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Abstract. The Hierarchical Agent Control Architecture (HAC) is a gen-

eral toolkit for specifying an agent's behavior. By organizing the hierar-

chy around tasks to be accomplished, not the agents themselves, it is easy

to incorporate multi-agent actions and planning into the architecture. In

addition, HAC supports action abstraction, resource management, sen-

sor integration, and is well suited to controlling large numbers of agents

in dynamic environments.

Unlike other agent architectures, HAC does not conceptually distin-

guish reactive from deliberative, or single-agent from multi-agent be-

haviors. There is no pre-determined number of cognitive \levels" in the

hierarchy|all actions share the same form and are implemented with

the same functions.

GRASP is a multi-goal partial hierarchical planner that has been imple-

mented using the HAC framework. GRASP illustrates two points: Firstly,

that the same HAC mechanisms used to write reactive actions can be

used to implement a cognitive activity such as planning; and secondly,

that the problem of integrating reactive and deliberative behavior itself

can be viewed as having to simultaneously achieve multiple goals.

Throughout the paper, we show how HAC and GRASP were applied

to an adversarial, real-time domain based on the game of \Capture the

Flag".

Introduction

In the Experimental Knowledge Systems Laboratory, we have developed a num-

ber of complex simulations. phoenix, a system that uses multiple agents to �ght

�res in a realistic simulated environment, is perhaps the best example [Cohen et

al., 1989]. We have also made e�orts to write general simulation substrates [An-

derson, 1995; Atkin et al., 1998]. Currently, we are working on creating a sys-

tem which will allow army commanders to design and evaluate high level plans

(\courses of action") in a land-based campaign.

It quickly became apparent that regardless of the domain, agent designers

must face the same kinds of problems: processing sensor information, reacting
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Fig. 1. Actions form a hierarchy; control information is passed down, messages are

passed up. The lowest level are agent e�ectors; the middle layer consists of more

complex, yet domain-general actions called physical schemas.Above this level we have

domain-speci�c actions.

to a changing environment in a timely manner, integrating reactive and cog-

nitive processes to achieve an abstract goal, interleaving planning and execu-

tion, distributed control, allowing code reuse within and across domains, and

using computational resources eÆciently. This led to the development of a gen-

eral framework for controlling agents, called Hierarchical Agent Control (HAC).

HAC has many unique features|the one we will be focusing on here is its ability

to seamlessly integrate reactive and cognitive processes.

HAC: Hierarchical Agent Control

HAC can be viewed as a set of language constructs and support mechanisms for

describing agent behavior. HAC takes care of the mechanics of executing the code

that controls an agent, passing messages between actions, coordinating multiple

agents, arbitrating resource conicts between agents, and updating sensor values.

Although our primary application has been a military simulation system called

\Capture the Flag" [Atkin et al., 1999] (see Figure 2), HAC can equally well

be applied to such domains as commercial games, multi-agent simulations, or

actual physical robots [Atkin et al., 1998].

HAC organizes the agent's actions in a hierarchy (see Figure 1). The very

lowest levels are the agent's e�ectors. The set of e�ectors will depend on the

agent and the domain, but typically include being able to move the agent, turn

it, or use a special ability such as �ring a weapon. More complex actions are

built from these primitive ones. An attack action, for example, may move to

a target's location and �re at it. As one goes up the hierarchy, actions become

increasingly abstract and powerful. They solve more diÆcult problems, such as

path planning, and can react to wide range of eventualities.
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Fig. 2. The Capture the Flag domain (CtF). There are two teams; each has a number

of movable units and ags to protect. They operate on a map which has di�erent types

of terrain. Terrain inuences movement speed and forms barriers; terrain also a�ects

unit visibility. A team wins when it captures all its opponent's ags.

A hierarchy of sensors parallels the action hierarchy. Just as a more complex

action uses simpler ones to accomplish its goal, complex sensors use the values

of simpler ones. These are abstract sensors. They are not physical, since they

do not sense anything directly from the world. They take the output of other

sensors and integrate and re-interpret it. A low-level vision system (a physical

sensor) produces a black and white pixel array. An abstract sensor might take

this image and mark line segments in it. A higher level abstract sensor takes

the line segments and determines whether there is a stretch of road ahead. A

follow-road action can use this abstract sensor to compute where to go next.

Abstract sensors are used throughout HAC and GRASP to notify actions and

plans of unexpected or unpredictable events.

HAC executes actions by scheduling them on a queue. The queue is sorted

by the time at which the action will execute. Actions get taken o� the queue and

executed until there are no more actions that are scheduled to run at this time

step. Actions can reschedule themselves, but in most cases, they will be resched-
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uled when woken up by messages from their children. An action is executed by

calling its realize method. The realize method does not generally complete the

action on its �rst invocation; it just does what needs to be done on this tick.

In most cases, an action's realize method will be called many times before the

action terminates.

HAC is a supervenient architecture [Spector and Hendler, 1994]. It abides

by the principle that higher levels should provide goals and context for the

lower levels, and lower levels provide sensory reports and messages to the higher

levels (\goals down, knowledge up"). A higher level cannot overrule the sensory

information provided by a lower level, nor can a lower level interfere with the

control of a higher level. Supervenience structures the abstraction process; it

allows us to build modular, reusable actions. HAC simpli�es this process further

by enforcing that every action's implementation (its realize method) take the

following form:

1. React to messages coming in from children.

2. Update state.

3. Schedule new child actions if necessary.

4. Send messages up to parent.

Figure 1 shows a small part of an action hierarchy. The follow action, for

example, relies on amove-to-point action to reach a speci�ed location.Move-

to-point will send status reports to follow if necessary; at the very least a

completion message (failure or success). The only responsibility of the follow

action is to issue a new target location if the agent being followed moves. HAC

is an architecture; other than enforcing a general form, it does not place any

constraints on how actions are implemented. Every action can choose what mes-

sages it will respond to. Although actions lower in the hierarchy will tend to be

more reactive, whereas those higher up tend to be more deliberative, the tran-

sition between them is smooth and completely up to the designer. Unlike other

architectures, we do not prescribe a preset number of behavioral levels. Parents

can run in parallel with their children or only when the child completes.

An Example Action De�nition

This section will elucidate the action-writing process using a concrete example.

HAC provides a number of methods to make the process of writing actions easier.

Across actions we must perform the same sort of tasks: generating messages for

the parent, advancing the action, etc. In HAC, actions are classes; each action

de�nes a set of methods that address these tasks.

Figure 3 shows the implementation of a multi-agent action, swarm. It is a

simple action that causes a number of agents to move around randomly within

a circular region. We use the simpler action move-to-point to implement this;

it is invoked with the construct start-new-child. When the agents bump or get

stuck, they change direction. First, we de�ne the swarm action to be a level-n-

action. This means it is non-primitive and must handle messages from below as
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(defclass* swarm (level-n-action)

(area ;swarm area

(agents nil) ;agents involved in swarm

;; storage

(first-call t)))

(defmethod handle-message ((game-state game-state) (action swarm)

(message completion))

(redirect game-state action (agent (from message))))

(defmethod handle-message ((game-state game-state) (action swarm)

(message afs-movement-message))

(interrupt-action game-state (from message))

(redirect game-state action (agent (from message))))

(defmethod redirect ((game-state game-state) (action swarm) agent)

(start-new-child action game-state 'move-to-point

:agent agent

:destination-geom (make-destination-geom

(random-location-in-geom (area action)))

:messages-to-generate

'(completion contact no-progress-in-movement)

:speed nil

:terminal-velocity nil))

(defmethod check-and-generate-message ((game-state game-state)

(action swarm) (type (eql 'completion)))

(values nil)) ;never completes

(defmethod realize ((game-state game-state) (action swarm))

(when (first-call action)

(setf (first-call action) nil)

(loop for agent in (agents action) do

(redirect game-state action agent))))

Fig. 3. Implementation of a multi-agent \swarm" behavior in HAC.

well as pass messages up. We de�ne how we will react to messages from children

using the handle-messages methods. Message handlers specialize on the type

of message that a child might send. In the example, we redirect an agent to a

new location when the move-to-point action controlling it completes. If the

move-to-point reports any kind of error (all errors relating to movement are

subclasses of afs-movement-message), such as contact with another agent, we

simply interrupt it and redirect the agent somewhere else.

These handle-messages methods are invoked whenever a message of the

speci�ed type is sent to swarm. When this happens, the realize method is also

called. In our example, the realize method is only used for initialization: the �rst

time it is called, it sends all the agents o� to random locations.

The set of check-and-generate methods de�ne the set of messages that this

action can send up to its parents. When the realize message is called, the check-

and-generate methods are invoked. The swarm example never completes, and

it doesn't report on its status, so it generates no messages.
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An action or a plan posts a set of goals G = fg1; g2; :::gng. This invokes the following

process:

1. For every gi:
1.1 Search the list of plans for those that can satisfy gi.
1.2. Evaluate each potential plan's pre-conditions and only keep only those whose

pre-conditions match.
1.3. For each remaining plan, estimate it's required resources.

2. Sort G by the priority of gi.
3. candidate plan sets := nil.
4. Loop over gi in order of priority:

4.1 If only one plan achieves gi, instantiate it (bind unbound variables) and add
it to every plan set in candidate plan sets; otherwise:

4.2 If several plans achieve gi, score each one based on:
� how many resources it uses
� how many other goals in G it (partially) satis�es
� other plan-speci�c heuristics

4.3 Choose m (m is rarely > 1 to limit combinatorics) of the highest scoring plans:
p1; :::; pm

4.4 Loop over remaining gj(j > i): if gi partially satis�es gj , merge gj into
p1; :::; pm

4.5 Copy the plan sets in candidate plan sets m times; add pk to copy k.
5. Loop over plan set in candidate plan sets:

5.1 Evaluate plan set using forward simulation.
6. Execute the plan set (make them child actions of the goal poster) that in simulation,

results in a world state with the highest score.

Fig. 4. The planning algorithm.

The Planner

We will illustrate how HAC integrates reactive and deliberative actions using a

planner, GRASP, as an example. GRASP (General Reasoning using AbStract

Physics) is a least-commitment partial hierarchical planner [George� and Lansky,

1986]. Such planners are particularly well suited to continuous and unpredictable

domains such as CtF, where the planning space branching factor can be very

high. Partial hierarchical planners rely on a library of plan skeletons. Plan skele-

tons are plans that are not fully elaborated: they may contain unbound variables

or subgoals which are not �lled in until run-time. In HAC, plan skeletons are

implemented as actions that explicitly state the goal they achieve. Every action

can be viewed as achieving some goal (for example, the move-to-point action

achieves the goal of getting to a destination). Planning is necessary when the

goal is satis�ed by several actions and we have to decide between them.

GRASP is invoked by scheduling a speci�c action, match-goal, as a child.

Match-goal takes as an argument a goal (or set of goals) to be satis�ed. It

then consults the plan library, checking which plans satisfy this goal. Using the

algorithm outlined in Figure 4, it chooses the best plan (or set of plans). During

the matching process, unbound variables in the plan are instantiated|others

are instantiated by the plan itself when it runs. When match-goal has selected

a plan, it terminates, and schedules the best plan as a child action of the action
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Fig. 5. A planning example: White is trying to satisfy the goal win-the-game. Several

top-level plans match this goal; the example explores what happens when defensive-

stance is expanded. This plan emphasizes defense, which is reected in the list of

subgoals generated. There are several sets of plans that achieve these subgoals, and

many ways to allocate resources to these plans. The planner uses heuristics to prune

this set. In the �rst case, two units are allocated to ag defense, and one is sent out

to attack. In the second case, only one unit is needed to block the mountain pass, thus

protecting the ags, leaving two units for the attack. This plan set is more likely to

succeed and is ranked higher.

that called it. This is completely transparent to the caller: the caller starts the

planning process by posting a goal, and ends up with a child action that satis�es

this goal. This child action can, in turn, post subgoals using the same process.

If match-goal �nds no appropriate plan, it fails just like any other action,

sending an unsuccessful completion message to the goal poster. If a plan fails

during its execution, it too can send a failure message to its parent. One way for

the parent to react to this message would be for it to try calling match-goal

again, in e�ect triggering a re-plan.

In HAC, actions run in parallel with each other. At every tick, the realize

method of every scheduled action is called. Since planning is usually a time-

consuming process, we have implemented match-goal so that it spreads its

computations over several ticks.

GRASP extends the traditional partial hierarchical planning framework by

allowing multiple goals to be associated with a resource or set of resources.

These are not simply conjunctive goals; instead, goals are prioritized. GRASP

uses heuristics in order to achieve the largest set of high priority goals possible.
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In the Capture the Flag domain, winning involves coordinating multiple sub-

goals: protecting your own ags, thwarting enemy o�ensives, choosing the most

vulnerable enemy ag for a counter-attack, and so on. Each requires resources

(units) to be accomplished. Sometimes one resource can be used to achieve sev-

eral tasks. For instance, if two ags are close together, one unit might protect

both. Or, advancing towards an opponent's ag might also force the opponent

to retreat, thus relieving some pressure on one's own ags.

Figure 5 shows an example of the plan generation procedure. Each goal is

prioritized, then plans are generated to achieve each one. Heuristics are used to

generate a small number of possible plan sets. If resource problems arise during a

plan's execution (because a resource was destroyed and the plan using it cannot

succeed without it, for example), a resource error message is sent to the plan

initiator using the HAC messaging mechanism, possibly causing resources to be

re-assigned or a complete replan to take place.

When several plans apply, partial hierarchical planners typically select one

according to heuristic criteria. GRASP instead performs a qualitative simulation

on each candidate plan (or plan set). Potential plans are simulated forward,

then a static evaluation function is applied to select the best plan. The static

evaluation function incorporates such factors as relative strength and the number

of captured and threatened ags of both teams to describe how desirable the

resulting world state is.

Latent Goals

It is instructive to view the problem of integrating reactive and deliberative

actions as one of having to achieve multiple goals simultaneously. The issue of

multiple goals �rst came up in CtF, when we found it important that agents

should react opportunistically to unforeseen events. If an agent is moving to

attack another unit, for example, and notices a ag along the way, it should in

most cases interrupt its previous activity to capture the ag, then resume its

attack.

In GRASP, we handle this by introducing the concept of a latent goal. A

latent goal is one that is not active all the time, but only when some condition

holds. In order to prevent the planner from having to consider many goals, most

of which are not applicable at any given time, we make these conditional goals

latent. They are only considered by the planner when their triggering condition

becomes true.

Let us introduce the following terms:

� goals: static symbols that a number of plans can satisfy

� latent goals: goals that become active when a condition holds

� sentinels: an abstract sensor that monitors the world to check for the appli-

cability of a latent goal.

When a latent goal is created for an agent (or group of agents), a sentinel is

set up. When the sentinel activates, the associated latent goal is added to the

set of goals these agents must consider. The latent goal now behaves exactly like
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1.  Post goals: Reach-Point(P)  (not latent)
                       Survive  (latent)

3. Enemy detected!
    Survival-Sentinel posts “Deal-With-Enemy”

2. New goal posted; planner runs;
    Move-To(P) scheduled.

4. New goal posted; planner runs on two
    goals:

5. Enemy passes by; Sentinel removes
    “Deal-With-Enemy”
    Planner runs; Entrench interrupted;
    Move-To(P) executes again

Goal set:  Reach-Point(P)
Actions:   Survival-Sentinel

Goal set:  Reach-Point(P)
Actions:   Move-To(P), Survival-Sentinel

Goal set:  Deal-With-Enemy, Reach-Point(P)
Actions:   Move-To(P), Survival-Sentinel

Goal set:  Reach-Point(P)
Actions:   Move-To(P), Survival-Sentinel

Deal-With-Enemy
Reach-Point(P)

generate possible
     solutions

1. Flee to P (achieves “Reach-Point”
    amd “Deal-With-Enemy” but may be
    dangerous)
2. Entrench (achieves only “Deal-With-
    Enemy” but is safer; assume is
    evaluated higher by planner)

Goal set:  Deal-With-Enemy, Reach-Point(P)
Actions:   Entrench, Survival-Sentinel

Point P

Fig. 6. Latent goal example, showing how an agent's goal and action sets change over

time. The white agent has the goal of reaching point P (Step 1). Along the way, an

enemy is sighted, prompting the agent's \survival" sentinel to post a goal to deal

with the enemy (Step 3). The planner is invoked and attempts to achieve both these

goals (Step 4). The solution that achieves both (eeing) is considered too dangerous;

instead, the agent entrenches. After the enemy has passed, the \Deal-With-Enemy"

goal is removed, the planner runs again, and the agent resumes moving to P (Step 5).

a goal in a normal multi-goal set. When the triggering condition is no longer

met, the latent goal is removed. A replan is triggered whenever an agent's goals

change. If a latent goal should be achieved at any cost, even to the exclusion of

other goals, the latent goal's priority can be set to a value higher than that of

any other goal. Figure 6 illustrates this process.

Latent goals are not the same as conditional goals, used in many procedural

languages. Conditional goals are created within a plan; the plan itself checks
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for their applicability and coordinates them with other goals being achieved.

GRASP, on the other hand, places the burden of resolving latent goals on the

planner. A plan need not know about the latent goals that may pop up during

its execution.

Latent goals provide a mechanism for specifying the context under which

an agent operates. The set of latent goals can be viewed as the set of common

sense or implicit assumptions an agent should always be considering when trying

to achieve the task at hand. In the same vein, reactive actions can be viewed

as plans that achieve short-term goals. Frequently, these short-term goals arise

unexpectedly (for example, an \obstacle avoidance" goal may be generated in the

context of a move-to-point action). By extending GRASP to handle multiple

goals, short-term goals can be reacted to without compromising the plans that

are still executing to achieve the longer term ones.

Summary and Related Work

This paper has introduced HAC as a domain-general agent design tool. These

are the issues we believe HAC addresses well:

� Agent control, action execution, planning, and sensing are all part of the

same framework.

� Resources are explicitly modeled.

� Actions are not monolithic entities that always run to completion. Actions

send messages about their status, completion (either successful or unsuccess-

ful), or problems. They can be and often are interrupted or rescheduled.

� HAC is a modular system; supervenience enables us build re-usable action

modules.

� Latent goals allow unforeseen events to be exploited.

� By having our hierarchy be one of tasks that have to be accomplished, it was

very easy to incorporate multi-agent actions and planning into our architec-

ture. Resources then become the agents that implement actions.

The GRASP planner integrates a number of new and old ideas to deal with

continuous and adversarial domains in real-time. It builds upon the established

notion of a control hierarchy, used in many agent architectures and hierarchical

task network planners (e.g., [Wilkins, 1988; Currie and Tate, 1991]). The idea of

reasoning using procedural knowledge has also been used in a number of other

systems, including PRS [George� and Ingrand, 1989], PRS-Lite [Myers, 1996],

resun [Carver and Lesser, 1993], phoenix [Cohen et al., 1989], the data analysis

system aide [St. Amant, 1996], and in languages for reactive control such as

RAP [Firby, 1987], xfrm [McDermott, 1992] and propel [Levinson, 1995]. The

apex architecture also attempts to manage multiple tasks in complex, uncertain

environments, placing particular emphasis on the problem of resolving resources

conicts [Freed, 1998].

Although many systems reason about multiple concurrent goals, GRASP is

unique among partial hierarchical planners in that it places much of the burden
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of resolving these goals on the planner, using the availability of resources as its

primary heuristic. Unlike PRS and RAP, for example, GRASP does not require

the designer of actions (tasks) to anticipate every possible event interaction.

Plans that react to unforeseen events can be kept conceptually separate from

those that are implementing longer term goals.

Like PRS, HAC allows for the speci�cation of blocking and non-blocking

children (child actions that run in sequence with their parents or in parallel),

and like later versions of RAP [Firby, 1994], success and failure are treated like

any other message, and do not implicitly determine the ow of control between

actions.

HAC and GRASP use the same representation for actions at all levels of

the hierarchy, and also for plans and sensors. Contrast this with the majority

of current agent control architectures, e.g. cypress [Wilkins et al., 1995] and

RAP [Firby, 1996], which distinguish between procedural low-level \skills" or

\behaviors" and higher level symbolic reasoning. Di�erent systems are often

used to implement each level (cypress combines SIPE-2 and PRS, for example).

HAC does not conceptually di�erentiate between discrete actions and continuous

processes, nor does it limit the the language used to describe them. Although

we provide macros and functions to streamline the behavior writing process, all

the power of the Lisp programming language can be used in any action or plan.
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