
Some Issues in AI Engine Design

Marc S. Atkin, Gary W. King, David L. Westbrook and Paul R. Cohen
Experimental Knowledge Systems Laboratory

Department of Computer Science
140 Governor's Drive

University of Massachusetts, Amherst, MA 01003-4610
fatkin,gwking,westy,coheng@cs.umass.edu

Abstract

Our goal is to build an \AI Engine" akin to the graph-
ics engines that have revolutionized some parts of the
game industry. A central issue is �nding a general way
to specify and control an agent's actions, since it is
the behavior of an agent that makes it intelligent. We
describe our agent design toolkit HAC (Hierarchical
Agent Control), focusing on the lessons learned dur-
ing its development. HAC is an action-centric uniform
language for specifying actions that uses an abstract
resource and sensing model. We conclude by identify-
ing some of the guiding principles that have emerged
during our work.

Introduction

Graphics engines have revolutionized some parts of the
game industry, freeing developers from having to rein-
vent the wheel every time they start a new graphics-
intensive project. If, by analogy, it were possible to de-
sign an \AI engine", a set of prede�ned tools for making
games \smart", there might be equally drastic improve-
ment in the quality of game AI.
We have developed a very general agent control

architecture (HAC: Hierarchical Agent Control) that
provides a uniform way of specifying and controlling
agent behavior across a wide variety of continuous,
real-time domains. Although our primary application
is a military simulation system called \Capture the
Flag" (Atkin, Westbrook, & Cohen 1999), HAC can
equally well be applied to such domains as commer-
cial games, multi-agent simulations, or actual physical
robots (Atkin et al. 1998).
HAC can be viewed as a set of language constructs

and support mechanisms for describing agent behavior.
The primary idea behind it is that while agent behav-
iors may di�er across domains, the architecture that
controls them can remain constant. Arguably, specify-
ing what an agent does, how it goes about achieving its
goals, and how it reacts to its environment and other
agents is a large part of what makes an agent intelli-
gent. We therefore believe that some form of behavior
description must be integral to any AI engine.

Copyright c 2000, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

HAC itself and the hierarchy of actions it supports
have gone through a number of revisions as we have
added features to our simulator and moved to new do-
mains. Throughout this process, we strived to keep
HAC as general and as simple as possible. Based on
this experience, we are designing a successor system,
\HAC II", which aims to simplify the action descrip-
tion process and avoid common problems we encoun-
tered. We feel that potential AI engine designers may
bene�t from learning from our experiences: Why did
we change certain features? Why did we prefer one
solution over another? What can our development cy-
cle teach us about the issues involved in constructing
a general AI engine? In this paper, we will attempt to
shed some light on these questions by looking at speci�c
examples of problems that came up.

HAC: Hierarchical Agent Control

HAC is a language for writing agent actions. HAC takes
care of the mechanics of executing the code that con-
trols an agent, passing messages between actions, coor-
dinating multiple agents, arbitrating resource conicts
between agents, updating sensor values, and interleav-
ing cognitive processes such as planning.
HAC organizes the agent's actions in a hierarchy. The

very lowest levels are the agent's e�ectors. The set of
e�ectors will depend on the agent and the domain, but
typically include being able to move the agent, turn it,
or use a special ability such as �ring a weapon. More
complex actions are built from these primitive ones. An
attack action, for example, may move to a target's lo-
cation and �re at it. As one goes up the hierarchy, ac-
tions become increasingly abstract and powerful. They
solve more diÆcult problems, such as path planning,
and can react to wide range of eventualities.
A hierarchy of sensors parallels the action hierarchy.

Just as a more complex action uses simpler ones to
accomplish its goal, complex sensors use the values of
simpler ones. These are abstract sensors. They are not
physical, since they do not sense anything directly from
the world. They take the output of other sensors and
integrate and re-interpret it. A low-level vision system
(a physical sensor) produces a black and white pixel
array. An abstract sensor might take this image and



Move-to-Point: Move to a speci�ed place on the map;
the path planning uses only static terrain features
and produces a list of waypoints.

!Move-with-Waypoints: Move-with-Waypoints
iterates over the points passed in from Move-to-
Point and attempts to move to each of them in
turn.

!Move-to-Point-Criteria: Choose a nearby lo-
cation to move to; perform local obstacle avoid-
ance. The best location is determined using a
local potential �eld; goals attract whereas terrain
and other agents{especially enemies{repel.

!Primitive-Move-to-Point: Alter the agent's
lower level e�ectors to actually take the step
speci�ed by Move-to-Point-Criteria.

!Move-with-Waypoints-Monitor: Terminate
Move-with-Waypoints as soon as the agent gets
close enough to its goal.

Figure 1: Some of the actions that constitute
the Move-to-Point hierarchy. Sibling child ac-
tions are shown at the same indentation level
(both Move-to-Point-Criteria and Move-with-
Waypoints-Monitor are children of Move-with-
Waypoints).

mark line segments in it. A higher level abstract sensor
takes the line segments and determines whether there
is a stretch of road ahead. A follow-road action can
use this abstract sensor to compute where to go next.

HAC executes actions by scheduling them on a queue.
The queue is sorted by the time at which the action will
execute. Actions get taken o� the queue and executed
until there are no more actions that are scheduled to
run at this time step. Actions can reschedule them-
selves, but in most cases, they will be rescheduled when
woken up by messages from their children. An action
is executed by calling its realize method. The realize
method does not generally complete the action on its
�rst invocation; it just does what needs to be done on
this tick. In most cases, an action's realize method
will be called many times before the action terminates.

HAC is a supervenient architecture (Spector &
Hendler 1994). It abides by the principle that higher
levels should provide goals and context for the lower
levels, and lower levels provide sensory reports and mes-
sages to the higher levels (\goals down, knowledge up").
A higher level cannot overrule the sensory information
provided by a lower level, nor can a lower level inter-
fere with the control of a higher level. Supervenience
structures the abstraction process; it allows us to build
modular, reusable actions. HAC simpli�es this process
further by enforcing that every action's implementation
(its realize method) take the following form:

1. React to messages coming in from children.

2. Update state.

3. Schedule new child actions if necessary.

4. Send messages up to parent.

The next section will give an example of an action
hierarchy.

The Move-to-Point Action Hierarchy

In our \Capture the Flag" system there are two teams,
Red and Blue, operating on a continuous map. The
map terrain inuences movement speed. Enemy agents
and dynamical map features, such as mountain passes
that can be blocked, add to the complexity. Our ap-
proach was to combine a static path�nder, operating on
a grid overlayed on the map, with some local obstacle
avoidance mechanisms (Reese & Stout 1999). The ac-
tion hierarchy allows us to cleanly separate the di�erent
levels of movement control, as seen in Figure 1. Move-
to-Point maps out a path, leaving the local obstacle
avoidance to Move-to-Point-Criteria. By altering
the composition of the potential �eld controlling the
agent, we can create very di�erent movement mecha-
nisms. For example, a �eld that repels enemies strongly
creates an agent that ees. A �eld that is attracted to
two targets simultaneously becomes a block (the agent
will try to center itself between the two targets).
We found, however, that our static path planning

algorithm was both computationally expensive and in-
exible, particularly when it came to dynamic obsta-
cles. As simulators become more realistic, the problems
agents have to deal with begin to closely resemble those
of physical robots. For this reason, HAC II will include
coarse path�nders based on the robot motion planning
literature (Latombe 1991).
Note that unlike other agent architectures, HAC does

not prescribe the number of action \levels". Although
actions lower in the hierarchy will tend to be more re-
active, whereas those higher up tend to be more de-
liberative, the transition between them is smooth and
completely up to the designer.

Implementing Formations

Moving agents in formation is hard problem that occurs
frequently in games. A formation involves two phases:
moving agents to a central location so that they can
form up and then moving the agents in formation. For-
mations need to dynamically adapt to the terrain and
situation of the game. For example, a wedge formation
may need to become a line to move through a pass. The
agents in a formation need to move while taking each
others actions into account. For example, it is impor-
tant that the leader slow down if any of its followers get
too far behind. Also, the nearer followers need to slow
down so that they do not bump into the leader when
the leader slows down.
In general, then, we need some way for the leader ac-

tion to learn (directly or indirectly) about the positions
of the followers and some way for the followers to learn
about the position and speed of the leader. There are
many ways to implement formations in HAC:



Leader

Follower 1

Follower 2Follower 3

Leader

Follower 1

Follower 2

Follower 3

Move-in-Formation

Leader

Follower 1

Follower 2

Follower 3

1. 2. 3.

Figure 2: Control ow in three formation implementation approaches.

1 Have move-in-formation action that controls the
leader and the followers.

2 Create leader and follower actions separately and let
them communicate directly with each other so that
can all respond appropriately.

3 Give the leader direct information about its follow-
ers so that it can control them directly and create
movement actions for them.

Since the leader and the followers need to coordi-
nate their actions, it appears that peer-to-peer strate-
gies such as 2 and 3 would work best for controlling
formations. However, these techniques both violate our
guiding principle of supervenience and also make the
code more complex and less exible. Firstly, moving in
formation must handle the deaths of follower or leader
agents. The third technique requires that a dying leader
pass the mantle on to one of its followers and that this
follower take control of the other followers. The sec-
ond technique also requires each of the cooperating ac-
tions to update their communication lists and to col-
lectively choose a new leader. The �rst technique, on
the other hand, provides the easy solution to this prob-
lem. We need only to add a simple method to handle
the \all-resources-gone" message generated by a child
action when its agent dies. This method does the fol-
lowing:

(when (follower has died)
(re-organize formation shape)

(when (leader has died)
((select new leader)
(re-organize formation shape))

(restart child actions)

Secondly, move-in-formation is the best place to
dynamically alter the formation's shape and behavior.
This parent action can alter the activity of its children
based on abstract sensors. Thirdly, not utilizing the
peer-to-peer models makes it easier to base activities
on scenarios with incomplete information (when, for
example, followers have inaccurate information about
the leader's position). Finally, breaking the code into a
move-in-formation parent, a leader-move child and zero
or more follower-move children increases code modular-
ity. No action is trying to do too much, which means
that even though we have added actions, each part of
the code is simpler to understand.

Abstract Sensor Uses

We originally introduced abstract sensors into HAC
when we realized that sensor information need not fol-
low the information ow de�ned by the action hierarchy.
There may be cases when an agent can sense data that
is useful to an action that is not one of its parents.
What did surprise us was the usefulness of abstract

sensors. By integrating and interpreting data, they re-
duce the data glut that would otherwise occur at higher
levels of the action hierarchy. They also simplify the ac-
tions themselves because they move the sensor retrieval
and update code out of the action implementations. An
action simply requests that it be noti�ed when an ab-
stract sensor reports a certain value. Many actions may
be fed data by one abstract sensor. We have specialized
abstract sensors into frequently used sub-classes:

� Monitors are abstract sensors that provide informa-
tion speci�c to an action rather than about informa-
tion related to the environment as a whole. Typi-
cally, monitors run periodically and send a message
to their parent action when some condition becomes
true. For example, the move-with-waypoints ac-
tion discussed above uses a monitor to determine
when it is close enough to its �nal location.

� Action Termination Conditions are abstract sensors
that can be used in a simple logical language to spec-
ify the conditions under which an action should ter-
minate or become active. For example, we might
want follow to terminate when the followee gets too
far away from the follower.

� Latent Goals are a particular type of goal data struc-
ture used by the Capture the Flag planner. They are
latent because they need not always be considered in
the planning process, but only when some condition
holds. An abstract sensor noti�es the planner when
the condition is met. By this mechanism the plan-
ner can avoid have to plan for every eventuality, but
instead react to unexpected opportunities or pitfalls
when they actually arise.

Action Idioms

Over the course of HAC's development, we have written
many actions. These actions have been improved and
updated as the application domain changed. Actions
share many common elements, and in the interest of
streamlining the action design process, we have made



before:

(realize for formation-move
(if (first-time?)

(start leader)
(for each follower

(start them up with a position in formation))
(elseif ; not first time
(for each child

(if (completed? child)
(push child completed-children))

(if (failed? child)
(push child failed-children))

(if (or (unavailable? child) ; dead, stuck, etc.
(member child failed-children))

(pick an appropriate formation)))
(if (completed? leader)

(set leader-completed 'true))
(if (failed? leader)

(set leader-failed 'true))
(if (or (unavailable? leader) ; dead, stuck, etc.

leader-failed)
(pick a new leader from explicitly passed

list of resources)
(promote the new leader)
(pick an appropriate formation))

(if (check-for-new-terrain?)
(pick an appropriate formation))

(if (calculate-enemy-threat?)
(pick an appropriate formation)))

(if all children have died
(tell your parent))

(reschedule this realize for next tick))

after:

(define formation-move which inherits
from child-class)

(realize for formation-move ; assumes that leader
; and followers have already been decided on

(start leader)
(for each follower

(start them up with a position in formation)))

(register abstract sensors for formation move
(leader loss)
(child loss))

(handler for leader loss for formation-move
(select-resource of type leader) ; resources are

; automatically available from parent
(promote the new leader)
(pick an appropriate formation))

(handler for child loss for formation move
(pick an appropriate formation))

(handler for terrain changes for formation move
(pick an appropriate formation))

(handler for enemy threat for formation move
(pick an appropriate formation))

Figure 3: Formation-move actions before and after the action idiom implementation.

more and more of these action idioms part of the HAC
support mechanisms. Eventually, we would like writing
actions in HAC to be like putting together a structure
from building blocks.
Every action checks for messages from its chil-

dren and generates messages to its parents. These
functions are performed by the methods handle-
message and check-and-generate-message, respec-
tively, which are specialized on the type of event to
be processed. Typically these methods run before the
main body of the realize method, but check-and-
generate can take an optional argument to run af-
terwards. Handle-message handlers are also used to
process messages sent by abstract sensors.
We often found that many realize methods did a lot

of one-time initializations on the their �rst invocation,
so we added a construct to deal with this. We also found
that certain types of child{parent con�gurations were a
lot more common than others. We introduced language
features to support these common idioms: Child actions
can be speci�ed to execute sequentially or in parallel; an
action can complete when any child completes, they all
complete, or when some other condition is met; actions
can use no, one, or multiple resources.
The issue of resource management quickly became

paramount in the design of intelligent actions. HAC
contains a number of mechanisms for managing re-
sources and assigning resources to actions. When chil-
dren are invoked, they are passed a speci�ed subset of
the parent's resources. Mechanisms exist to steal re-

sources from one action and assign them to another, to
notify an action when a resource is no longer available,
and to �nd resources of a certain type. Some resources
can only be used by one agent at a time, some are con-
sumed, and some emerge only in the process of per-
forming an action. In HAC II we would like to model
resources at the level of agent e�ectors, allowing us to
assign parts of agents to di�erent tasks.
Figure 3 shows many of these action idioms in prac-

tice using a pseudo-code version of the formation-
move action as an example. Without the specialized
handlers, we have one big realize method �lled with if-
statements. Assigning resources and dealing with their
disappearance is also handled much more cleanly.

Towards an AI Engine|Lessons

Learned

We view HAC as a �rst step in the development of a
general-purpose AI engine for use in games. Although
building agents and controlling agent behavior is one
of the key issues in this endeavor, such an AI engine
should also provide access to many of the other AI tech-
niques that have been developed in recent years. This
includes modules for planning, scheduling, search, sim-
ulation, vision, speech, and path planning in 2D and
3D worlds, as well as some simple pattern recognition
and information retrieval tools.
Making these tools general enough to be easily and

widely applicable will certainly be a challenge. Here



are some of lessons we learned while moving HAC to
its successor system, HAC II (in no particular order):

� Enforce modularity. Although hardly anyone will ar-
gue that modularity in the design of actions is desir-
able, abiding to it requires a great deal of discipline.
As the formation example demonstrated, there are
many ways to solve a problem. We found that mod-
ularity was helped by adhering to the principle of
supervenience and by giving common action idioms
to the designer. One question that arises is whether
the same idioms are appropriate at all levels of the
hierarchy, since lower levels deal with simpler actions
and smaller time and space scales.

� Don't force one approach on the game designer. This
principle manifests itself in many places. One ex-
ample is that although HAC does enforce an action
hierarchy, it places very few other constraints on the
design of actions. Most any control scheme could be
implemented in HAC. Another example is the need
that emerged for many di�erent path planners, for
both continuous and discrete, and for both static and
dynamic domains.

� The action, not the agent, is central. By having our
hierarchy be one of tasks that have to be accomplished,
it was very easy to incorporate multi-agent actions
and planning into our architecture.

� Resources are �rst class objects. Initially overlooking
the importance of resource management was proba-
bly one of the main lessons we learned. Since our
hierarchy is organized around actions, resources be-
come the agents that perform the actions. There are
now many mechanisms in HAC to pass resources to
children, to select certain kinds of resources, and to
react to resources becoming unavailable. In fact, even
sensor data can be viewed as a resource: abstract sen-
sors manipulate data resources, whereas plans and
actions manipulate agents.

� Control and Sensing are conceptually separate. We
found that separating sensing from control concep-
tually, while still using the same uniform language
to implement the sensors, simpli�ed our code enor-
mously. Abstract sensors became a very general tool
for organizing data and for solving any problem that
involved having to react to some event in the world.
In fact, we are discussing folding our current mes-
sage passing model into one that is completely event-
based. Events would be used to pass control infor-
mation and sensor data around the hierarchies from
parent to child, child to parent, peer to peer, and
between actions and sensors.

One of the more exciting directions we are moving in
with HAC is generalizing it so it can be used to control
physical robots. It is interesting that modern real-time
games and robotics place similar demands on an archi-
tecture. The current engine uses a centralized queue
and imposes no constraints on the CPU time used by
an action. The new engine will be operating in a real-
time, decentralized environment, and will need to to

deal with widely varying time scales, from microsec-
onds to days. The currently used, centralized action
queue will be replaced by a more general mechanism
that simply forwards events to the appropriate action,
whether it is a local action running on the same piece
of hardware or an action running remotely.
HAC is a framework for writing actions. It is ap-

propriate for any application where you want to de�ne
intelligent behavior for an agent. Most game genres re-
quire such behavior, be it for a monster in a �rst-person
shooter, the computer opponent in a strategy game, or
fellow team mates in a sports game. HAC is very lean;
we estimate that in our \Capture the Flag" application,
HAC itself (which does not include the actions the game
designer has written, only the architecture overhead),
uses less than 1% of the CPU time and memory.
HAC's interface to a domain consists of a set of low-

level sensors and e�ectors for every agent. In the case
of a game, these would be speci�ed by the game engine.
From these basic elements, the action writer can build
up arbitrarily complex behavior. Currently writing ac-
tions requires programming skills, but one of the goals
of HAC II is to explore how simple we can make this
process.

Acknowledgments
This research is supported by DARPA/USAF un-
der contract numbers N66001-96-C-8504, F30602-97-1-
0289, and F30602-95-1-0021. The U.S. Government is
authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright no-
tation hereon. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the oÆcial poli-
cies or endorsements either expressed or implied, of the
Defense Advanced Research Projects Agency/Air Force
Materiel Command or the U.S. Government.

References
Atkin, M. S.; Westbrook, D. L.; Cohen, P. R.; and
Jorstad, G. D. 1998. AFS and HAC: Domain-general
agent simulation and control. In Working Notes of the

Workshop on Software Tools for Developing Agents,

AAAI-98, 89{95.

Atkin, M. S.; Westbrook, D. L.; and Cohen, P. R.
1999. Capture the ag: Military simulation meets
computer games. In Working Notes of the AAAI

Spring Symposium on AI and Computer Games, 1{5.

Latombe, J.-C. 1991. Robot Motion Planning. Dor-
drecht, The Netherlands: Kluwer.

Reese, B., and Stout, B. 1999. Finding a path�nder.
In Working Notes of the AAAI Spring Symposium on

AI and Computer Games, 69{71.

Spector, L., and Hendler, J. 1994. The use of superve-
nience in dynamic-world planning. In Hammond, K.,
ed., Proceedings of The Second International Confer-

ence on Arti�cial Intelligence Planning Systems, 158{
163.


