
Capture the Flag: Military Simulation Meets Computer Games

Marc S. Atkin, David L. Westbrook and Paul R. Cohen
Experimental Knowledge Systems Laboratory

Department of Computer Science, LGRC, Box 34610
University of Massachusetts, Amherst, MA 01003

fatkin,westy,coheng@cs.umass.edu

Abstract

Some of the more complex AI testbeds are not that dif-
ferent from computer games. It seems that both sides,
AI and game design, could pro�t from each other's
technology. We go a �rst step in this direction by pre-
senting a very general agent control architecture (HAC:
Hierarchical Agent Control), a toolkit for designing
an action hierarchy. It supports action abstraction,
a multi-level computational architecture, sensor inte-
gration, and planning. It is particularly well suited
to controlling large numbers of agents in dynamic en-
vironments. We conclude the paper with an example
of how HAC was applied to the game we use as our
development domain: Capture the Flag.

Introduction

In the Experimental Knowledge Systems Laboratory,
we have developed a number of complex simulations.
phoenix, a system that uses multiple agents to �ght
�res in a realistic simulated environment, is perhaps the
best example (Cohen et al. 1989). We have also made
e�orts to write general simulation substrates (Ander-
son 1995; Atkin et al. 1998). Currently, we are work-
ing on creating a system, called coaster, which will
allow army commanders to design and evaluate high
level plans (\courses of action") in a land-based cam-
paign. Our domain is a variant of the game \Capture
the Flag."
It occurred to us that these simulators were just vari-

ations on a theme. Physical processes, military engage-
ments, and a lot of computer games are all about agents
moving and applying force to one another (see, for ex-
ample, (Tzu 1988) and (Karr 1981)). We therefore
set ourselves the goal of constructing a domain-general
agent development toolkit and simulation substrate.
Regardless of the domain, agent designers must face
the same kinds of problems: processing sensor informa-
tion, reacting to a changing environment in a timely
manner, integrating reactive and cognitive processes to
achieve an abstract goal, interleaving planning and ex-
ecution, distributed control, allowing code reuse within
and across domains, and using computational resources
e�ciently. Since many game developers are also agent
designers, we think they could bene�t from this toolkit,

too.

This paper will describe a general framework for
controlling agents, called Hierarchical Agent Control

(HAC). Complementing it is a general simulator of
physical processes, the Abstract Force Simulator (AFS).
HAC itself is a general skeleton for controlling agents.
It can work with many kinds of simulators or even real-
life robots, as long as they adhere to a certain protocol.
HAC is written in Common Lisp.

Hierarchical Agent Control

The problem HAC solves is providing a relative easy
way to de�ne the behavior of an agent. It can be viewed
as a language for writing agent actions. HAC takes care
of the mechanics of executing the code that controls an
agent, passing messages between actions, coordinating
multiple agents, arbitrating resource con
icts between
agents, updating sensor values, and interleaving cogni-
tive processes such as planning.

One of the major issues in de�ning an action set for
an agent, and, arguably, one of the major issues in de�n-
ing any kind of intelligent behavior, is the problem of
forming abstractions. No agent designer will want to
specify the solution to a given problem in terms of prim-
itive low-level actions and sensations. Instead, she will
�rst build more powerful abstract actions, which encode
solutions to a range of problems, and use these actions
when faced with a new problem. If a robot is supposed
to retrieve an object, we don't want to give it individual
commands to move its wheels and its gripper; we want
to give it a \pick-up" command and have the robot �g-
ure out what it needs to do.

HAC supports abstraction by providing the mecha-
nisms to construct a hierarchy of actions. In the hi-
erarchy, abstract actions are de�ned in terms of sim-
pler ones, ultimately grounding out in the agent's ef-
fectors. Although actions are abstract at higher lev-
els of the hierarchy, they are nonetheless executable.
At the same time, the hierarchy implements a multi-
level computational architecture, allowing us, for ex-
ample, to have both cognitive and reactive actions
within the same framework (George� & Lansky 1987;
Cohen et al. 1989).



The main part of HAC's execution module is an ac-
tion queue. Any scheduled action gets placed on the
queue. The queue is sorted by the time at which the
action will execute. Actions get taken o� the queue and
executed until there are no more actions that are sched-
uled to run at this time step. Actions can reschedule
themselves, but in most cases, they will be rescheduled
when woken up by messages from their children. An
action is executed by calling its realize method. The
realize method does not generally complete the action
on its �rst invocation; it just does what needs to be done
on this tick. In most cases, an action's realize method
will be called many times before the action terminates.
We will see an example of this later.

The Action Hierarchy

HAC is a supervenient architecture (Spector & Hendler
1994). This means that it abides by the principle that
higher levels should provide goals and context for the
lower levels, and lower levels provide sensory reports
and messages to the higher levels (\goals down, knowl-
edge up"). A higher level cannot overrule the sensory
information provided by a lower level, nor can a lower
level interfere with the control of a higher level. Super-
venience structures the abstraction process; it allows
us to build modular, reusable actions. HAC goes a step
further in the simpli�cation of the action-writing pro-
cess, by enforcing that every action's implementation
take the following form:

1. React to messages coming in from children.

2. Update state.

3. Schedule new child actions if necessary.

4. Send messages up to parent.

Let's assume we wanted to build an action that allows
an agent to follow a moving target (see Figure 1). If we
have a move-to-point action (which in turn uses the
primitive move), writing such an action is fairly easy.
We compute a direction that will cause us to intercept
the target. Then we compute a point a short distance
along this vector, and schedule a child move-to-point
action to move us there. We leave all the details of
getting to this location, including such things as obsta-
cle avoidance, up to the child. The child can send any
kind of message up to its parent, including such things
as status reports and errors. At the very least it will
send a completion message (failure or success). When
the child completes, we compute a new direction vector
and repeat the process, until we are successful or give
up, in which case we send a message to our parent.
Note that the implementation of an action is left com-

pletely up to the user; she could decide to plan out all
the movement steps in advance and simply schedule the
next one when themove-to-point child completes. Or
she could write a reactive implementation, as described
above. Note also that every parent declares the set of
messages it is interested in receiving, essentially provid-
ing context for the child. In some cases, a parent might

Fol low

Move
Apply
Force

E
rr

or
s 

an
d 

Se
ns

or
 D

at
a

C
on

tr
olPhysical

Schemas

Primitive
Actions

Domain
Specific
Actions

Move

Mobile Offense

Move-To-Point

Harass

At tack

Figure 1: Actions form a hierarchy; control information
is passed down, messages and sensor integration occurs
bottom-up.

only be interested in whether or not the child termi-
nates. The parent can go to sleep while the child is
executing. In other cases, the parent may request peri-
odic status reports from the child, and run concurrently
with the child in order to take corrective measures.
The very lowest level of the hierarchy consists of very

primitive actions, like move and apply-force. These
actions are little more than low-level robotic e�ectors;
they set the agent's acceleration or attempt to do dam-
age to a neighboring agent. Using these primitives, we
build a layer of slightly more complex, yet still domain-
general actions (called physical schemas (Atkin et al.

1998)), such as move-to-point, attack, and block.
Above this layer we have domain-speci�c actions, if
needed. It is interesting to note that as you go up the
hierarchy, the actions tend to deal with larger time and
space scales, and have more of a deliberative than a re-
active character. But the transition to these cognitive
actions is a smooth one; no extra mechanism is needed
to implement them.

An Example Action De�nition

In the last section, we described in general terms how
actions are de�ned within HAC. This section will elu-
cidate the process using a concrete example and actual
code. HAC provides a number of methods to make
the process of writing actions easier. Across actions we
must perform the same sort of tasks: generating mes-
sages for the parent, advancing the action, etc. In HAC,
actions are classes; each action de�nes a set of methods
that address these tasks.
Figure 2 shows the implementation of a multi-agent

action, swarm, which illustrates many of HAC's fea-
tures. It is a simple action that causes a number of
agents to move around randomly within a circular re-
gion. We use the simpler action move-to-point to
implement this; it is invoked with the construct start-
new-child. When the agents bump or get stuck, they



(defclass* swarm (level-n-action)
(area ;swarm area
(blobs nil) ;blobs (abstract agents) involved in swarm
;; storage
(first-call t)))

(defmethod handle-message ((game-state game-state) (action swarm)
(message completion))

(redirect game-state action (blob (from message))))

(defmethod handle-message ((game-state game-state) (action swarm)
(message afs-movement-message))

(interrupt-action game-state (from message))
(redirect game-state action (blob (from message))))

(defmethod redirect ((game-state game-state) (action swarm) blob)
(start-new-child action game-state 'move-to-point

:blob blob
:destination-geom

(make-destination-geom (random-location-in-geom (area action)))
:messages-to-generate '(completion contact no-progress-in-movement)
:speed nil
:terminal-velocity nil))

(defmethod check-and-generate-message ((game-state game-state) (action swarm)
(type (eql 'completion)))

(values nil)) ;never completes

(defmethod realize ((game-state game-state) (action swarm))
(when (first-call action)

(setf (first-call action) nil)
(loop for blob in (blobs action) do

(redirect game-state action blob))))

Figure 2: Implementation of a multi-agent \swarm" behavior in HAC.

change direction. First, we de�ne the swarm action to
be a level-n-action. This means it is non-primitive and
must handle messages from below as well as pass mes-
sages up. We de�ne how we will react to messages from
children using the handle-messagemethods. Message
handlers specialize on the type of message that a child
might send. In the example, we redirect an agent to a
new location when the move-to-point action control-
ling it completes. If the move-to-point reports any
kind of error (all errors relating to movement are sub-
classes of afs-movement-message), such as contact
with another agent, we simply interrupt it and redirect
the agent somewhere else.

These handle-messagesmethods are invoked when-
ever a message of the speci�ed type is sent to swarm.
When this happens, the realize method is also called.
In our example, the realize method is only used for ini-
tialization: the �rst time it is called, it sends all the
agents o� to random locations.

The set of check-and-generate methods de�ne the
set of messages that this action can send up to its par-
ents. When the realize message is called, the check-
and-generate methods are invoked. We can specify if
they should be called before or after the realize method.
The swarm example never completes, and it doesn't re-
port on its status, so it generates no messages.

Note how simple it was to write a multi-agent ac-
tion using the HAC methods. HAC is action-based, not

agent-based. Writing an action for multiple agents is no
di�erent from writing an action for a single agent that
has to do several things at the same time (like turning
and moving). We envision the di�erent methods for im-
plementing parts of actions as the beginnings of an ac-

tion construction language, and we hope to move HAC
in this direction. There would be constructs for combin-
ing actions, either sequentially or concurrently. There
would be constructs specifying how resources should be
used, whether or not something can be used by two
agents at the same time, and so on.

Resources

Resources are a very important part of agent control.
There are many types of resources: the e�ectors of each
individual agent, the objects in the world that agents
use to ful�ll their tasks, and the agents themselves.
Some resources can only be used by one agent at a time,
some resources are scarce, and some resources emerge
only in the process of performing some action.

HAC provides mechanisms for managing resources
and assigning resources to actions. HAC currently does
not contain any general resource arbitration code, but
instead assumes that a parent will arbitrate when its
children are all vying for the same resources. Actions
can return unused resources to their parent, who can
then reassign them. Actions can also request more re-
sources if they need them.



The Sensor Hierarchy

HAC not only supports a hierarchy of actions, but also
a hierarchy of sensors. Just as a more complex action
uses simpler ones to accomplish its goal, complex sen-
sors use the values of simpler ones to compute their
values. These are abstract sensors. They are not phys-
ical, since they don't sense anything directly from the
world. They take the output of other sensors and inte-
grate and re-interpret it. A low-level vision system (a
physical sensor) produces a black and white pixel array.
An abstract sensor might take this image and mark line
segments in it. A higher level abstract sensor takes the
line segments and determines whether or not there is a
stretch of road ahead. A follow-road action can use
this abstract sensor to compute where to go next.
We use HAC's scheduling and message passing mech-

anism to organize sensors into a hierarchy, except that
it is now sensor-update functions that are being sched-
uled, not actions, and sensor values that are being
passed, not status reports and completion messages.
Actions can query sensors or ask to receive a message
when a sensor achieves a certain value. These messages
allow an action to be interrupted when a certain event
occurs, enabling the action to take advantage of unex-
pected opportunities.

The Planner

As one of its modules, HAC includes a planner. Goals
and plans �t seamlessly into HAC's action hierarchy:
Scheduling a child action can be viewed as posting a
goal, and executing the action that satis�es this goal.
Planning is necessary when the goal is satis�ed by sev-
eral actions and we have to decide between them. Sim-
ple goals, like moving to a location, are constrained
enough that we can write out one good solution. All
the actions we have seen so far were simple enough to
require only one solution. But particularly as you get
higher in the hierarchy, there will be more ambiguity
with respect to how a goal should be achieved. Accord-
ingly, goals might have multiple potential solutions.
In HAC, we use the term \plan" to denote an ac-

tion that satis�es a goal. We introduce a special child
action, match-goal, that is scheduled whenever an ac-
tion posts a goal. Match-goal will check which plans
can satisfy the goal, evaluate them, and choose the best
one to execute. If no plan matches,match-goal reports
failure back to the poster of the goal. Plans themselves
may also contain sub-goals, which are satis�ed using
the same process.
Plans are evaluated by a process of forward simula-

tion: Instead of using some heuristic to pick the best
plan, we actually use an even more abstract version of
AFS to simulate what would happen if this plan were
to execute. This process is made e�cient by estimating
the time at which something interesting will happen in
the simulation, and advancing the simulation directly
to these critical points (Atkin & Cohen 1998).
This type of planning, which uses stored solutions

Figure 3: The Capture the Flag domain.

(plans) that are not fully elaborated, is known as partial
hierarchical planning (George� & Lansky 1986). Due
to the 
exibility within the plans, it is particularly well
suited to dealing with dynamic environments. In addi-
tion, the fact that we have pre-compiled solutions for
certain types of problems cuts down enormously on the
amount of search we would otherwise have to do. Find-
ing ways to keep the branching factor low is a primary
concern in continuous domains such as ours; this is why
we don't use a generative planner. In many domains,
there are only a small number of reasonable ways to re-
act to any given situation. We typically only generate
a small number of high level plans, but spend a lot of
time evaluating them. We also interleave planning with
execution; match-goal is an action like any other, and
must share its computational resources. Even if a par-
ticular plan takes a long time to evaluate, lower level
re
exive processes will still operate. The higher the
plan is in the hierarchy, the longer is will typically take
to generate. This is balanced by the fact that higher
cognitive levels deal with larger time and space scales,
and are usually less sensitive to a delay in their starting
time.

An Example Domain: Capture the Flag

We have been developing a dynamic and adversarial
domain, \Capture the Flag," in which to test our un-
derlying simulator, HAC, and the planner. There are
two teams, Red and Blue. Some of the units on each
team are of a special type, \
ag"; they cannot move.
The objective for both teams is to capture all the op-



ponent's 
ags. Figure 3 shows one of the randomized
starting positions for this domain. Notice that we use
di�erent types of terrain. Some of the terrain, such
as mountains and water, cannot be traversed by units,
which gives us the opportunity to reason about such
concepts as \blocked" and \constriction."
We have constructed an action hierarchy based on

the primitivesmove and apply-force that allows us to
move to a location, attack a target, and defend a unit.
We can also block passes or intercept hostile units. The
top-level actions are more domain-speci�c and concern
themselves primarily with the allocation of resources.
They generate a list of tasks, such as \attack a speci�c
enemy" or \defend a 
ag," and then construct a list of
actions that achieve these tasks. Each task might be
achieved by more than one action (a 
ag could be de-
fended by placing units around it or by intercepting the
units that are threatening it, for example). We prefer
actions that achieve multiple tasks. Di�erent combina-
tions of actions give rise to di�erent high-level solutions
to the ultimate goal of capturing the opponent's 
ags.
For example: If attack tasks are weighted more strongly
than defense, the resulting strategy is more aggressive.
Once a plan has been generated, it is evaluated by

forward simulation. Forward simulation also takes into
account how the opponent might respond. The best
plan, determined by a static evaluation function of the
resulting map and placement of units, is chosen and
executed.

Summary and Discussion

Both computer games and real-world AI applications
can pro�t from one another. We have introduced HAC
as toolset for controlling agents in any domain. Part
of HAC is a planner that is able to cope with the com-
plexities of a continuous, dynamic, real-time domain.
The planner's distinguishing feature is that it evaluates
plans by e�ciently simulating ahead in a more abstract
space.
These are the issues HAC addresses:

� Reactive and cognitive processes are integrated seam-
lessly.

� Agent control, action execution, planning, and sens-
ing are all part of the same framework

� HAC is a modular system; it can be used to control
agents in simulation or real robots. Supervenience
enables us build re-usable action modules.

� E�cient multi-agent control and simulation.

� Planning in continuous domains.

We believe that architectures like HAC, which were
designed by AI researchers, yet are applied to problems
that have many of the same characteristics as com-
puter games, could be the basis for moving AI tech-
nology into computer game design. This would help
address a common complaint people have about strat-
egy games, namely that the computer player isn't very
capable and makes stupid mistakes that can be easily

exploited. HAC also makes the process of de�ning agent
behaviors when writing a new game easier. In turn, we
believe that technologies emphasized in computer game
design, including real-time graphics, transparent multi-
player support, customizability of the game world and
interface, could be put to good use in improving AI
systems' performance and appeal.

Acknowledgments
This research is supported by DARPA/USAF un-
der contract numbers N66001-96-C-8504, F30602-97-1-
0289, and F30602-95-1-0021. The U.S. Government is
authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright no-
tation hereon. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the o�cial poli-
cies or endorsements either expressed or implied, of the
Defense Advanced Research Projects Agency/Air Force
Materiel Command or the U.S. Government.

References
Anderson, S. D. 1995. A Simulation Substrate for

Real-Time Planning. Ph.D. Dissertation, University
of Massachusetts at Amherst. Also available as Com-
puter Science Department Technical Report 95{80.

Atkin, M. S., and Cohen, P. R. 1998. Physical plan-
ning and dynamics. In Working Notes of the AAAI

Fall Symposium on Distributed Continual Planning,
4{9.

Atkin, M. S.; Westbrook, D. L.; Cohen, P. R.; and
Jorstad, G. D. 1998. AFS and HAC: Domain-general
agent simulation and control. In Working Notes of the

Workshop on Software Tools for Developing Agents,

AAAI-98, 89{95.

Cohen, P. R.; Greenberg, M. L.; Hart, D. M.; and
Howe, A. E. 1989. Trial by �re: Understanding the de-
sign requirements for agents in complex environments.
AI Magazine 10(3):32{48.

George�, M. P., and Lansky, A. L. 1986. Procedural
knowledge. Proceedings of the IEEE Special Issue on

Knowledge Representation 74(10):1383{1398.

George�, M. P., and Lansky, A. L. 1987. Reactive rea-
soning and planning. In Proceedings of the Sixth Na-

tional Conference on Arti�cial Intelligence, 677{682.
MIT Press.

Karr, A. F. 1981. Lanchester attrition processes and
theater-level combat models. Technical report, Insti-
tute for Defense Analyses, Program Analysis Division,
Arlington, VA.

Spector, L., and Hendler, J. 1994. The use of superve-
nience in dynamic-world planning. In Hammond, K.,
ed., Proceedings of The Second International Confer-

ence on Arti�cial Intelligence Planning Systems, 158{
163.

Tzu, S. 1988. The Art of War. Shambhala Publica-
tions.


