
Monitoring Strategies for Embedded Agents: Experiments and

Analysis

Marc S. Atkin and Paul R. Cohen

Experimental Knowledge Systems Laboratory
Department of Computer Science, LGRC, Box 34610
University of Massachusetts, Amherst, MA 01003

fatkin,coheng@cs.umass.edu
(413) 545 3616

Abstract

Monitoring is an important activity for any embedded agent. To operate e�ectively,

agents must gather information about their environment. The policy by which they do

this is called a monitoring strategy. Our work has focussed on classifying di�erent types

of monitoring strategies, and understanding how strategies depend on features of the

task and environment. We have discovered only a few general monitoring strategies,

in particular periodic and interval reduction, and speculate that there are no more.

The relative advantages and generality of each strategy will be discussed in detail.

The wide applicability of interval reduction will be demonstrated both empirically and

analytically. We conclude with number of general laws that state when a strategy is

most appropriate.

1

Contents

1 Introduction: What are Monitoring Strategies and Why are We Inter-

ested in Them? 3

2 Using Genetic Programming to Discover Monitoring Strategies 4

2.1 Behavior Representation : 4

2.1.1 A Simple Robot Control Language : : : : : : : : : : : : : : : : : : : 4

2.1.2 An Illustrative Program : 6

2.2 The Genetic Algorithm : 7

3 Exploring the Space of Monitoring Strategies 9

3.1 Periodic vs. Proportional Reduction : 9

3.1.1 Motivation : 9

3.1.2 The Experimental Scenario : 11

3.1.3 Results : 12

3.2 Additional Genetic Programming Experiments : : : : : : : : : : : : : : : : 15

3.3 A Conjecture : 16

4 The Generality of Interval Reduction 17

4.1 SIR : 17

4.2 Dynamic Programming : 18

4.3 Adult Humans : 19

4.4 Comparing Strategies : 19

4.5 Interval Reduction is Appropriate for Cupcake Problems : : : : : : : : : : : 22

5 Analyzing Monitoring Strategies 23

5.1 Periodic Monitoring : 23

5.1.1 Periodic Monitoring as a Simple Optimization Problem : : : : : : : 23

5.1.2 Periodic Monitoring is Optimal if the Probability of an Event Remains

Constant Over Time : 24

5.2 A Proof of Proportional Reduction's Superiority over Periodic Monitoring in

the Cupcake Problem : 25

5.2.1 The Asymptotic Superiority of Proportional Reduction : : : : : : : 25

5.2.2 A Lower Bound on the Expected Cost for Periodic Monitoring : : : 26

5.2.3 An Upper Bound on the Expected Cost for Proportional Reduction 27

5.2.4 When is Proportional Reduction Better? : : : : : : : : : : : : : : : : 30

5.2.5 Summary : 31

6 What is the Structure of a Monitoring Strategy Taxonomy? 32

7 Related Work 33

8 Summary 37

2

1 Introduction: What are Monitoring Strategies and Why

are We Interested in Them?

Monitoring is ubiquitous. Although often taken for granted, monitoring is in fact a necessary

task for any agent, be it a human, a bumblebee or an AI planner. In any kind of realistic

and therefore non-deterministic domain, an embedded agent must query its environment.

If we are to understand how to design agents and discover general laws of agent behavior,

we must understand the nature of monitoring. This paper presents our work on discovering

and categorizing monitoring strategies.

A monitoring strategy is the scheme by which monitoring actions are scheduled. If

monitoring were free|if it could be performed any time without any sort of penalty for the

agent|the task of specifying the optimal monitoring strategy would be very easy: Monitor

as frequently as sensors allow. In reality, however, monitoring will nearly always have some

kind of cost, even if it is very small. It might be the time required to activate the sensor,

the amount of energy that sensing requires, or the cost of processing sensed information.

Deciding when the cost of not knowing the exact state of the environment outweighs the cost

of monitoring can be a complicated optimization problem. Three factors make it di�cult:

First, the interval between monitoring actions will depend on features of the environment

and costs, some of which are not known or only known probabilistically. Second, these

features can be dynamic, changing over the course of a trial. Third, and perhaps most

importantly, monitoring actions are not necessarily independent. The optimal placement of

a monitoring action cannot always be computed without knowing the expected placement

of all successive ones (Hansen, 1992b).

Monitoring, like any other behavior, depends on the interaction of three factors: the

agent's architecture, task, and environment. The architecture describes how the agent is

constructed, the task is what the agent is trying to do, and the environment is the set of

external factors that act upon the agent (Cohen, Howe & Hart, 1990; Cohen, 1990). Our

research goal is to discover and categorize monitoring strategies. Ultimately, we hope to lay

down a taxonomy of monitoring strategies based on general features of agent architectures,

tasks, and environments. Then, an agent designer would need only determine the relevant

features of the agent's proposed architecture and the task and environment in which it is

to operate, and look up appropriate monitoring strategies.

A distinction is frequently made between sensing and monitoring (e.g., Firby, 1987;

George� & Lansky, 1987; McDermott, 1978). Sensing refers to the typically low-level data

acquisitionmechanismsneeded to keep a worldmodel up-to-date; monitoring involves query-

ing this world model. Monitoring, as we will use the term, means deciding when to ask for

the information that sensors (or sensory subsystems) provide. Monitoring strategies will

be indexed in a taxonomy by general architectural features, for example \the agent has

no completely accurate way of keeping track of its progress towards the goal it is monitor-

ing for." Through abstractions like these, we will be able to select appropriate strategies

regardless of implementation.

We have explored the space of monitoring strategies empirically and analytically.

In a series of exploratory experiments, we used a genetic algorithm to evolve appropriate

monitoring strategies. We identi�ed two very general strategies, periodic monitoring and

interval reduction. We ran experiments with people and arti�cial agents to demonstrate that

interval reduction always emerges in a class of tasks called cupcake problems. Analytically

we have shown that periodic monitoring is optimal if the probability of an event occurring

3

is unknown, whereas interval reduction is asymptotically superior to periodic monitoring in

cupcake problems.

2 Using Genetic Programming to Discover Monitoring

Strategies

Generating monitoring strategies for a large number of tasks and environments requires

a weak yet robust search method. The need to minimize designer bias while maintaining

an automatic and powerful monitoring strategy discovery mechanism, led us to a technique

known as Genetic Programming, the evolution of computer programs by genetic algorithms.

We hoped that this method would �nd many di�erent strategies for the di�erent scenarios.

Before discussing these e�orts, we will describe how monitoring strategies are represented,

and how the genetic algorithm manipulated them.

2.1 Behavior Representation

Monitoring is always a means to an end. As such the most general representation of a

monitoring strategy will also encompass the task the agent is trying to accomplish|it will

be a representation of the agent's behavior. We used a simple programming language, with

loops and conditionals, as the behavior representation. Such a program is simultaneously

the operational and descriptive manifestation of a monitoring strategy. This is important,

because to construct a taxonomy of monitoring strategies, it will be necessary not only to

observe what a strategy does, but to understand how it works.

2.1.1 A Simple Robot Control Language

For most of our experiments, our testbed was a mobile robot simulator in a two-dimensional

world. The robot has basic abilities like turning and moving, and a set of sensors through

which it can gather information about its environment. The robot's environment is divided

into 800 square �elds. Each has a unique terrain attribute, typically \grass" (no hindrance

to movement) or \obstacle" (cannot be traversed). Even though the terrain was discretized,

the robot moves continuously within the map.

Constructs in the behavior language are divided into two categories: those that

actually trigger an action by the robot, and those that steer the control
ow within the

program. Examples of the former category are the move command, which moves the robot

forward by a small distance in the direction it's currently facing, or the monitor command,

which makes the robot poll a speci�ed sensor. Examples of the latter category are loop

commands and conditionals. A summary of the behavior language is given in table 1.

The robot is equipped with sensors that depend on the scenario (the task and

environment). A sensor can be as complex as the experimenter deems necessary. It can

be de�ned to always have an up-to-date value or to require an explicit monitor action to

have its value updated. Sensors, when polled, return a value between 0 and 255, which is

stored in a special kind of variable called environmental variable or EVA. All knowledge the

agent has of its environment is expressed in terms of EVA's. There is one EVA associated

with each sensor. All EVA's are initially set to zero. Some program constructs perform

actions contingent on variable values (e.g., the \loop (var)+1" and \compare const, var"

4

E�ector Commands

move move forward 2

10
of a �eld

movequick move forward 4

10
of a �eld

turnleft rotate left 22.5 degrees

turnright rotate right 22.5 degrees

turntogoal rotate robot in direction of goal

monitor sensor poll speci�ed sensor

wait do nothing for one time unit

shoot destroy �rst obstacle ahead of robot (range: 4 �elds)

stop halt robot; end program execution

Program Control Commands

nop do nothing

enable sensor enable interrupt handler corresponding to the speci�ed

sensor

disable sensor disable interrupt handler corresponding to the speci�ed

sensor

loop constant loop a constant number of times

loop (var)+1 loop a variable var number of times

compare const, var compare the value of a constant to that of a variable; set

ags

if
ag then ... else conditionally execute code based on state of
ag
ag (equal,

unequal, larger, or smaller)

exit exit from last loop

Table 1: Commands of the Robot Control Language

statements in table 1).

We envisioned putting our robotic agent into environments where it would have to

react quickly to sensory events while performing another task that required monitoring. Say

it has to search for food, but must interrupt this task and run away if it sees a predator. In a

conventional programming language, such a behavior could be achieved only by repeatedly

checking for the second event (\Do I see a predator?") while executing the �rst task

(\Where's food?"), and, if the second event occurred, a piece of code, presumably a sub-

program of some sort, would execute the \running away" behavior. The constructs necessary

to implement this chain of events would be a monitor command to update the agent's

information on the whereabouts of the predator, followed by an if-statement which would

call the \run" sub-program if necessary. This block of \monitor" and \if-statement" would

have to be reproduced each time the monitoring strategy for the predator required an

information update.

Because this block would seem to be quite common, we decided to augment the

robot's architecture with a mechanism for responding directly and easily to external events.

Associated with each sensor is a piece of code called an interrupt handler. When an EVA-

value changes, normal program
ow is interrupted, and the corresponding interrupt handler

is executed in the manner of a sub-program. Interrupts can be disabled or enabled via

explicit commands, making it possible for the robot to prioritize handler execution. At the

start of a program's execution, all interrupts are disabled.

5

Main program:

TURNTOGOAL
ENABLE: reached_goal
NOP
NOP
ENABLE: object_distance
LOOP infinitely:
LOOP 7 time(s):

MOVE
MOVE

ENABLE: hit_object
TURNTOGOAL
MONITOR: object_distance

reached_goal interrupt handler:

STOP
STOP
NOP

hit_object interrupt handler:
WAIT
STOP
NOP

object_distance interrupt handler:
TURNRIGHT
MONITOR: object_distance

Figure 1: An example for a program that does obstacle avoidance.

2.1.2 An Illustrative Program

Interrupt handlers and loops are illustrated in Figure 1, which is the output of one

of our genetic algorithm systems (called linear LTB). It is the best strategy found for a

speci�c obstacle avoidance task. Figure 2 shows two execution traces for this scenario,

which consists of a large rectangular obstacle in the center of the map, the robot's task

being to move from a start point to a goal point without hitting the obstacle. The robot

had three sensors, one that told it whether it had reached the goal, one that told it whether

it had hit an obstacle, and one that could detect an obstacle ahead. The �rst two were

provided so that the robot could complete its task; their values were automatically updated.

The third sensor, the \sonar", was actively queried with a monitor command to update

its value. The sonar was the only sensor that could be used to prevent a collision with an

obstacle, so it was the one we wanted the monitoring strategy to focus its attention on.

The structure of the program is quite simple: After enabling the interrupt handlers

corresponding to the \reached goal" and \object distance" sensors, and turning itself toward

the goal with turntogoal (the goal position is assumed to be known), the program goes

into an in�nite loop. Within this loop, it periodically moves 14 times, which corresponds to

2.8 �eld widths, before monitoring for an obstacle ahead (via \monitor: object distance",

which sets the object distance sensor to be the distance to the obstacle|or zero, if there

is none). Since the \object distance" interrupt handler had been previously enabled, when

an obstacle is detected, this interrupt handler will be called. In it, the robot turns right

by 22.5 degrees (turnright), and then monitors for the obstacle again. If the obstacle is

still visible, the interrupt handler will be called recursively, turning the robot further. This

6

Start

Goal

Start

Goal
Obstacle

Figure 2: An execution trace generated by the program in �gure 2 for two of the ten start-goal pairs.

Hollow circles denote starting �elds, full circles goal �elds.

will continue until the obstacle is no longer visible, then the agent will move forward for

2.8 �elds in its current direction before turning itself towards the goal again and rechecking

for the presence of an obstacle. When the goal point is reached, the \reached goal" handler

will be invoked, which ends the trial with the stop command. Although the \hit object"

handler is enabled, it never gets called. In �gure 2, the changes in direction in the path of

the robot indicate the points where monitoring took place and the obstacle was detected.

2.2 The Genetic Algorithm

A genetic algorithm is a machine learning scheme based on principles of natural evolution. A

population of potential solutions (individuals) is maintained. At each generation, each indi-

vidual is evaluated and assigned a �tness value, higher being better. This value determines

the individual's chances of being selected into the next generation, because better solutions

have a higher probability of surviving. New individuals are formed either by changing a part

of the individual randomly (the so-called mutation operation) or by swapping a section of

one individual with a section from another (the crossing-over operation) (Goldberg, 1989).

In our work, individuals are programs that control the robot, and it is these programs

that the genetic algorithm is trying to improve. In the previous section, we saw what these

programs look like and how they represent monitoring strategies. Now, we will use the linear

LTB system to illustrate how the genetic algorithm works. For linear LTB, the population

size was typically in the range of 500-1000 programs of the form we saw in section 2.1.2.

Although each program is randomly initialized at the beginning of the algorithm, some

constraints are placed on how commands are interpreted during program execution. For

example, if a byte represents a sensor number, and the agent has three sensors, then the

value of the byte will be taken modulo three, guaranteeing that it produces a legal value.

Consequently, even at the beginning of the algorithm, some programs in the population will

be able to do something, albeit poorly.

Figure 3 shows the major steps in one run of the algorithm. After initialization,

the genetic algorithm goes into a repeated cycle of phases called evaluation (step 2.1) and

7

1. Randomly initialize population.

2. Do until �tness of best individual in population has not improved in 200 generations:

2.1 Compute average �tness of every individual in population by measuring its per-

formance in the simulator on several test cases.

2.2 Copy top 10% of old population into new population.

2.3 While there is still room in the new population:

2.3.1 Randomly select two individuals from the old population. Call the better

of them father.

2.3.2 Randomly select two individuals from the old population. Call the better

of them mother.

2.3.3 Copy father and mother into the new population.

2.3.4 With a low probability, cross-over two random pieces of code between

mother and father.

2.3.5 With a low probability, mutate a command in mother and/or father.

3. Output best individual in last generation

Figure 3: The basic algorithm of LTB

reproduction (steps 2.2 and 2.3). The combination of these two phases is called a generation.

Within one generation, a modi�ed population is created from the old one.

Individuals are evaluated by running them in the simulator on di�erent test cases

(for example, ten di�erent start-goal points), and computing the average �tness over these

trials. The three major components of the �tness measure are a quadratic reward for

getting close to the goal, a cost for each e�ector action taken, and a cost for every time an

obstacle was touched. In the reproduction phase, individuals are selected based on their

�tness values. As the selection scheme, we chose tournament selection with a tournament

size of two over roulette wheel selection, because of it has been shown to be less likely to

cause premature convergence (Goldberg & Kalyanmoy, 1991). Tournament selection selects

individuals based on their rank in the population. Fitter individuals have higher chances of

being selected, and as the best in the population can expect to be selected several times,

they multiply. This is an important feature of genetic algorithms, which operate under the

assumption that combining good solutions randomly will sometimes result in even better

solutions, so good solutions should be given more of chance to combine with others.

Selected individuals are sometimes changed by crossing-over and mutation.

Crossing-over takes two random pieces of code of equal length from two individuals (the

\parents") and swaps them (see �gure 4). The mutation operator randomizes one command

in the program, changing it into another. The crossing over rate is typically set so that

roughly 1 in every 5 individuals is crossed over. Mutation changes roughly every 125th

byte. Later versions of linear LTB dynamically changed mutation and crossing over rates

in order to counter premature convergence.

Step 2.2 in �gure 3 copies the best of the current population into the next without

change. This procedure is called \elitism", and it is done so that a good solution already

present in the population can never be destroyed accidentally. To alleviate the impact of

the genetic algorithm's potentially sub-optimal output, we generally ran LTB ten times (or

more) in each scenario. The best output of all these runs (called iterations) was taken as

8

NOP
MOVE
ENABLE: object_distance
ENABLE: reached_goal
NOP
WAIT
WAIT

ENABLE: hit_object
LOOP 7 time(s):
 MOVE
 MONITOR: object_distance
 TURNTOGOAL
 MOVEQUICK
MOVEQUICK

NOP
MOVE
LOOP 7 time(s):
 MOVE
 MONITOR: object_distance
 WAIT
 WAIT

ENABLE: hit_object
ENABLE: object_distance
ENABLE: reached_goal
NOP
TURNTOGOAL
MOVEQUICK
MOVEQUICK

father:

mother:

new father:

new mother:

Figure 4: An illustration of crossover in linear LTB

the �nal output of the system for a given scenario.

3 Exploring the Space of Monitoring Strategies

We had hoped that our genetic programming systems would provide the monitoring strate-

gies we needed for our taxonomy. This section describes the experiments we did to generate

strategies, and the conclusions we drew from them.

3.1 Periodic vs. Proportional Reduction

3.1.1 Motivation

The �rst strategies we looked at, periodic and proportional reduction, were motivated by

work found in the child development literature. Ceci and Bronfenbrenner (1985) conducted

an experiment with children from two di�erent age groups. They instructed the children

to take cupcakes out of an oven in 30 minutes, and to spend the time until then playing a

video game. Behind the child was a wall clock, which the child could check, but checking it

(the act of monitoring) was a distraction from the game, and therefore had an associated

cost. In the �rst few minutes of a trial, all children checked the clock frequently. Ceci

and Bronfenbrenner interpreted this as a \calibration" phase for the children's internal

clock. Later, however, the ten-year-olds monitored approximately periodically, whereas the

fourteen-year-olds monitored more frequently as the deadline approached.

We have termed this second strategy interval reduction, since the interval between

monitor events is reduced after each event. When the interval is reduced for a �xed pro-

portion at each event, we call the strategy proportional reduction. We borrow the term

\cupcake problem" to denote any scenario in which an agent must monitor for a deadline

and in which the possible error between where the agent thinks it is and where it actually

is grows with the interval between monitoring events. In Ceci and Bronfenbrenner's study,

the error was due to humans' inaccurate internal clocks. However, the same strategy arises

if one assumes the internal clock is accurate, but the information given to the agent is not.

9

It is interesting to note that both periodic and interval reduction strategies have

long been known to behaviorial psychologists, although not under those names. There has

been a lot of work generated on how behavior is a�ected by di�erent reinforcement schedules

(see, e.g., Schwartz, 1984, pp. 279-298; Mackintosh, 1974, pp. 164-182; a summary of the

original work by Skinner can be found in Ferster & Skinner, 1957). In the �xed interval

(FI) schedule, the subject receives reinforcement for its �rst response occurring at more

than T time units since its previous reinforcement. The subject will typically wait a certain

fraction of the time T before responding again, and then respond more and more frequently

as T approaches. This is an interval reduction strategy, the so-called �xed interval scallop.

The FI schedule is analogous to the cupcake problem if one treats T as the deadline,

and the subject's response as a monitoring action for the presence of the reward. Due to

the subject's inaccurate internal clock, it cannot wait exactly T time units, which would be

the optimal strategy. What distinguishes the cupcake scenario from the FI schedule is that

in the latter, monitoring provides only binary information as to whether T has passed or

not|it does not provide any information about the time remaining until T . As we shall see

in Section 4, the optimal monitoring strategy for the cupcake problem involves a gradual

decrease in the time between monitoring events. This is not, however, what is observed

in response curves for the FI schedule. Typically, subjects start responding at a relatively

high rate immediately after the �rst response. In fact, there was an extensive debate as

to whether the response curves were actually scalloped (Lowe, Harzem & Bagshaw, 1978).

Some believed that a period of no response, followed by a period of a high rate of response

(break-and-run behavior) was a more accurate characterization (e.g., Schneider, 1969).

The break-and-run strategy could be described as waiting until you think you are

fairly close to the deadline, and then monitoring periodically. It seems like an intuitive

strategy given an inaccurate internal clock and only binary information. Again, we have one

scenario, the FI reinforcement task, and two distinct strategies, periodic monitoring after

a pause and interval reduction. An experiment performed by Lowe, Harzem, and Bagshaw

(1978) highlights this distinction. He had two groups of human subjects. Each had access

to two panels: Panel A provided reinforcement (points that could be converted to money),

Panel B signaled whether reinforcement was available from Panel A. For those subjects

in condition 1, Panel B implemented a binary clock; when pressed, it would indicate the

availability of reinforcement. In condition 2, pressing Panel B brie
y illuminated a digital

clock which showed time elapsed since the last reinforcement. Lowe found that all subjects

in condition 1 used a break-and-run strategy, and that the response rate was relatively

independent of T . Those in condition 2, on the other hand, produced the classical scalloped

response curve: a gradual decline of interresponse intervals as T approached.

Lowe et al.'s and Ceci and Bronfenbrenner's experiments give rise to the following

questions: Given the speci�cations of a scenario, how does one choose an appropriate strat-

egy? What are the tradeo�s between di�erent strategies, such as periodic monitoring and

interval reduction? When does one strategy outperform the other? We chose to investigate

these questions in the cupcake scenario. The experiment described in the remainder of this

section was designed to determine the conditions under which proportional reduction, as

opposed to periodic monitoring, is advantageous. We developed an environment within lin-

ear LTB in which we could vary parameters and record how the evolved monitoring strategy

was a�ected.

10

3.1.2 The Experimental Scenario

LTB's spatial world had to be modi�ed so that it represented an instance of the cupcake

problem. The robot is given the task of getting as close to a particular position in the map

as possible, the goal point, without hitting it. The �tness function re
ects this by imposing

a penalty that is a quadratic function of the distance between the agent's �nal position on

the map and the goal point. However, actually stepping on to the goal �eld is penalized

highly, with a large constant �tness penalty (this was implemented by placing an obstacle

on the goal �eld). Since overshooting the goal is treated di�erently than undershooting it,

this problem is in fact an example of an asymmetric cupcake problem.

Main program:
NOP
NOP
TURNLEFT
NOP
LOOP 4 time(s):
LOOP 1 time(s):
TURNTOGOAL
NOP
NOP
NOP
MONITOR: object_distance
NOP
DISABLE: reached_goal
NOP
NOP
MOVE
IF (object_distance) <= .5 THEN STOP
NOP
LOOP (object_distance)+1 times:

LOOP 4 time(s):
NOP
MOVE

reached_goal interrupt handler:
hit_object interrupt handler:
IF (object_distance) <= 4.6 THEN STOP
TURNLEFT
NOP
NOP

object_distance interrupt handler:
DISABLE: hit_object
MOVE
NOP
WAIT

Figure 5: A proportional reduction strategy generated by linear LTB

The robot has an accurate movement e�ector but an inaccurate distance sensor.

Movement corresponds to waiting in the original cupcake problem. The error is modeled

by adding a gaussian noise term to the value returned by the \object distance" sensor, the

\sonar" that gives the agent the distance to an obstacle in front of it. Since there is an

obstacle on the goal �eld (and nowhere else), this sensor now returns the distance to the

goal. The variance of the noise is proportional to the distance remaining to the goal point

(this models the fact that errors in the sensor will accumulate with the size of the distance

measured) and a noise parameter,m, that can be varied to change the degree of inaccuracy

11

in the sensor.

An illustrative monitoring strategy evolved by LTB is given in �gure 5. The program

implements a slight variation on the proportional reduction strategy. Within the program's

outer loop, \loop 4 times", the \monitor: object distance" command is executed repeat-

edly. Nested within this loop is a second one, \loop (object distance)+1 times", which

takes the current distance to the goal (stored in the EVA \object distance" after monitor-

ing), rounds it up, and loops over its value. Four move's are executed in this loop, each

moving .1 distance units1. Therefore, the proportionality constant is .4: the robot will move

.4 times its estimate of the distance remaining before monitoring again. The command \if

(object distance) � :5 then stop" terminates the program when the obstacle has reached

a critical distance, the turntogoal points the robot towards the goal. Note that this

program is not pure proportional reduction, because there is one move statement in the

main loop that gets executed independently of the monitored distance.

Interrupts are not explicitly enabled in this program, so the interrupt handlers are

never called. In fact, only the object distance handler could contribute any functionality in

this scenario. For instance, it might test whether the robot is close enough to the goal instead

of doing so in the main loop. Occasionally, programs do actually use the object distance

handler in this way. This would mean that the distance is checked immediately after

monitoring, since a change in the distance monitored would cause the interrupt handler to

be called.

3.1.3 Results

We suspected that several features of the environment and the robot would in
uence the

monitoring strategy. In particular, the amount of sonar noise should directly a�ect the pro-

portional reduction constant, denoted prc, the proportion of the robot's estimated distance

to the goal that the robot actually moves before monitoring again. A lot of noise should

result in a more cautious program that moves shorter distances between monitoring. We

hypothesized that when sonar data are extremely noisy, the proportional reduction strategy

would show no advantage over periodic monitoring, as the data no longer contain any useful

information.

Intuitively, proportional reduction should show more of an advantage as the distance

between the robot's starting position and the goal grows, since the proportional reduction

strategy can traverse a given distance in a logarithmic number of monitoring steps, whereas

periodic monitoring needs a linear number.

To summarize our hypotheses:

1. If the monitoring error, m, is 0, a robot should monitor once only.

2. As m increases, the agent should be forced to take more cautious steps, i.e. the

proportionality constant prc should decrease.

3. Periodic monitoring becomes more likely as m increases (sonar data contains increas-

ingly less useful information) and path length decreases.

We ran the genetic algorithm on �ve levels of monitoring error m (0, 0.5, 1.0, 2.0, 3.0)

1A �eld was considered one distance unit. Di�erent versions of LTB had di�erent movement distances

for the move command. The information given in table 1 only applies to the most recent version of the
system.

12

distance= 1 to 4

distance= 5 to 10

distance = 12 to 18
1400

1450

1500

1550

1600

1650

1700

m=0 m=0.5 m=1.0 m=2.0 m=3.0

Figure 6: A plot of cell means for a two-way ANOVA, monitoring error m by distance. The dependent

measure is the �tness of the best individual.

and three ranges of path length D (1-4, 5-10, and 12-18 �elds)2. Each agent was trained

on 12 start-goal pairs, and LTB was run ten times in each scenario. The population size

was 800. The best overall program for a scenario was re-tested on 36 start-goal pairs in

each speci�ed length range. Four measures were averaged over the 36 trials to evaluate the

program's performance and strategy: �tness, total cost of monitoring, percentage of dis-

tance traversed while using proportional reduction, and the proportional reduction constant

prc. The �rst three measures were calculated by an evaluation function directly from the

program's execution trace; the fourth was determined manually by looking at the program.

Note that the total cost of monitoring tells us how many times the agent monitored, as

monitoring has a �xed cost.

Figure 6 shows the average �tness values for the �nal program on the 36 test pairs.

For the most part, �tness values decrease monotonically as m and path length increase, with

the exception of them = 3:0,D = 1�4 situation. Both these e�ects were predicted: Longer
path lengths mean higher energy consumption, which lowers �tness, and higher values of m

mean more elaborate and energy-consuming monitoring strategies. Note however that path

length has a much greater e�ect than monitoring error. Apparently the genetic algorithm

copes quite well with �nding good monitoring strategies. An analysis of variance (ANOVA)

shows a clear e�ect of both path length and monitoring error on �tness (for both main

e�ects p < 0:0001), but no interaction e�ect. The exception in the monotonic decrease of

�tness is actually due to the values for the m=1.0 and m=2.0 (range 1-4) cases being too

low. In these cases, the robot hit the obstacle once or twice on the 36 test pairs, whereas it

didn't on the 12 training pairs. Obviously the solution to this problem is to train on more

pairs, but it is a trade-o� between better results and run time of the algorithm.

We had expected to see monitoring cost increase as path length and especially

monitoring error increases. This prediction was only partly veri�ed. The expected pattern

is distorted because when the monitoring error gets too high, the genetic algorithm does

not come up with a monitoring strategy at all, but instead tries to �nd a di�erent solution

2The path length must be a range, otherwise the genetic algorithm will simply adapt to move exactly

the required distance, without monitoring at all

13

length m = 0:0 m = 0:5 m = 1:0 m = 2:0 m = 3:0

1-4 PR2 (**) PR (.7) PR2 (*) (**) PR (.5) (**) check (*) (**)

5-10 PR2 DPR PR (.4) { (*) { (*)

12-18 DPR PR (.7) DPR (*) (**) DPR DPR

Key: PR (c): proportional reduction strategy with proportional reduction constant
PR2: moves a proportion of the squared distance remaining

DPR: disproportionate reduction: moves a proportion of

distance remaining plus a constant distance.
check: stops if obstacle is visible after monitoring

{: no monitoring strategy

(*) deliberately moves past goal to one side
(**) strategy is only capable of monitoring once

Table 2: The best individual's monitoring strategy

such as deliberately moving past the goal point (to the left or right) for a distance that is

approximately the average of the path lengths of its training set. Table 2 gives an overview

of the best individual's monitoring strategy for each test case. As one can see, in cases

m = 3:0, D = 5�10; and m = 2:0, D = 5�10, no monitoring strategy is found. Sometimes
(case m = 1:0, D = 1� 4 and D = 12� 18), the agent will combine the strategy of moving

past the obstacle with proportional reduction, ensuring that if proportional reduction fails,

it will still not touch the obstacle.

Interestingly, no program monitors more than once when the path length is very

small. We had expected the \monitor only once" strategy only in the absence of sensor noise,

but apparently, over such short distances, the extra e�ort involved in coming extremely close

to the goal is not worth the energy necessary to achieve it. Another surprise is that for

longer path lengths and no sensor error, programs still monitor more than once (refuting

our �rst hypothesis). It is hard to imagine how this could be advantageous.

Some form of proportional reduction was found in nearly all situations. In fact, in

all but one of the cases where a monitoring strategy was found, proportional reduction was

used. Our hypothesis that periodic monitoring would become dominant for high values of

monitoring error was not con�rmed. It is important to mention, however, that periodic

monitoring was indeed discovered by the algorithm in several high-error situations, but its

�tness was slightly lower than that of proportional reduction. The one clear exception is

the m = 3:0, D = 1� 4 case. Here, the robot moves a certain distance, then monitors for

the obstacle. If the obstacle is visible ahead, it stops; otherwise it moves a �xed distance

further, curving around the obstacle. This is notable because it is not a proportional

reduction strategy, the sensor data are too inaccurate; the sensor is used only to detect the

presence or absence of the obstacle.

The proportional reduction strategy does not usually manifest itself in its pure form.

Frequently, the robot will move a short distance before beginning to monitor. This is not

surprising: in many trials, the robot is guaranteed a minimum distance from the goal by

the lower bound on the path length. Sometimes after monitoring, in addition to moving

a distance proportional to the remaining distance, the robot moves a �xed distance as

well. We call this \disproportionate reduction", as the robot is in e�ect moving a larger

proportion of the distance remaining to the goal as it gets closer to the goal. In pure

proportional reduction, this proportion remains constant throughout the strategy. The

14

program in Figure 5 implements this behavior. Note that the �xed additional distance

was usually small with respect to the distance moved via proportional reduction. It is

therefore very possible that the extra move commands that cause it are simply a relic of

the evolutionary process: They cause little harm and are therefore not removed in later

generations.

In two of the cases where the agents only monitors once, and in one of the cases

where m = 0, the robot moves a proportion of the squared distance remaining. All these

cases can be interpreted as examples of over-adaptation: the number of move's in the loop

can be adjusted to get the the robot close to the goal given the particular range of path

lengths. We do not view this proportional reduction variant as a distinct strategy.

Our second hypothesis was that the proportionality constant prc should decrease as

m grows. Of course this constant is only really de�ned in cases of unmodi�ed proportional

reduction, which limits our available data points. But the few applicable cases do show

the predicted e�ect (see Table 2). The range of the constant decreases from .7 in two of

the m = 0:5 cases to .4 in the second m = 1:0 case. The constant of .5 in the m = 2:0,

D = 1 � 4 case should not be weighed too strongly as the robot only monitors once here.

Even so, it is still close to the previous .4 value.

The hypothesis that periodic monitoring will surpass proportional reduction as m

and path length increase appears to be refuted. Periodic monitoring never beat proportional

reduction, although it did come close in the m = 2:0 cases. We are led to believe that

periodic monitoring will only be advantageous when virtually no distance information is

given. This is the main result of this experiment: Some form of interval reduction seems to

be appropriate for nearly all instances of the cupcake problem.

3.2 Additional Genetic Programming Experiments

The periodic vs. proportional reduction experiment with LTB was only the �rst in a series

of experiments to explore the space of monitoring strategies. In order to accommodate

more complex environments, we equipped the robot with �ve additional sensors: robot

direction, goal direction, speed, terrain type, and obstacle density. The environments de-

parted from the cupcake problem as well, to emphasize more the monitoring necessary for

obstacle avoidance. We varied the number and size of the obstacles, and their density and

distribution. We also had a scenario that involved a new terrain type which could be used

as a predictor for obstacles. In one case we changed the architecture of the robot by forcing

it to move forward at every step and only giving it the ability to change direction.

Unfortunately, our genetic algorithmwas seemingly incapable of evolving monitoring

strategies for these more complex scenarios. Instead, it would �nd good solutions to the

problem that did not use monitoring, often exploiting unintended features of the scenarios.

Monitoring strategies only make up a small fraction of the space of possible programs,

and although they usually have higher �tness values, it was extremely di�cult for the

genetic algorithm to �nd them as the search space grew larger. We now believe that genetic

programming may in general have problems scaling up to large search spaces (Atkin &

Cohen, 1994). The likely cause of our problems is a phenomenon known as premature

convergence. It occurs when a good program in the population comes to dominate over

the less �t members and starts to �ll a large proportion of the population with its genetic

material, causing the genetic diversity which drives the algorithm out of local minima to be

lost.

15

We modi�ed our LTB system in several ways in order to alleviate the premature

convergence problem. The major change was to introduce the idea of \behavior modules".

Instead of representing programs as �xed sized lists of commands, we used trees, similar to

the s-expressions used by many other researchers in the genetic programming �eld (Koza,

1992; Koza & Rice, 1992). This representation does not force programs to be a particular

length, and it allows for meaningful behavioral subunits, \modules," to be represented as

sub-trees. Swapping over now makes more semantic sense, since it can swap two modules,

across individuals. To our great surprise, however, the percentage of time LTB found a

monitoring strategy in our original obstacle avoidance scenario (Figure 2) dropped from

about 50% to 30% after we introduced the tree representation|all other factors remaining

the same. So the more
exible representation seemed to actually be hurting performance.

We attempted to reduce the size of the search space by making the agent's archi-

tecture more conducive to monitoring. The robot's control mechanism was rede�ned so

that all generated behaviors are monitoring strategies|the task of the genetic algorithm

is to learn when to monitor next. This approach is very reminiscent of one of our �rst

learning algorithms, \MON." MON was a parameter optimization algorithm, and the agent

it controlled operated in a simpler environment than the two-dimensional world described

in earlier sections. MON learned strategies in the time domain, its strategies told the robot

how long to wait before monitoring again. Given a parameterized set of functions describing

when to monitor next (e.g. c log(t) + b), MON ran a genetic algorithm to determine the

best parameter values for c and b, i.e. the ones that minimized expected cost. The cost

consisted of two parts: A cost for monitoring, and a cost determined by the task. We will

discuss MON's strategies a little later, in section 4.

Our �nal system, LMOUSE (\Learning Monitoring Using Simulated Evolution"),

learned explicit functions that computed when to monitor next, in the form of parse trees

with mathematical operators at the internal nodes and sensor values or constants as the

leaves. Unlike MON, LMOUSE is not restricted to a particular class of functions. Also,

the environment remains two-dimensional and thus more complex than MON's, and the

robot still has several sensors|not just one|some of which might not pertain to the task

at all. And it must learn a monitoring function for all of them. Yet, although LMOUSE

was obliged to learn monitoring strategies, it, too, did not learn any interesting ones when

its search space became large.

3.3 A Conjecture

Despite these e�orts|�ve di�erent genetic algorithm methods, nearly a dozen tasks and

environments, and thousands of trials|we did not discover a rich taxonomy of varied moni-

toring strategies. It is interesting to catalog the strategies we were expecting the algorithms

to produce for the scenarios listed at the beginning of section 3.2. In most cases, periodic

monitoring is the appropriate strategy. In some cases the optimal period can be precom-

puted, whereas in others it depends on the current context. Only one scenario, which

involves traversing an environment where the obstacle density increased linearly, requires

a non-periodic strategy. Plotted over time, as the robot moves from west to east towards

the goal, intervals between monitoring events decrease, very reminiscent of the interval

reduction strategy, even though there is no clear deadline.

Two things are noteworthy: First, periodic monitoring is in fact a good strategy for

many situations, and second, no strategy other than periodic or interval reduction emerged

16

in our experiments. In fact, all the strategies that we have come across during the years we

have been working on monitoring, including those generated by our genetic algorithms, have

been either periodic, interval reduction, or combinations of these two. We now believe that

there might be only a very small number of general monitoring strategies, and that their

apparent complexity arises from the fact that their parameters can be complex functions

of environment variables. It should also be emphasized that monitoring strategies are

appropriate not only for reaching spatial or temporal goals, but can be used to reach any

goal, concrete or abstract, as long as the information needed by the strategy (e.g. a measure

of distance) can be sensed somehow.

Periodic monitoring is a well-known and often used strategy. Interval reduction,

however, is not. If our conjecture is correct, and interval reduction is one of a very few

distinct monitoring strategies, then it warrants further study. The rest of this paper will

look at interval reduction in more detail. In particular, we will demonstrate its general

applicability empirically, and present a series of approaches to analyzing both periodic and

interval reduction strategies mathematically.

4 The Generality of Interval Reduction

The interval reduction strategy showed up in Ceci and Bronfenbrenner's study, the operant

conditioning literature, and the experiment in section 3.1. This section will attempt to

demonstrate interval reduction's general applicability by presenting further corroborating

evidence. We conducted an extensive experiment involving a wide range of agents and

agent environments (Cohen, Atkin & Hansen, 1994), including adult humans. There were

�ve types of agents overall. Two were evolved by the MON and LTB systems we saw earlier.

The other three will be described in the following sections. We wanted to know whether

interval reduction was the strategy of choice in all these cases. Di�erent environments

were generated by varying three parameters: the starting distance, the sensor error, and

also the monitoring cost. This experiment was run on a version of the cupcake problem

more closely related to Ceci and Bronfenbrenner's original study. Instead of an inaccurate

distance sensor, error was modeled by having a small �xed error �m associated with each

wait or move action. This results in nearly exactly the same cumulative error distribution

as in the case of the inaccurate sensor.

4.1 SIR

Our �rst agent used used a decision rule based on the probability of overshooting the goal

during each epoch. This is what we call the SIR strategy for \simple interval reduction".

Let's assume when the agent plans to wait t time steps, it actually waits w(t), where w is

a random variable normally distributed around t with standard deviation � =
p
tm; m is a

parameter describing how inaccurate the internal clock is.3 The probability that the agent

will wait more than

w(t)� = t + z2��

time units is exactly �, where z2� is the number of standard deviations above the mean of

a normal distribution that cuts o� the highest 100�% of the distribution. To ensure that

3One obtains this normal distribution if one assumes that on each time step of the agent's internal clock,
the agent actually waits 1�m time steps, each with equal probability.

17

the agent does not exceed the desired deadline, D, with greater than � probability, we set

w(t)� = D and solve the previous equation for t:

t = D +
m

2
z
2
2�

2
�mz2�

s
D +

m
2
z
2
2�

4
(1)

This equation tells us to wait a certain variable fraction of the current distance remaining

to the deadline, D, after each monitoring event. This is an interval reduction strategy.

4.2 Dynamic Programming

SIR is suboptimal if there are costs for monitoring and penalties for overshooting (or falling

short of) the goal. If monitoring costs are large and penalties small, then monitoring isn't

worthwhile, but SIR will do it anyway. Unfortunately the tradeo� between monitoring

costs and penalties can be played out at every place the agent might stop to monitor. In

fact, deciding when to monitor is a sequential decision problem (Sutton, 1990). Finding

an optimal control policy is also a sequential decision problem. Actions can have delayed

e�ects that must be considered in choosing the action to take in each state, and a policy

that chooses actions solely for their immediate e�ects may not be optimal over the long

term. Monitoring problems have an additional aspect: a control action need not be taken

every time a process is monitored (in cupcake problems the control action is to quit|

take the cupcakes out of the oven, quit walking toward the wall). Deciding whether to

act immediately or wait and monitor again with the option of acting later is a sequential

decision problem because a sequence of later opportunities for acting must be considered in

deciding what to do (Hansen, 1992a; Hansen, 1992b).

Stochastic dynamic programming is a well-known optimization technique for solv-

ing sequential decision problems, but monitoring problems di�er from conventional control

problems in two respects: It isn't necessary to take a control action each time a process

is monitored, and it isn't necessary to observe the process at each time step. The �rst

di�erence is easily modeled by including a null action in the controller's action set. The

second and more signi�cant di�erence comes into play if monitoring incurs a cost and the

controller itself must decide when to observe the state of the process. This problem was

solved by Hansen (1994), working in our lab.

To compute a monitoring policy as well as a control policy, the key idea is to

distinguish the time steps of a sequential decision problem from its decision points (or

\stages"). At a decision point, the controller observes the state of the process and makes

a decision. The assumption in conventional dynamic programming is that a decision point

takes place at each time-step. This assumption is relaxed when computing a monitoring

policy. When the controller is responsible for deciding when to observe the state of the

process, it can wait an arbitrary number of time-steps before monitoring, as determined by

its monitoring policy. However, this means that the conventional payo� functions and state

transition probabilities must be extended so they are de�ned for an arbitrary number of

time steps instead of a single step. Multi-step state transition probabilities and a multi-step

payo� function let the controller project the state of a process and the payo� it expects to

receive an arbitrary number of time-steps into the future. They also add complexity to the

dynamic programming search. Hansen (1992b) has shown that the curse of dimensionality

is ameliorated if utility is assumed to be a monotonic function of monitoring interval, and

18

he also suggests �nding an acceptable but coarse-grained time interval. This work has also

been extended to monitoring plan execution (Hansen, 1994).

Using these algorithms, the optimal strategy for a given cupcake problem has been

shown to be an interval reduction strategy. It is not proportional reduction, however, since

the time to wait when one still far away from the deadline is relatively larger than when

one is close.

4.3 Adult Humans

We implemented a \video game" cupcake problem for human subjects. On the display, the

subject sees a line marked with ticks at regular intervals. When a trial begins, a ball is at

the leftmost end of a line. The goal is to get the ball as close as possible to the rightmost

end of the line, while simultaneously minimizing the number of moves required to do it

and the penalty for falling short or overshooting the end. When the subject clicks on the

line, the ball travels the selected number of steps N of size 1 � m. The subject is then

assessed the cost of monitoring and is given the opportunity to quit the trial or move again

toward the goal. A trial ends when the subject decides to move no closer to the goal, or

when the ball overshoots the goal. On each trial the subject is told m, the error function

parameter, and also the cost of monitoring. During training the subject is told that the

penalty for stopping short of the goal or overshooting the goal is the squared distance to

the goal. We explain to the subjects that movement errors accumulate with distance, so

if m is high, aiming for the end of the line can produce big errors and penalties. We also

train the subjects on as many problems as they desire before presenting them with a set of

test problems.

4.4 Comparing Strategies

We compared humans, MON's parametric functions, optimal dynamic programming policies

and SIR policies on a set of temporal (one-dimensional) cupcake problems. LTB programs

were tested on two-dimensional versions of very similar problems. The apparatus for humans

was the \video game" described earlier. MON, SIR and the dynamic programming policies

were tested in a simulator, in which each trial went as follows:

Loop

1. Monitor to �nd distance to the goal

� If the agent is currently beyond the goal, quit; else

� If the agent is within one unit of the goal, quit; else

2. Consult the control policy to decide N , the number of steps to move before

monitoring again.

3. Take N steps of 1�m units

The three approaches di�ered only in how they selected N , with MON consulting

its parametric equation N = ct+ b, SIR consulting Equation 1, and the optimal approach

consulting its policy. The apparatus for LTB was the two-dimensional simulated robot

world, described earlier. Robots would try to get as close to a point in the world as they

can; bumping into it or moving past it was equivalent to running o� the end of the line

19

in the humans' video game or going beyond the goal in the simulator, above. All these

conditions terminate the trial.

Trials di�ered in the following factors and values:

D, the initial distance to the goal. The four values of D were 20, 50, 100, 150. In

the two-dimensional world, D was the length of a line between the robot's starting

location and the goal object.

M, the cost of monitoring. We tried four monitoring costs: .5, 1, 2, and 10

m, the error function parameter. In pilot experiments we varied m from .2 to .5, but

when we ran human subjects we discovered that these errors were too small to bother

them. The current experiment is for m = :333 and m = 1:0.

The penalty function. We set the penalty to be the square of the distance between the

goal and the location of the agent when it quits a trial. We tried a cubic function but

it made little di�erence to monitoring strategies.

We did not run humans in all 32 conditions of this experiment, fearing that fatigue

would a�ect their performance. Instead, we ran two levels of each of three factors: M =

1; 10, m = :333; 1:0, and D = 20; 150: Each of six subjects was tested on ten problems in

each condition, for a total of 80 trials per subject. MON, SIR, and the optimal policies

were tested in 100 trials in each of the 32 conditions. LTB was trained and tested in just

four conditions.

Some of the results of this experiment are shown in �gure 7. The top two graphs

show the average number of monitoring events, and the numbers represent mean trial costs;

the bottom two graphs show the mean cost of a trial, here the numbers represent mean

monitoring incidence. The cost is the number of monitoring events times the cost of mon-

itoring, plus the penalty for falling short of the goal or overshooting it (the square of the

�nal distance to the goal). On the left, the graphs have M on the horizontal axis; on

the right, D. Six trials of 448 with the human subjects were discarded because they had

huge trial costs|incurred when the subjects became confused about whether a trial had

ended|which skewed the means and variances. Our principal observations follow:

All the agents used an interval reduction or proportional reduction strategy. The

genetic algorithms, MON and LTB evolved other strategies, but they never performed as

well as proportional reduction. In other words, the �tness of the proportional reduction

agents was higher.

The interval reduction and proportional reduction strategies are very e�cient com-

pared to, say, periodic monitoring. Note that the optimal strategy never monitored more

than �ve times and, averaged over all trials and conditions, it monitored 2.52 times per trial.

It's easy to show that, except for very short distances, a periodic monitoring strategy will

incur high penalties if it monitors as infrequently as an interval or proportional reduction

strategy.

As expected, the incidence of monitoring generally decreased with M , the cost of

monitoring. (The exception is SIR which doesn't take the cost of monitoring into account.)

The incidence of monitoring generally increased withm, the parameter of the error function,

and D, the initial distance to the goal. Note also that MON evolved a monitoring strategy

least often when the cost of monitoring was high, but more often when error (m) was high.

Agents monitor because they must|because error or initial distance is high.

20

to
ta

l c
os

t
nu

m
be

r
of

 ti
m

es
 m

on
ito

re
d

optimal

SIR

MON

human

monitoring cost

monitoring cost

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11

D

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160

D

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140 160
1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 11

4.4

4.3

3.6

2.5

3.4

2.4

2.5

1.7

2.9

2.3

3.7

3.5

3.7

4.0

3.4
3.8

4.5 4.3

3.1
3.5

3.7

3.5

1.9

2.7

2.3 2.4

2.1

2.9

3.5

3.9

4.5
4.5

5.1

5.6

5.7
14.3

7.0

5.0

8.4
8.3

4.4

10.4

2.3 4.5

8.5

29.4

8.2

14.3

16.3

38.0

5.5

8.3 9.9

32.8

10.4

32.5

optimal

SIR

MON

human

Figure 7: The results of the cupcake experiments for m = 1:0, in four of the �ve domains. The

graphs on the left are plotted for D = 150, the ones on the right for a monitoring cost of 1:0. The

numbers at the nodes indicate total costs for the top graphs, and number of times monitored for the

lower ones.

21

Not surprisingly, the optimal dynamic programming strategies had the lowest trial

costs in all conditions.

Individual human subjects had remarkably consistent average trial costs, yet some

monitored often and others infrequently. A one-way analysis of variance showed no signi�-

cant di�erence over subjects on mean trial cost (the means ranged from 13.62 to 18.2); but

individuals di�ered signi�cantly (p < :0001) on their mean numbers of monitoring episodes

(ranging from 1.8 to 3.23 per trial). This suggests that some people kept trial costs down by

monitoring relatively often and incurring small penalties, while others avoided monitoring

costs and occasionally incurred large penalties.

Human trial costs were statistically indistinguishable from those of the optimal

strategy when the error (m) and the monitoring cost (M) were both low. In the other six

conditions, the optimal strategy outperformed humans (two-sample t tests, p < :0001), who

tended to monitor too much when M was high and too little when M was low.

The SIR strategy paid dearly for monitoring too often. This is partly because it

doesn't takeM into account, partly because it treats monitoring decisions are independent.

In trials with D = 150; m = 1:0, for example, SIR would �nd itself, say, six distance units

shy of the goal and it would decide to move, say, four units. When the error was high it

would sometimes not move at all, or might move only one unit. At this point a human will

say, \I paid for a monitoring event and yet I moved no closer to my goal; I won't let that

happen again. This time I will aim closer to the goal and I will just have to risk overshooting

it." The optimal strategy will have compiled similar reasoning into its policy. But SIR will

treat the next movement decision exactly as the previous one. We observed sequences of

up to six useless or nearly useless monitoring events in a single trial.

The MON strategies don't perform well (compared with the optimal strategy) when

initial distance to the goalD is low. They usually monitor just once in these conditions and

they run up big penalties for overshooting the goal. It's surprising that better strategies

don't evolve, given that MON is a simple parameter optimization algorithm.

The LTB strategies produce much more variable results than any others, in part

because LTB robots are tested in a two-dimensional environment where they wander around

instead of moving on a line toward the goal. Nevertheless, in this experiment and others,

involving hundreds of trials with LTB and other genetic programming approaches to two-

dimensional cupcake problems (Atkin & Cohen, 1993; Atkin & Cohen, 1994) we have never

observed a �tter strategy than interval reduction.

4.5 Interval Reduction is Appropriate for Cupcake Problems

Ceci and Bronfenbrenner's study, together with the data provided in this section, gives

strong cumulative evidence for the generality of interval reduction. Only when an agent has

no goal, or monitoring provides no information about progress towards this goal, should

periodic monitoring be chosen. Not only is interval reduction the appropriate strategy,

but it is consistently learned and used by both natural and arti�cial agents. The class of

cupcake problems is very large: both \goal" and \progress" should be broadly construed.

Interval reduction is preferred in spatial and temporal domains; in one and two dimensions;

when errors are due to sensor inaccuracy or movement inaccuracy; when penalty functions

are symmetric or asymmetric, continuous or discrete; by agents as diverse as humans and

simple, simulated robots, evolved by genetic programming.

We also managed to prove mathematically that the proportional reduction strategy

22

(which is a special case of interval reduction) outperforms periodic monitoring for any

cupcake problem provided the starting distance is large enough (see section 5.2). Together

with all the experimental evidence presented in this section, we are encouraged to formulate

a general \law of interval reduction". This law constitutes one piece of our monitoring

strategy taxonomy:

A Su�cient Condition for the Applicability of Interval Reduction:

Given a task that requires monitoring for a deadline in space or time,

any environment,

and a sensor that measures the distance to the deadline, but makes larger errors

as the distance to the deadline grows,

! use an interval reduction strategy.

5 Analyzing Monitoring Strategies

In this section, we augment the empirical work presented thus far with some mathemat-

ical results. First we will look at periodic monitoring, which is more easily approached

mathematically, and then at the relationship between periodic monitoring and proportional

reduction.

5.1 Periodic Monitoring

5.1.1 Periodic Monitoring as a Simple Optimization Problem

Often, people are not concerned with cost of monitoring or consider it negligible, and simply

monitor as frequently as the sensor will allow or wherever it happens to be convenient in

the program code. But even if one does take costs into account, periodic monitoring is often

the best strategy to use. Computing the optimal period is quite straightforward. Consider

�res breaking out in a forest. Let the probability that a �re breaks out on any given day be

p; a �re incurs a cost F for every day it burns undetected. Assume that checking for �res

requires sending a helicopter out to
y over the forest, which costs H . What monitoring

period r will minimize the combined expected cost of �re burning and monitoring? More

accurately, what r will minimize the expected combined cost per unit time, since a trial can

go on for an inde�nite amount of time?

If one waits r days before monitoring the �rst time, the combined cost per unit time

interval is

1

r

(H + F

rX
i=1

p(r� i))

=
1

r

(H + Fp

r
2 + r

2
) (2)

Optimizing for r, one gets the period
p
2H=Fp. Since the monitoring epochs (an

epoch is one instance of sending out the helicopter) are independent, this is the optimal

period not just for the �rst epoch, but for the whole trial. The proof in the next section

generalizes this example to any situation where an event has a uniform probability distribu-

tion (probability p does not change over time). The proof shows that periodic monitoring

23

is the optimal strategy for this scenario, and it also tells us how to compute the optimal

period:

A Su�cient Condition for the Applicability of Periodic Monitoring:

Given a task that requires monitoring for an event in time or space,

and this event can occur at any time (or at any position) with equal probability,

and the agent has a sensor that can detect whether the event has occurred,

! use a periodic monitoring strategy with a period t' that minimizes the equation
C(t)

t
, where C(t) is the total cost for not monitoring for t time units plus the cost

for monitoring once.

While not a formal statement, it will appeal to the reader's intuition that when the

agent has no a priori information about an event's distribution, and no sensor by which to

gather that information, the agent can do no better than monitor periodically. Due to its

limited knowledge, the agent must in essence pretend the event can occur at any time with

equal probability:

A Su�cient Condition for the Applicability of Periodic Monitoring:

Given a task that requires monitoring for an event in time or space,

no knowledge of the distribution of this event in the environment,

and a sensor that returns only binary information as to whether the event has

occurred or not,

! use a periodic monitoring strategy.

5.1.2 Periodic Monitoring is Optimal if the Probability of an Event Remains

Constant Over Time

Lemma: If the probability of a process P starting is constant over a time interval T, then

monitoring with a constant period t' is the optimal monitoring strategy.

If C(t) denotes the total cost incurred in a monitoring interval of length t (a monitoring

interval being the time between two monitoring instances), then t' is a t-value for which
C(t)

t
is minimal.

Proof:

De�ne C(t) as above, i.e., C(t) contains the expected process associated cost for not moni-

toring for t time units plus the cost of monitoring itself.

Let D be the time P starts. D is equally distributed over T by assumption. This means

that the expected value for C(t) for a �xed t is constant over the whole of T. This means,

given a monitoring interval t, the expected cost C(t) for this value is constant, independent

of where the interval is within T.

Thus, C(t) is a well-de�ned value. It is therefore possible to minimize (optimize) C(t)

t
, the

cost per unit time in one monitoring interval, over all values of t. Call a t with a minimal
C(t)

t
-value t'.

Now it remains to be shown that monitoring with a period of t' is better than any other

kind of monitoring strategy.

24

Consider an arbitrary other monitoring strategy. Say it monitors n times, ti being the

interval length between the (i� 1)th and ith monitoring instance.

Then
P

n

i=1 C(ti) expresses the total expected cost of monitoring for this strategy. We will

show that this sum is always greater than T

t0C(t
0), which is the total (expected) cost for

monitoring with period t':

nX
i=1

C(ti) =
nX
i=1

ti

C(ti)

ti

>

nX
i=1

ti

C(t0)

t
0 ; because t0 is the value for which

C(t)

t

is minimal

=
C(t0)

t
0

nX
i=1

ti

=
C(t0)

t
0 T

=
T

t
0 C(t

0)

q.e.d.

5.2 A Proof of Proportional Reduction's Superiority over Periodic Mon-

itoring in the Cupcake Problem

The experiment in section 3.1 gave us empirical evidence for proportional reduction's su-

periority over periodic monitoring in the cupcake problem. This section will supply some

analytical evidence as well. Our proof is based on a cupcake problem with �xed monitoring

cost (i.e., a constant cost is charged every time the agent monitors) and a quadratic distance

penalty function. The agent has a sensor that returns the distance to the deadline. This

sensor is completely accurate, whereas the agent's internal clock is not. When the agent

plans to wait t time units (or move t distance units), it will actually wait t0 units, where t0

is a random variable which has a normal distribution with mean t and standard deviation

� = m

p
t. The parameter m is a constant expressing how inaccurate the internal clock is.

The proof approach is the following: Set up expected cost functions for both strate-

gies. Find a general lower bound for the periodic strategy. Then �nd a proportional reduc-

tion strategy that has an upper bound smaller than the lower bound set by the periodic

strategy. If this can be done, it shows that there exists a proportional reduction strategy

that beats periodic.

In the following section, we will formulate the problem and derive upper and lower

bounds on the expected cost for the periodic and proportional reduction strategies, respec-

tively. Section 5.2.4 will then compare the two strategies based on these cost functions.

5.2.1 The Asymptotic Superiority of Proportional Reduction

Let us now de�ne the cupcake problem and the two strategies:

De�nition 1: A cupcake problem is a tuple (D;m;mon cost), where D is the

starting distance to the deadline, m describes the inaccuracy of the agent's internal clock,

25

and mon cost is the cost of monitoring once. The agent's task is to minimize the cost of

trial, the cost being z�mon cost + distance penalty, where z is the number of times the

agent monitored. The distance penalty is quadratic in time units from the deadline when

the trial ends. A trial ends when the agent decides to stop or when upon monitoring, the

agent �nds that it has overshot the deadline. The agent must determine how long to wait

until monitoring again. For this purpose, it has an internal clock that, when given a time

t, will wait t
0
, t

0
being a random variable distributed normally under '

t;m

p
t

4

The cupcake problem can also be formulated for the spatial domain. The de�nition

is completely analogous.

De�nition 2: A periodic strategy is one that involves checking periodically for the

deadline. If the deadline is within period/2 units, the agent stops. If it is not, it waits

period units and then monitors again. The following algorithm illustrates the strategy:

monitor for deadline

while I am not within period/2 of the deadline:

wait period units

monitor for deadline

The periodic strategy is characterized solely by the parameter period.

De�nition 3: A proportional reduction strategy involves waiting a �xed proportion

of the distance remaining at each monitoring step before monitoring again. This proportion

is called the proportional reduction constant (prc). If the agents sees that it is within thresh

units of the deadline, it stops. The following algorithm illustrates the strategy:

monitor for deadline

while I am not within thresh of the deadline:

wait prc * distance remaining units

monitor for deadline

The proportional reduction strategy is characterized by the parameters prc and thresh.

De�nition 4: An optimal strategy is one that, given a cupcake problem

(D;m;mon cost), minimizes the expected cost for solving this problem over all the strat-

egy's parameters.

This section will show that the following theorem holds:

Theorem 1: For any given cupcake problem (D;m;mon cost) with D �
Dmin(m;mon cost), there exists a proportional reduction strategy that does better than the

optimal periodic one.

5.2.2 A Lower Bound on the Expected Cost for Periodic Monitoring

In this section, we are are trying to make a statement about the optimal periodic strategy,

namely, �nding a lower bound on its expected cost. It will therefore be necessary to �nd

the value for period that minimizes this cost. Since we are interested in the lower bound,

assumptions that lower the expected cost are permissible. To simplify things, we will assume

the following:

4
't;� is the normal distribution with mean t and standard deviation �.

26

Before it executes its last wait step, the agent is exactly period units from the dead-

line.

This assumption eliminates all the problems having to do with agent not being able to hit

the deadline exactly because the starting distance D is not divisible by period. It lowers

the expected distance penalty, because if the agent is any other distance than period away

from the deadline before it waits for the last time, the mean of the agent's �nal position

will not be D, and the expected squared distance can only increase.

The number of times we expect the agent to monitor, z, can be expressed very easily5:

z =
D

period

Given the above assumptions, distance error can only arise from the fact that on the last

monitoring step, the agent does not hit the deadline exactly. The expected distance penalty

can be computed as follows. Note that the penalty is exactly the variance of the normal

distribution. Z 1

�1
(x�D)2'

D;m

p
period

(x) = period �m2

So the total expected cost is:

costperiodic � z �mon cost + penalty

=
D

period
mon cost + period �m2 (3)

What is the minimum value of expression (3)? Taking the �rst derivative with respect to

period and setting it to zero results in the following minimum (it is actually a minimum,

which can be veri�ed with the second derivative):

period =

p
Dmon cost

m

Plugging this value for period into (3):

costperiodic � mon costDmp
D

p
mon cost

+m
2

p
Dmon cost

m

= 2m
p
D

p
mon cost (4)

This is a lower bound on the total expected cost for the optimal periodic monitoring strategy

applied to a cupcake problem (D;m;mon cost).

5.2.3 An Upper Bound on the Expected Cost for Proportional Reduction

Calculating the expected cost for proportional reduction is not as straightforward. Since we

are attempting to prove that proportional reduction is better than periodic, in this section

we will be interested in determining a upper bound on the expected cost.

5z is actually only an estimator for the number of times we expect to monitor in the periodic strategy.

Since we are dealing with normal distributions, which are additive, it seems likely that D=period is actually

the average number of times monitored. However, a rigorous proof of this assumption is not included here.

27

If we denote the proportional reduction constant with prc (0 < prc < 1), and we use

thresh to denote the distance from the deadline within which the agent will end the trial,

the number of times the agent will expect to monitor can be expressed by the following

equation6:

z = log 1
1�prc

D

thresh

On each \monitor and wait" sequence (epoch), the agent could potentially overshoot the

deadline. The probability of doing so will depend on prc (lower values reduce the chances

of overshooting) and m (higher values increase the chance). But deriving the overshoot

probability is not enough, we must also determine the expected penalty that is incurred.

The following equation expresses the expected penalty on epoch i (0 � i < z). Denote by

Di = D(1� prc)i the average distance remaining on epoch i.

distance penalty
epoch

=

Z 1

Di

'prc�Di;�(x)(x�Di)
2
dx; (5)

where � = m

p
prc �Di. The integral of the normal distribution cannot in general be ex-

pressed in closed form. But as long as the x-value is greater than 1, one can use e�x as

an over-estimator for the expression e�x
2

in the normal distribution function. So using this

approximation, equation (5) becomes

(5) �
Z 1

Di

1p
2��

e

x�prcDip
2� (x�Di)

2
dx (under the constraint

Di � prcDip
2�

� 1)

Substituting y = x�prcDip
2�

; x = y

p
2� + prcDi;

dx

dy
=
p
2� :

=

Z 1

Di�prcDip
2�

1p
2��

e
�y((

p
2�y + prcDi)�Di)

2 �
p
2�dy

=

Z 1

Di(1�prc)p
2�

1p
�

e
�y(
p
2�y +Di(prc� 1))2dy

De�ne �i =
Di�prcDip

2�
=

p
Di

prc (1�prc)p
2m

. Then the above equation becomes

Z 1

�i

1p
�

e
�y(
p
2�y +Di(prc� 1))2dy

=

Z 1

�i

1p
�

2�2y2e�ydy +

Z 1

�i

1p
�

2
p
2�Di(prc� 1)ye�ydy +

Z 1

�i

1p
�

D
2
i
(prc� 1)2e�ydy

=
2p
�

�
2

Z 1

�i

e
�y
y
2
dy| {z }

I

+2

r
2

�

�(prc� 1)Di

Z 1

�i

e
�y
ydy| {z }

II

+
1p
�

(prc� 1)2D2
i

Z 1

�i

e
�y
dy| {z }

III

The integrals in terms (I), (II), and (III) can be solved with partial integration (
R
y
2
e
�y
dy =

�y2e�y � ye
�y � e

�y
;

R
ye

�y
dy = �ye�y � e

�y
;

R
e
�y
dy = �e�y). It then follows (recall

6Again, it should be mentioned that this expression is only an estimator for z. It can be shown that the

expression given is close to the average number times monitored.

28

�i =
p
Di(1�prc)p
prc

p
2m

):

(I) =
2p
�

�
2(�2

i
e
��i + �ie

��i + e
��i)

=
2p
�

Diprcm
2
e
��i(�2

i
+ �i + 1)

� 2p
�

Diprcm
2
e
��i3�2

i
(if �i � 1)

=
3p
�

D
2
i
e
��i(1� prc)2

(II) = 2

p
2p
�

�(prc� 1)Di(�ie
��i + e

��i)

= 2

p
2p
�

D

3
2

i

p
prc(prc� 1)me��i(�i + 1)

� 2

p
2p
�

D

3
2

i

p
prc(prc� 1)me��i�i (note that (II) � 0 since (prc-1) � 0)

= � 2p
�

D
2
i
(prc� 1)2e��i

(III) =
1p
�

(prc� 1)2D2
i
e
��i

(I) + (II) + (III) � D
2
i
e
��i(prc� 1)2(

3p
�

� 2p
�

+
1p
�

)

=
2p
�

D
2
i
e
��i(prc� 1)2 (6)

Equation (6) gives an upper bound on the distance penalty on one epoch. The total

distance penalty is the sum over all epochs i, 0 � i < z, where z = log 1
1�prc

D

thresh
is the

number of times monitored.

distance penalty �
z�1X
i=0

2p
�

D
2
i
(prc� 1)2e

�
p
Di(1�prc)p
prc

p
2m (7)

If one determines the maximum of the expression within the sum over all possible values of

Di (again by taking the �rst derivative with respect to Di and �nding the roots), one will

�nd that it has its maximum at Di = 32prcm2(1� prc)2. Plugging this into (7) gives us

(7) � 2p
�

z�1X
i=0

(32 � prc �m2 1

(1� prc)2
)2e�4(1� prc)2

= z

2p
�

(32 � prc �m2 1

(1� prc)2
)2e�4(1� prc)2

� z � 22 �m4 prc2

(1� prc)2
(8)

Now we can write an upper bound for the expected cost for the proportional reduction

strategy. Note that equation (8) only expresses the penalty when the agent overshoots the

deadline sometime during a trial. But if it doesn't, thresh2 gives an easy upper bound on

the distance penalty.

costpr � log 1
1�prc

D

thresh
(mon cost + 22 �m4 prc2

(1� prc)2
) + thresh

2
(9)

29

0

1

2

3

4

5

6

7

8

9

10

50 100 150 200 250 300 350 400

ex
pe

ct
ed

 to
ta

l c
os

t

starting distance D

lower bound on periodic
upper bound on proportional reduction

Figure 8: A plot of the bounds on the cost for periodic and proportional reduction with increasing

starting distance; mon cost = 1, m = 0:25, thresh = 0:8, prc = :69.

In the above approximations, �i was assumed to be greater than 1. What does this mean?

�i � 1 ,
p
Di(1� prc)
p
prc
p
2m

� 1 ,

Di � 2prc �m2

(1� prc)2
, prc �

mp
2Di

�
s
1 +

mp
2Di

!2

(10)

Increasing prc will also increase the lower bound on Di. In e�ect, this limits how small we

can make thresh, since the above estimations will not be valid below a certain threshold for

the distance remaining. Or, alternatively, we can use a setting of thresh to determine what

the maximum allowable value of prc will be.

To summarize: Equations (4) and (9) give us the lower and upper bounds on periodic

monitoring and proportional reduction, respectively. The periodic cost is
(D
1
2) and the

proportional reduction cost is O(log(D)), so clearly, proportional reductions beats periodic

for a large enough D. Therefore, theorem 1 has been shown to be true.

5.2.4 When is Proportional Reduction Better?

For practical applications, knowing the exact point, Dmin, at which the cost curves for

periodic monitoring and proportional reduction cross, would be preferable. This point will

depend on the particular settings of all the other parameters. We will now look at how to

choose the still unset parameters in the cost equation of the proportional reduction strategy

in such a way that the cost is minimized.

The monitoring cost is not a parameter that can be set by the strategy, so let us

assume it is one. High values of prc are generally bene�cial, since it reduces the size of

30

the base of the log-function. This tendency is balanced, however, by the expression prc
2

(1�prc)2
in the expected cost function (9). Also, because of constraint (10), prc cannot be made

arbitrarily large without also increasing thresh. The noise parameter m also limits how

large prc can be made. Figure 8 shows the two cost curves for m = 0:25. Numerically,

we determined that thresh = 0:8 and prc = 0:69 minimizes the point at which the lowest

possible periodic cost exceeds the highest possible proportional reduction cost. This point

lies at a D-value of approximately 225. Table 3 shows the best numerically determined

thresh and prc values for increasing values of m. The column marked Dmin shows the point

on the x-axis at which proportional reduction provably surpasses periodic.

m thresh prc prcmax Dmin

0.1 0.6 0.91 0.91 314

0.25 0.8 0.69 0.80 225

0.5 1.3 0.41 0.70 386

0.75 1.8 0.25 0.62 717

1.0 2.3 0.165 0.55 1226

2.0 4.4 0.05 0.38 5365

Table 3: The best values for thresh and prc for increasing values of m, the noise parameter. Dmin

denotes the point at which the two lines cross, prcmax denotes the maximum allowable value for prc,

given the constraints.

The results of the table are intuitive. As the error m of the internal clock grows,

so will the risk the proportional reduction strategy runs of overshooting the deadline by

a large amount. The strategy compensates for this risk by decreasing prc|taking more

cautious steps. The main advantage of proportional reduction is that it can come close to

the deadline with a logarithmic number of steps. This advantage cannot show itself when

the starting distance is small. We had originally assumed that larger monitoring costs would

bene�t the proportional reduction strategy. According to the bound equations, however,

this is not the case: the cost of periodic monitoring grows with the square root of mon cost,

whereas the proportional reduction cost grows linearly.

5.2.5 Summary

Proportional reduction will outperform periodic monitoring if one makes the starting dis-

tance large enough. The starting distance at which this occurs grows as the inaccuracy of

the internal clock increases. We have not yet been able to show that proportional reduction

is always superior, and it may in fact not be. Making the strategies' cost bounds tighter

(in particular the bound on the sum of the individual distance penalties for each epoch in

the proportional reduction strategy) would reduce the size of Dmin, and shed more light on

the relationship between proportional reduction and periodic monitoring for small starting

distances. Intuitively, proportional reduction should perform well in those cases, too. It

would also be desirable, although di�cult, to have a closed form relationship between m

and the minimum starting distance.

Note that for these small starting distances, the costs of both strategies are not

that far apart. Figure 8 is a typical plot: the bounded cost of proportional reduction never

exceeds the bounded cost of periodic monitoring by more than a factor of 2.5. If the upper

31

bound on proportional reduction could be improved slightly, it would make a relatively

large impact on the size of the minimum starting distance. And if one could show that

periodic monitoring is in fact superior when one is very close to the goal, it would make

for an interesting hybrid strategy: Use proportional reduction to get close to the goal, and

then periodic for the �nal few steps.

6 What is the Structure of a Monitoring Strategy Taxon-

omy?

As mentioned in the introduction, we believe three factors determine an agent's behavior:

the task it is given, the environment it is operating in, and the way it is built (its architec-

ture). To understand monitoring, it will be necessary to understand the in
uence of these

three factors. The experiments in sections 3.1, 3.2 and 4 were a small step in this direction:

they analyzed the e�ects of the environmental factors sensing error, starting distance, and

monitoring cost on the cupcake problem.

On a more abstract level, though, what will be the features upon which a monitoring

strategy taxonomy is built? Here are a few candidates regarding task and environment:

What shape is the penalty function? Is it symmetric, does it change over time? What

is the type of task, what are the associated costs? Do several goals have to be achieved

in parallel? Are they independent? Does monitoring for one goal provide information for

another? Are monitoring acts independent? Is deciding when to stop monitoring part of the

problem, or are trials of inde�nite extent? How noisy and unpredictable is the environment?

Is it a spatial or temporal domain? Does it allow actions to be reversed? (In the temporal

cupcake problem, one cannot increase the time to the deadline, in the spatial version one

can increase the distance by going backwards or turning around.) Do false actions have

fatal consequences? Are other agents present?

With respect to the agent's architecture, we must consider what types of sensors

are available. Can they be used independently? What are their costs, their error functions?

Is the error constant or a function of other environmental parameters? Can the e�ectors

in
uence what is being sensed, or are they independent? What degree of control does the

agent have over its environment? What is the agent's reaction time to external events?

What is its computing power? Any of these factors may in
uence the choice of monitoring

strategy. The hard problem is determining what subset of factors are important in a given

scenario. We suspect that in the cupcake problem, only a few factors in
uence the choice of

best monitoring strategy, the most important one being the amount of information returned

by the sensor. Most other factors we looked at, including things like the shape of the penalty

function or the monitoring cost, do not alter the superiority of interval reduction. During

our experiments with di�erent scenarios, we have come to believe that there may only be

a relatively small number of basic monitoring strategies. This would imply that although

many factors can in
uence the strategy, few are relevant in a given scenario. Otherwise, we

would be seeing a much a larger number of monitoring strategies.

An interesting way of looking at the di�erence between periodic and interval re-

duction is in terms of the quantity of information the sensor provides. If the agent in the

cupcake problem had no information other than whether it had overshot the deadline yet

or not, it would be forced to use periodic monitoring. Based on this idea, we propose three

complexity classes for categorizing monitoring problems. \Complexity" is not formally de-

32

�ned, but intuitively it is a combined measure of how much e�ort is required to solve these

problems optimally.

1. precomputable: These are problems where the complete sequence of monitoring can

be planned in advance, where the time between monitoring events does not depend on

any information that must be sensed from the environment. An example is the forest

�re scenario where an event has the same probability of occurring at any time. If this

fact is known to the agent, it can precompute the optimal period according to the 2nd

su�cient condition for periodic monitoring in section 5.1.1. If the event distribution

has a more complex form, the optimal sequence of events can also be precomputed,

although we do not yet have a guaranteed optimal algorithm for this.

2. dynamically dependent on environment : Some strategies will depend on the current

state of the environment. An example of this is monitoring for �res under di�erent

weather conditions: Monitoring will always be periodic, but the period is dependent

on the current weather, as this in
uences the chances of a �re starting. Because of this

variable, the sequence of monitoring actions cannot be precomputed. It might often

be possible, however, to express the optimal period in closed form, with the weather

being simply one of the variables in the equation.

3. sequential decision problems : These are the most di�cult problems. Not only is the

monitoring rate dependent on the environment, but also on all future monitoring

actions. An example of this is of course the cupcake problem. When to monitor

depends on the information returned by the sonar sensor, and also on the decision

whether or not to monitor again after the next movement cycle. If the agent does not

monitor again, it will be better for it to move further now; if it knows it will, it can

be more cautious on this movement step, and rely on future monitoring events to get

it closer to the deadline. This dependence of monitoring actions is what makes the

cupcake problem hard to solve optimally. Even though we can compute a optimal

solution with dynamic programming, we have not been able to �nd a closed form for

the optimal interval reduction function.

7 Related Work

Many �elds touch on monitoring problems to at least a certain extent. There is a consid-

erable literature on reinforcement schedules in behavioral psychology; on modeling human

monitoring behavior during process control; and a smaller literature on AI planning and

plan execution monitoring. Unfortunately, ethology, the study of animal behavior, does not

deal with monitoring strategies on the same abstract level that we do. We will discuss each

of these areas in turn.

The relevant behavioral psychology paradigm has already been discussed in Sec-

tion 3.1.1. Let us address some additional points here. It is interesting to note that animals

and humans do not typically display the same behavior on the �xed interval reinforcement

task. Often humans will respond either at a very low rate (once or twice at the end of

the reinforcement interval T) or at a high constant rate throughout. Lowe, Beasty, and

Bentall (1983) have shown that preverbal children, however, display the classical scalloped

response curve, and argue that language ability is responsible for the di�erences in behavior

across species. But why do adult humans behave this way? Looking at the reinforcement

task as a monitoring problem may shed some light. The human low rate response is in fact

33

close to the optimal strategy: monitoring with period T . The high rate response behavior

could conceivably be explained by assuming humans do not associate a cost with respond-

ing, whereas animals do. If this is the case, a monitoring strategy with a high period is

the best strategy; it guarantees reinforcement as soon as it becomes available. Humans

subjects know that they are in some sort of experiment|animals don't. One could argue

that humans therefore have nothing better to do than respond, e�ectively making the cost

of a response zero, unless some sort of cost is explicitly charged.

Another parallel between our work and operant conditioning is the investigation of

the postreinforcement pause. In a �xed interval schedule, subjects do not usually respond

for a certain time since the last reinforcement. How does this pause depend on the interval

length T? Initial studies assumed a linear relationship (e.g., Schneider, 1969), but more

recently, the evidence appears to indicate a sub-linear relationship of the form p = cT
x,

where x is a constant smaller than one, c is a small positive number (usually ranging

from about 0.5 to 2.5), and p is the pause duration (e.g., Lowe, Harzem & Spencer, 1979;

Wearden, 1985). This �ts well with the optimal monitoring strategy found via dynamic

programming, which has a very similar form.

Human visual sampling behavior has been studied extensively in the areas of process

control|in which a human supervises a potentially unstable process such as a nuclear power

plant|and pilot's and air tra�c controller's instrument viewing patterns (see Moray, 1986,

and Senders, 1983, for reviews). It should be emphasized that the aim of these studies

is to model and predict human performance on monitoring tasks, not to determine the

theoretically optimal strategy in any given situation.

Many models of human monitoring behavior have been proposed. Most fall into one

of two categories: those based on information theory, and those based on expected costs.

What follows is a selection of the models that appear to be of particular relevance to the

work presented in this paper.

The earliest work on quantitative models of monitoring behavior was done by

Senders and his co-workers. They studied eye movements between instrument displays

(Senders et al., 1966; Senders, 1983). The underlying assumption is that each instrument

is a zero mean gaussian process with limited information bandwidth, i.e. the rate of change

is bounded. It is also assumed that a human observer will �xate on an instrument often

enough to extract all the information from it. The Nyquist theorem, which states that a

signal with bandwidth W must be sampled at a minimal rate of 2W , is assumed to con-

trol the monitoring frequency. While not perfect, this model did capture the qualitative

behavior of test subjects. It predicts a periodic strategy.

Senders extended his models to account for a signal observation that is close to

the critical limit for an instrument. He assumed the agent will monitor again when the

likelihood that a threshold is exceeded is maximum. This approach resembles at least

super�cially the one we took to derive the SIR strategy. It was also taken by Moray (1986,

pp. 40-14{40-16) in developing his model of radar operators. It should however be pointed

out that all these models assume band-limited gaussian signals, and that the task of the

subject is to extract information from these signals. This appears to be a di�erent kind

of monitoring task than, say, monitoring for an \event" such as a forest �re breaking out.

Such events are instantaneous and cannot be predicted; they have unlimited bandwidth.

Carbonell proposed a queueing model for an agent that has to monitor several

displays (Carbonell, 1966; Carbonell, Ward & Senders, 1968). Instruments were modeled

34

more realistically by moving away from the gaussian distribution assumption. Instead,

errors accumulated until a control action is taken. Looking at one display means possibly

delaying the observation of another, allowing it to potentially cross a critical threshold.

Observations are scheduled by considering the cost of not looking at the other instruments

during this time period. This model performed very well predicting actual pilot behavior

during an airport approach.

Both Senders' and Carbonell's models are based on information theory. The models

we will discuss now, based on expected costs, have much more in common with our own.

Kvalseth (1977) performed an experiment conceptually very similar to the one in Section 4,

although it wasn't done in the cupcake problem domain, but instead involved monitoring a

sequence of numbers and indicating when they exceeded a threshold. He too investigated

the e�ect of monitoring cost and errors on the sampling period, and found, as we did, that

agents monitor more frequently as the process becomes less predictable (higher errors) and

that it declines as the cost of monitoring grows. He also found, as we did, that human

performance on these tasks is slightly suboptimal. Moray (1986, p. 40-17) attributes this

suboptimality to a lack of practice on part of the subjects.

Sheridan (1970) proposed a method for computing the next time to monitor. This

method can be seen as an extension of the proof in Section 5.1.2. Sheridan de�nes a cost

term consisting of the di�erence of the value of the last observation (we used accumulated

expected cost since the last observation) and the average monitoring cost per unit time. One

monitors again when this function reaches its maximum. If the properties of the monitored

process do not change, this method results in a periodic strategy.

In the arti�cial intelligence domain, the work most closely related to ours comes from

the area of monitoring plan execution, which deals with the question of how to determine

whether the execution of a plan is proceeding according to expectations. The need for

monitoring arises from non-determinism of the environment|no planner can completely

accurately predict future events or the e�ects of proposed actions. However, the issues

addressed in these systems revolve mainly around how to combine monitoringwith planning,

and not on what the resulting strategies look like. Some systems already assume the agent

has a basic sensing policy (e.g., Chrisman & Simmons, 1991). Monitoring costs are also not

usually taken into account.

Typically, in AI planning systems, monitoring plays the role of verifying plan execu-

tion. This involves checking the unfolding execution of a plan, so as to replan if something

goes wrong, or adjust the plan opportunistically. One of the �rst systems that used monitor-

ing for both these purposes was the autonomous mobile robot \Shakey" (Raphael, 1976), in

particular its execution monitoring component \PLANEX" (Fikes, Hart & Nilsson, 1972).

Systems that don't construct explicit plans, such as reactive (Agre & Chapman, 1987; Kae-

bling, 1987; Schoppers, 1987) or run-time planners (Firby, 1987; George� & Lansky, 1987;

McDermott, 1978), do not need to check plan execution, but they will still have to monitor

to assess their current state.

There appears to be a growing consensus that no clear distinction can or should be

made between planning and execution (Agre & Chapman, 1990; Dean, 1987). This implies

that the process of �nding monitoring strategies cannot be separated from the planning

process. In other words, the planner is responsible for generating an appropriate monitoring

strategy to go with its plan; there is no point in having a general purpose theory that �nds

a monitoring strategy for an arbitrary plan, since the generator of the monitoring strategy

35

requires the same reasoning capabilities as the planner (McDermott, 1992). This does not

contradict the notion of a monitoring strategy taxonomy, since the taxonomy incorporates

the task of the agent, as well. As we have seen, LTB simultaneously learned the \plan" for

solving the task and the monitoring strategy it employed.

As previously mentioned, many planners make the distinction between monitoring

and sensing. Typically, this is accomplished by making the planner's primitive actions re-

sponsible for doing the actual sensing, and having the planner rely on a high-level world

model. While this approach has the advantage of delegating the problem of sensor inte-

gration (combining possible con
icting data over a period of time) to the procedural sub-

systems that execute the actions, it also means that the planner has no direct sensor control.

Doyle, Atkinson, and Doshi (1986) include explicit sensor commands in the plan language,

which are used to verify the plan's execution. However, these veri�cation operators are

only inserted after the plan has been generated, thus separating action planning from the

process of �nding a monitoring strategy. Ambros-Ingerson and Steel's (1988) system truly

integrates these two tasks.

The reliance on primitive, uninterruptable actions also forces even those planners

that can monitor explicitly to place the monitoring commands between these actions. In

particular, this means that the length of time it takes to execute a primitive action de�nes

an implicit minimummonitoring period. Apart from keeping the planner's primitive actions

very basic, the only way around this problem is to allow some sort of concurrent monitoring

procedures (Hendler & Sanborn, 1987; Simmons, 1990). Even without multiple processors,

concurrency can be achieved by allowing external events to interrupt the current action

being executed.

Limits on an agent's sensory system are both physical and computational: An agent

does not have a sensor for everything that could be measured in the environment, and it does

not have in�nite computing power, so it cannot necessarily use all the available information.

Together with other costs levied on the act of monitoring, this forces the agent to monitor

only some features of the environment, or monitor the environment only at particular times.

While most of our work has focused on the latter approach, and attempts to formalize

general strategies for given scenarios (Atkin, 1991; Atkin & Cohen, 1993; Atkin, 1993;

Cohen, Atkin & Hansen, 1994; Hansen, 1992a; Hansen, 1994), the former approach is by no

means trivial. It encompasses the whole area of active perception in robotics and computer

vision (see for example Bajcsy, 1988).

Some methods reminiscent of Senders' sampling models have been used in AI plan-

ning. One can estimate the amount of uncertainty introduced by each e�ector command

that is executed, and monitor again when this uncertainty exceeds a threshold. This mech-

anism was implemented in the original Shakey robot (Raphael, 1976) and other robotic

systems (Latombe, Lazanas & Shekhar, 1991).

Another approach is to model the rate of change in the environment, and to use

this as the basis for the monitoring period. This is the design philosophy behind reactive

systems (e.g., Agre & Chapman, 1987), which are supposed to monitor the environment

fast enough to be able to act appropriately in a timely fashion. Monitoring at a high rate

for all environmental conditions might be an easy solution, but is certainly not optimal in

terms of monitoring costs.

Ethology studies the behavior of animals. Should it not also consider monitoring

strategies? Apparently not in the same abstract sense as we do. Take for example the area

36

of optimal foraging, which has been analyzed in a rigorous mathematical fashion (see Pyke,

Pulliam& Charnov, 1977, and Pyke, 1984, for a review).7 Here the question being answered

is how an organism can minimize the energy it expends catching prey while maximizing its

food intake. A result might be an equation governing the maximum distance an organism

should move to catch something given a certain likelihood of prey appearing. However, the

question we would be interested in is how the agent checks its environment. How does the

information the organism gathers a�ect this strategy? This type of question is not usually

under investigation, not even when predator-prey interaction is the focus of research.

In sum, what has the literature told us about a monitoring strategy taxonomy? Un-

fortunately, not all that much. There are many examples of di�erent monitoring strategies

in di�erent situations, many rigorous mathematical models of behavior in speci�c scenarios,

and some insights into what factors of the task and environment are important, but most

work is not at the right level of abstraction for our purposes. For a taxonomy, we need not

only a description of the decision rule that speci�es when to monitor next, but a classi�ca-

tion of the type of strategy this rule will produce, and an optimality criteria for strategies

in this scenario. In many cases, it is hard to say just by looking at a rule or a response rate

graph what the strategy will be, but that information is necessary.

8 Summary

The contribution of this work has been the identi�cation of two very general monitoring

strategies, periodic monitoring and interval reduction, and the demonstration of their wide

applicability. As a consequence of this work, we have come to believe that there may

be no further basic strategies. Moreover, we have been able to show experimentally and

mathematically that interval reduction is the superior strategy for a class of problems that

require monitoring for a deadline. This is an important result in and of itself, but it also

drives home the point that periodic monitoring is not always the best strategy to use.

The reason it is so prevalent a strategy might either be due to the fact that the people

using it regard the non-optimality of their monitoring strategy as inconsequential, or that

monitoring is assumed to be free. This work has demonstrated that alternative strategies

need not be very complicated and can sometimes outperform periodic monitoring by a

substantial margin.

Using the cupcake problem as an example, we have shown how the environment can

e�ect the strategy. We believe that the method of identifying the potential features of task,

architecture, and environment that are relevant to a certain problem, varying them, and

then comparing the resulting behaviors of the agent, is a general method for �nding rules

of agent design. We have listed many factors that may in
uence the choice of monitoring

strategy. Determining the relevance and in
uence of factors in a given scenario is still very

much an open research question that we hope will be expanded on.

We have proposed three su�cient conditions on when to use periodic monitoring

and interval reduction. The conditions in these rules are very general, and refer to very

abstract properties of environment, task, and architecture. It seems to us that a larger set

of such rules could e�ectively realize the goals we had hoped the taxonomy would ful�ll:

enabling an agent designer to work more e�ciently. In order to increase their utility, more

7Foraging strategies comparable with those found in nature have even been evolved by genetic program-

ming (Koza, Rice & Roughgarden, 1992).

37

work needs to be done on describing the relationship between features of the scenario and

parameters of the strategy, instead of just stating which strategy to use.

Acknowledgements

We would like to thank Rod Grupen and Ramesh Sitaraman for fruitful discussions, and

Peter Todd for pointing out a wealth of related work. Our research was supported by

ARPA/Rome Laboratory contracts #F30602-91-C-0076 and #F49620-89-C-00113, an In-

telligent Real-Time Problem-Solving Initiative contract AFOSR-91-0067, and by NTT Data

Communications Systems Corporation. The US Government is authorized to reproduce

and distribute reprints for governmental purposes notwithstanding any copyright notation

hereon. The views and conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the o�cial policies or endorsements either

expressed or implied, of the Advanced Research Projects Agency, Rome Laboratory of the

U.S. Government.

38

References

Agre, P. E., & Chapman, D., 1987. Pengi: An implementation of a Theory of Activity.

Proceedings of the Sixth National Conference on Arti�cial Intelligence, 268-272.

Agre, P. E., & Chapman, D., 1990. What are plans for? In: P. Maes (Ed.), Designing

Autonomous Agents: Theory and Practice from Biology to Engineering and Back. MIT

Press, Cambridge, MA.

Ambros-Ingerson, J. A., and Steel, S., 1988. Integrating Planning, Execution, and Moni-

toring, Proceedings of the Seventh National Conference on Arti�cial Intelligence, 83-88.

Atkin, M. S., 1991. Research Summary: Using a Genetic Algorithm to Monitor Cupcakes,

EKSL Memo #24, Experimental Knowledge Systems Laboratory, University of Mas-

sachusetts, Amherst.

Atkin, M. & Cohen, P. R., 1993. Genetic Programming to Learn an Agent's Monitoring

Strategy, Proceedings of the AAAI 93 Workshop on Learning Action Models, 36-41.

Atkin, M. S, 1993. Using Genetic Algorithms to Learn Monitoring Strategies. Unpublished.

Atkin, M. S. & Cohen, P. R., 1994. Learning Monitoring Strategies: A Di�cult Genetic

Programming Application. Proceedings on the First IEEE Conference on Evolutionary

Computation, 328-332a.

Bajscy, R., 1988. Active Perception. Proceedings of the IEEE 76 (8), 996-1005.

Carbonell, J. R., 1966. A queuing model model for many-instrument visual sampling. IEEE

Transactions on Human Factors in electronics, HFE-7, 157-164.

Carbonell, J. R, Ward, J. L., and Senders, J. W., 1968. A Queueing Model of Visual Sam-

pling; Experimental Validation. IEEE Transactions on Man-Machine Systems,MMS-

9, 3, 82-87.

Ceci, S. J. & Bronfenbrenner, U., 1985. \Don't forget to take the cupcakes out of the oven":

Prospective memory, strategic time-monitoring, and context. Child Development, 56,

152-164.

Chrisman, L. & Simmons, R., 1991. Sensible Planning: Focusing Perceptual Attention.

Proceedings of the Ninth National Conference on Arti�cial Intelligence, 756-761.

Cohen, P. R., Howe, A. E., & Hart, D. M., 1990. Intelligent Real-time Problem Solv-

ing: Issues and Examples. Computer Science Technical Report 90-20. University of

Massachusetts, Amherst.

Cohen, P. R., 1990. Modeling How Interactions Between Agents' Architectures and Envi-

ronments Produce Behaviors, for the Purpose of Design and Analysis. Proceedings of

the AAAI Workshop on Planning.

Cohen, P. R., Atkin, M. S., and Hansen, E. A., 1994. The Interval Reduction Strategy for

Monitoring Cupcake problems, Proceedings of the Third International Conference on

the Simulation of Adaptive Behavior, 82-90.

Dean, T., 1987. Planning, Execution, and Control. Proceedings of the DARPA Knowledge-

Based Planning Workshop, 29-1{29-10.

Doyle, R., Atkinson, D., & Doshi, R., 1986. Generating Perception Requests and Expecta-

tions to Verify the Execution of Plans. Proceedings of the Fifth National Conference on

Arti�cial Intelligence, 81-88.

Ferster, C. B. and Skinner, B. F., 1957. Schedules of Reinforcement. Appleton-Century-

Crofts, New York, NY.

Fikes, R., Hart, P., & Nilsson, N., 1972. Learning and Executing Generalized Robot Plans.

Arti�cial Intelligence 3 (4), 251-288. Reprinted in: Allen, J. F., Hendler, J., and Tate,

A. (Eds.), Readings in Planning, Morgan Kaufman, San Mateo, CA.

39

Firby, R. J., 1987. An Investigation into Reactive Planning in Complex Domains, Proceed-

ings of the Sixth National Conference on Arti�cial Intelligence, 202-206.

George�, M. P., & Lansky, A. L., 1987. Reactive Reasoning and Planning, Proceedings of

the Sixth National Conference on Arti�cial Intelligence, 677-682.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization & Machine Learning.

Addison-Wesley, Reading, MA.

Goldberg, D. E. & Kalyanmoy, D., 1991. A ComparativeAnalysis of Selection Schemes Used

in Genetic Algorithms, in Foundations of Genetic Algorithms (Gregory J.E. Rawlins

ed.). Morgan Kaufman, San Mateo, CA.

Hansen, E. A., 1992a. Note on monitoring cupcakes. EKSL Memo #22.

Experimental Knowledge Systems Laboratory, Computer Science Dept., University of

Massachusetts, Amherst.

Hansen, E. A., 1992b. Learning A Decision Rule for Monitoring Tasks with Deadlines.

CMPSCI Technical Report 92-80. University of Massachusetts, Amherst.

Hansen, E. A., 1994. Cost-E�ective Sensing During Plan Execution. Proceedings of the

Twelfth National Conference on Arti�cial Intelligence, 1029-1035.

Hendler, J., & Sanborn, J., 1987. A Model of Reaction for Planning in Dynamic Environ-

ments. Proceedings of the DARPA Knowledge-Based Planning Workshop, 24-1{24-10.

Kaebling, L., 1987, An Architecture for Intelligent Reactive Systems. In George� and

Lansky (Eds.), Reasoning About Actions and Plans. Reprinted in: Allen, J. F., Hendler,

J., and Tate, A. (Eds.), Readings in Planning.

Koza, J. R., 1992. Genetic Programming: On the Programming of Computers by Means of

Natural Selection and Genetics. MIT Press, Cambridge, MA.

Koza, J. R. & Rice, J. P., 1992. Automatic Programming of Robots using Genetic Program-

ming. Proceedings of the Tenth National Conference on Arti�cial Intelligence, 194-207.

Koza, J. R., Rice, J. P., Roughgarden, J., 1992. Evolution of Food-Foraging Strategies

for the Carribean Anolis Lizard Using Genetic Programming. Adaptive Behavior, 1,

171-199.

Kvalseth, T., 1977. The e�ect of cost on the sampling behavior of human instrument moni-

tors. In Sheridan, T. B., and Johannsen, G. (eds.),Monitoring behavior and supervisory

control, Plenum, New York, NY.

Latombe, J.-C., Lazanas, A., and Shekhar, S., 1991. Robot Motion Planning with Uncer-

tainty in Control and Sensing. Arti�cial Intelligence, 52 (1), 1-47.

Lowe, C. F., Harzem, P., and Bagshaw, M., 1978. Species Di�erences in Temporal Control

of Behavior II: Human Performance. Journal of the Experimental Analysis of Behavior,

29 (3), 351-361.

Lowe, C. F., Harzem, P., and Spencer, P. T., 1979. Temporal Control of Behavior and the

Power Law. Journal of the Experimental Analysis of Behavior, 31 (3), 333-343.

Lowe, C. F., Beasty, A., and Bentall, R. P., 1983. The Role of Verbal Behavior in Human

Learning: Infant performance on Fixed-Interval Schedules. Journal of the Experimental

Analysis of Behavior, 39 (1), 157-164.

Mackintosh, N. J., 1974. The Psychology of Animal Learning. Academic Press, London.

McDermott, D., 1978. Planning and Acting. Cognitive Science, 2 (2), 71-109. Reprinted in:

Allen, J. F., Hendler, J., and Tate, A. (Eds.), Readings in Planning, Morgan Kaufman,

San Mateo, CA.

McDermott, D., 1992. Robot Planning. AI Magazine, Volume 13, No. 2 (Summer 1992),

55-79.

40

Moray, N., 1986. Monitoring Behavior and Supervisory Control. In Bo�, Kaufman, and

Thomas (eds.), Handbook of Perception and Human Performance, Vol. II, chapter 40.

Wiley, New York, NY.

Pyke, G. H., Pulliam, H. R., and Charnov, E. L., 1977. Optimal foraging: a selective review

of theory and tests. Q. Rev. Biol., 52, 137-154.

Pyke, G. H., 1984: Optimal foraging: A critical review. Annual Review of Ecology and

Systematics, 15, 523-575.

Raphael, B., 1976. The Thinking Computer: Mind Inside Matter. W. H. Freeman and

Company, San Francisco., 153-159, 169, 275-281, 287-288.

Schneider, B. A., 1969. A Two-State Analysis of Fixed-Interval Responding in the Pigeon.

Journal of the Experimental Analysis of Behavior, 12 (5), 677-687.

Schoppers, M., 1987. Universal Plans for Reactive Robots in Unpredictable Domains. Pro-

ceedings of the Tenth International Joint Conference on Arti�cial Intelligence, 1039-

1046.

Schwartz, B., 1984. Psychology and Learning Behavior, 2nd edition. W. W. Norton &

Company, New York, NY.

Senders, J. W., Elkind, J. I, Grignetti, M. C., and Smallwood, R., 1966. An Investiga-

tion of the Visual Sampling Behavior of Human Observers. NASA CR-434, National

Aeronautics and Space Administration, Washington, DC.

Senders, J. W., 1983. Visual Scanning Processes. University of Tilburg Press.

Sheridan, T. B., 1970. How often the supervisor should sample. IEEE Transactions on

Systems, Science, and Cybernetics, SSC-6, 2, 140-145.

Simmons, R. G., 1990. An Architecture for Coordinating Planning, Sensing, and Action.

Proceedings of DARPA Workshop on Innovative Approaches to Planning, Scheduling,

and Control, 292-297.

Sutton, R. S., 1990. Integrated architectures for learning, planning, and reacting based on

approximately dynamic programming. Proceedings of the Seventh International Con-

ference on Machine Learning, 216-224.

Wearden, J. H., 1985. The Power Law and Weber's Law in Fixed-Interval Postreinforcement

Pausing: A Scalar Timing Model. The Quarterly Journal of Experimental Psychology,

37B (3), 191-211.

41

