstraction process; it allows us
to build modular, reusable, actions.

The Capture the Flag Planner

The CTF planner is a partial hierarchical plan-
ner (Georgeff & Lansky 1986). By having a set of pre-
compiled skeletal solutions, we can avoid the enormous
branching factor a generative planner would face in this
domain. Partial hierarchical planning meshes very well
with the idea that people understand and reason about
the world in terms of physical schemas. Viewed at the
level of physical schemas, there are only a few different
ways to solve a problem. For example, if A and B are
point masses, A can cause B to move by i) pushing it,
ii) asking it to move (if it an intentional agent), iii) forc-
ing it to move, or iv) initiating movement in B. These



An action or a plan posts a goal G. This invokes the following process:

1. Search the list of plans for those that can satisfy G.

2. Evaluate each potential plan’s pre-conditions (including dynamics), and only keep those whose pre-conditions

match.
3. For each plan, do the following:

3.1 If the plan requires multiple tasks to be achieved,

3.1.1 Generate and rank the task list.

3.1.2 Using heuristics, generate a set of schema lists that achieve these tasks efficiently. Each set of schemas is

a plan.

3.2 Evaluate the plan (or set of plans) using forward simulation.
4. Execute the plan that in simulation results in a world state with the highest score.

Figure 2: The planning algorithm.

separate solutions can be written down as plans that
satisfy the goal “make B move”. The exciting thing
about planning at the physical schema level is that the
plans you use are not limited to just one domain. If
you can figure out what “move” and “push” mean in a
domain, you can use your old plans.

A problem in CTF and any other domain that in-
volves the coordination of multiple agents is resource
arbitration. Winning CTF involves multiple tasks:
protecting your own flags, thwarting enemy offensives,
choosing the most vulnerable enemy flag for a counter-
attack, and so on. Each requires resources (blobs) to be
accomplished. Sometimes one resource can be used to
achieve several tasks. For instance, if two flags are close
together, one blob might protect both. Or, advancing
towards an opponent’s flag might also force the oppo-
nent to retreat, thus relieving some pressure on one’s
own flags.

The CTF planner solves the resource allocation prob-
lem by first ranking the list of tasks that need to be
achieved to satisfy a goal. It then generates several
lists of physical schemas that achieve the most impor-
tant tasks. Examples for schemas are “attack flag C”
or “block the mountain pass.” Heuristics, such as “pre-
fer schemas that minimize the total number of blobs
needed,” are used to keep the task list small. Each
schema list constitutes one plan for achieving the list
of tasks. By design, plans cannot contain resource con-
flicts, since every pertinent task was considered during
their generation. If resource problems arise during a
plan’s execution, for example because a blob was de-
stroyed and the schema using it cannot succeed without
it, a resource error message is sent to the plan initia-
tor, possibly causing resources to be re-assigned or a
complete replan to take place. The complete planning
algorithm is outlined in Figure 2. Figure 3 shows an
example of the plan generation procedure.

Plan Evaluation Using Critical Points

When several plans apply, partial hierarchical planners
typically select one according to heuristic criteria. Mil-
itary planners will actually play out a plan and how the
opponent might react to it. A wargame is a qualitative

simulation. The CTF planner does the same: it simu-
lates potential plans at some abstract level, then applies
a static evaluation function to select the best plan. The
static evaluation function incorporates such factors as
relative strength and number of captured and threat-
ened flags of both teams, to describe how desirable this
future world state is.

Simulation is a costly operation, and in order to do
it efficiently, CTF must be able to jump ahead to times
when interesting events take place in the world. The
problem that CTF faces is having to impose “states”
on a continuous domain. It does this by defining state
boundaries, called critical points, that are established
dynamically, as the plan simulation unfolds. A critical
point is a time during the execution of an action or plan
where a decision might be made. If this decision can be
made at any time during an interval, it is the latest such
time.

)

o

Fod M@
® 7 e T 0

\

o 3

Figure 4: An example for a critical point while execut-
ing an attack action.

Simple actions, such as moving from point A to point
B, only have one critical point: the time at which the
action completes. This is the time at which a new de-
cision has to be made about what to do with the blob
that was moving. The critical time can easily be esti-
mated given the terrain and the blob’s typical move-
ment speed. More complicated actions have larger crit-



Goa: win-the-game

1. protect least
generate vulnerableflag
ranked 2. protect other

< . tasklist flags
2 |- defensive —— 3, attack most
£ | stance vulnerable enemy
8 fl
= ag
ks
=
2
E--aggrve
i stance
-- aggressive
stance
(sneak attack) current world state

generate
physical
schema

"

forward

simulate

and

evaluate

—_—
resulting world
state score: 50

—_
score: 100
(choose this
plan for
execution)

Figure 3: A planning example: White is trying to satisfy the goal win-the-game. Several top-level plans match this
goal; the example explores what happens when defensive-stance is expanded. In the context of this plan, defense
is considered vital, which is reflected in the task list that is generated. There are several sets of schemas that achieve
these tasks, and many ways to allocate resources to these schemas. The planner uses heuristics to prune this set.
In the first case, two blobs are allocated to flag defense, and one is sent out to attack. In the second plan, only one
blob is needed to block the mountain pass, thus protecting the flags, leaving two blobs for the attack. This plan is

more likely to succeed and is ranked higher.

ical point sets. This attack action depicted in Figure 4
makes a decision during its execution: it will abandon
the attack if the thing being attacked is protected by
a blob larger than the attacker. In this example, a
white blob is attacking a black flag and there is a large
black blob nearby. The critical point is the time at
which the white blob is closer to the flag than the black
blob is now. This is the latest point in time at which
Black could interfere with the attack action. If Black
has started moving to the flag by this time, White will
abandon the attack. If Black has remained stationary
or gone somewhere else, the attack will be successful
and the flag will be destroyed.

Note that critical points are only bounds, they are not
the exact times at which a decision will be made. In the
above example, the black blob might move to protect
its flag right away, in which case White will abandon
the attack sooner than the critical time. This is not
a large qualitative difference to the scenario that was
simulated. If we had simulated without critical points,
and simply completed White’s action, there would have
been a large qualitative error: The flag would have ei-
ther marked as destroyed (which wouldn’t have hap-
pened if Black moved in), or White would have been
destroyed by the protecting black force (which would
never have happened since White would have fled be-
fore it came to that).

Critical points are essential for plan evaluation in the
CTF planner, since they are used to guide forward sim-

ulation. The basic idea behind forward simulation is
that instead of advancing the world tick by tick, which
is time-consuming, we jump right to the next critical
point. Forward simulation proceeds in the following
way':

1. Add the plan P to be evaluated to all the actions
currently ongoing in the simulator.

2. In simulation, loop either until a fixed time in the
future or until too many errors have accumulated in
the simulation:

2.1 Compute the minimum critical time ¢t of all ac-
tions being simulated.
2.2 Advance all actions by ¢ time units.

3. Evaluate the resulting world state; return this value

as the score for the plan P.

For this algorithm to work, every action and plan
must have two functions associated with it. The first
computes the next critical time for this action. The
second, (advance t), takes as an argument a time pa-
rameter ¢t and will change the world state to reflect the
execution of this action ¢ time units into the future.
Currently, we have no automated way of generating
these functions, so they are written by the designer of
the action. In the case of the attack action shown in
Figure 4, the decision about whether or not to abort
depends on whether the white blob can get closer to
the black flag than any black blob. A simple approx-
imation of the critical point would be the time it will
most likely take, given the terrain, to get as close to



the black flag as the closest black blob is now. A more
accurate approximation would take the current veloci-
ties of all black blobs into account, since some might be
moving towards the flag.

Forward simulation advances to the minimum of all
critical points. To understand why this is necessary,
let us consider action T, the action with the minimum
critical time ¢t. The decision that 7" must make at time
t depends on the state of the world at that time. The
state of the world is affected by all the other actions
that are executing. If the world had not been advanced
by the minimum of all critical times, 7" might not make
the same decision in simulation as it would have if it had
actually executed. The downside of having to take the
minimum is that forward simulation will take shorter
and shorter jumps as the number of simulated actions
increases. This makes sense, though, since the more
actions you have, the more possible interactions there
might be. (One way to alleviate this problem is to
prune the number of actions by eliminating those that
will most likely have no effect on the action being eval-
uated.) The upside is that no action has to concern
itself with the critical point computation of any other
action.

Another upside is that if a critical time is very hard
to compute, it is acceptable for it to be underestimated.
This will cause the simulated world state to advance to
a time sooner than the actual critical time, at which
point the action will have another chance to estimate
it correctly. In the extreme case, an action can report
the smallest time increment possible. The evaluation
process for this action will degenerate into normal tick-
based simulation.

One last issue to address is how the opponent is han-
dled. If we had an opponent model, it would specify
how he would react in certain situations. In the ab-
sence of such a model, we simply assume he would do
what we would do in his situation. During forward sim-
ulation, the action list also contains opponent actions.
When CTF starts plan evaluation, it simply puts the
top-level goal win-the-game for the opponent into the
action list. The opponent action’s critical times are
computed just like ours, and they are advanced in the
same way. Whereas our side evaluates all plans and
chooses the best one, the opponent chooses the worst
one (for us). This really is a form a minimax search,
with the two sides executing their plans in parallel.

Towards Dynamics-Based Planning

In the last section we defined states in a continuous
domain in order to do efficient plan evaluation. These
states were defined dynamically using critical points.
The question arises whether it is possible to do planning
without “state” at all, purely in the realm of dynamics.

The traditional view in planning is that the world is
described by a series of static snapshots, and that plan-
ning means finding actions that will move the world
from one snapshot (or state) to the next. But this view
does not exploit the dynamics inherent in the actions,

and instead places artificial state boundaries between
them. Consider the process of two battalions engaging.
When does this “state” begin and end? Certainly one
can identify qualitatively different states in a continu-
ous space; for example, the state of having a resource
continues until the resource is exhausted. But plan-
ning with such states ignores the dynamics of getting
from one to another. Is the resource being used fast
or slowly, continuously or erratically? Can you pre-
dict when it will be gone, and with what accuracy?
So much information about a situation is conveyed by
dynamics. Indeed some “state descriptions” are re-
ally descriptions of dynamics (e.g., “a pick and roll is
in progress”). So if you want to plan for continually
changing environments, why start by dividing the en-
vironment into states? We are trying to do away with
state space search, substituting instead representations
and methods from nonlinear dynamics, and reasoning
directly about them.

In related work (not CTF) we have developed a rep-
resentation for dynamics that is based on phase por-
traits (Rosenstein & Cohen 1998). In phase portraits,
one typically plots a value such as position against
its derivative, velocity; but the axes could in principle
be any variable. We call these generalized phase por-
traits dynamic maps. Actions are trajectories through
these maps. One of our more interesting results is that
clusters of trajectories correspond to classes of qualita-
tively different situations in the world, and that these
classes can be learned in an unsupervised manner. Fur-
thermore, we can classify an unfolding situation very
quickly and accurately using dynamic maps.

Dynamic maps could be used in the CTF planner
in a number of ways. For one, we could replace the
plan pre-conditions, which are currently decision rules
written in LISP, by dynamic maps. A plan to besiege
the opponent and win by attrition will only work if he is
using resources faster than you are. If the map axes are
the resource consumption rates of the two teams, being
in a situation where this plan applies corresponds to
being in a particular region of the map.

Similarly, dynamic maps can represent a plan as it
unfolds over time. Clusters of trajectories through the
map, corresponding to different outcomes of the plan,
can be identified. If, during plan execution, a plan
moves too close to a part of the map that will result
in an undesirable outcome, it can signal a problem or
try to correct its trajectory.

Taking this idea one step further, it might be possible
(although we have not yet done so) to write a planner
that is guided solely by dynamic maps. A goal is a re-
gion of the map you want to reach, planning involves
searching over actions that will move the planner to-
wards this region. If the map has regions of attraction,
the process is simplified: The planner need not plan
to reach the goal, only to reach the goal’s attraction
region.



Acknowledgments

This research is supported by DARPA/USAF un-
der contracts F30602-97-1-0289 and F30602-95-1-0021.
The US Government is authorized to reproduce and
distribute reprints for governmental purposes notwith-
standing any copyright notation hereon. The views and
conclusions contained herein are those of the authors
and should not be interpreted as necessarily represent-
ing the official policies or endorsements either expressed
or implied, of the Defense Advanced Research Projects
Agency, Rome Laboratory or the US Government.

References

Atkin, M. S.; Westbrook, D. L.; Cohen, P. R.; and
Jorstad, G. D. 1998. AFS and HAC: Domain-general
agent simulation and control. In Working Notes of the
AAAI 98 Workshop on Software Tools for Developing
Agents, 89-95.

Cohen, P. R.; Greenberg, M. L.; Hart, D. M.; and
Howe, A. E. 1989. Trial by fire: Understanding the de-
sign requirements for agents in complex environments.
AI Magazine 10(3):32-48.

Georgeff, M. P., and Lansky, A. L. 1986. Procedural
knowledge. IEEE Special Issue on Knowledge Repre-
sentation 74(10):1383-1398.

Karr, A. F. 1981. Lanchester attrition processes and
theater-level combat models. Technical report, Insti-
tute for Defense Analyses, Program Analysis Division,
Arlington, VA.

Rosenstein, M., and Cohen, P. R. 1998. Concepts from
time series. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 739-745. AAAI
Press.

Spector, L., and Hendler, J. 1994. The use of superve-
nience in dynamic-world planning. In Hammond, K.,
ed., Proceedings of The Second International Confer-
ence on Artificial Intelligence Planning Systems, 158—
163.

Tzu, S. 1988. The Art of War. Shambhala Publica-
tions.



