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Abstract

Monitoring is the process by which agents as-

sess their environments. Most AI applications

rely on periodic monitoring, but for a large class of

problems this is ine�cient. The interval reduction

monitoring strategy is better. It also appears in

humans and arti�cial agents when they are given

the same set of monitoring problems. We imple-

mented two genetic algorithms to evolve monitor-

ing strategies and a dynamic programming algo-

rithm to �nd an optimum strategy. We also devel-

oped a simple mathematical model of monitoring.

We tested all these strategies in simulations, and

we tested human strategies in a \video game." In-

terval reduction always emerged. Environmental

factors such as error and monitoring costs had the

same qualitative e�ects on the strategies, irrespec-

tive of their genesis. Interval reduction appears to

be a general monitoring strategy.

1 Introduction

All embedded agents must monitor. Monitoring means

seeing how plans are progressing, checking how much

progress has been made, �nding out what time it is, up-

dating one's location, looking for obstacles, making sure

that nothing has changed unexpectedly, and so on. Mon-

itoring has been studied to some extent by AI researchers

[9, 19, 21, 22, 25, 26], indeed, the earliest work on plan-

ning for the Shakey robot emphasized monitoring [5, 6],

but AI research has little to say about monitoring strate-

gies, about when and how often to monitor, and how

these decisions depend on the dynamics of the environ-

ment [15]. Most systems monitor periodically, although

this can be wasteful of e�ort.

Our interest in monitoring is only partly to �nd e�-

cient strategies, however. We also suspect some mon-

itoring strategies might be very general. If they are
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determined largely by environment dynamics, then we

might observe the same strategies in agents as di�erent

as bumblebees, children, and simulated robots. While

we cannot report anything about bumblebees, we will

describe a monitoring strategy called interval reduction

that shows up in children and adults, and was evolved by

two genetic programming algorithms that produce pro-

grams to control simulated robots. We will also develop

a simple statistical model of the strategy and describe

the performance of a policy based on the model. All

these strategies have the same general performance, but

no two are identical, which prompts us to ask which is

best and how close is it to optimal. To answer these

questions, we develop an optimal monitoring strategy by

stochastic dynamic programming. The fact that it, too,

is an interval reduction strategy lends further support to

our belief that interval reduction might be very general;

that is, we expect it to evolve in other agents in similar

environments.

2 The Cupcake Problem

In 1985, Ceci and Bronfenbrenner described a monitor-

ing task for children that they called the cupcake problem

[4]. Each child was instructed by an older sibling (who

served as a confederate in the experiment and collected

the data) as follows: \We are going to put some cupcakes

in the oven and they will be done in thirty minutes. You

can play PacMan while you wait, but you mustn't forget

to take the cupcakes out of the oven. To help you re-

member, there's a clock on the wall." Cleverly, the clock

was put behind the child, so the sibling could easily see

when the child turned around to monitor the time. In

this way, Ceci and Bronfenbrenner obtained latencies be-

tween monitoring events. For our purposes two results

are notable: First, all the children monitored quite fre-

quently for the �rst few minutes; Ceci and Bronfenbren-

ner interpret this as a period of \calibration," getting

one's internal clock in synch with real time. Second,

ten-year-old children monitored approximately periodi-

cally for the remainder of the trial, but fourteen-year-olds

monitored infrequently after the initial calibration, and



increased the frequency of monitoring as the deadline ap-

proached. We call this an interval reduction strategy be-

cause the interval between monitoring events is reduced

as the deadline approaches.

Cupcake problems require an agent to traverse some

time or distance, at which point an event or destination

is expected. If the agent quits before reaching this point

or overshoots it, a penalty is incurred. Sometimes the

penalties are asymmetric around the goal point; for ex-

ample, a racing driver loses a race if he or she doesn't

\push the envelope," but might die by pushing too far.

In some cupcake problems, an agent can backtrack if

it overshoots the goal; in others, particularly temporal

problems, this is not an option. It is characteristic of

cupcake problems that the agent cannot be sure of its lo-

cation without monitoring. In spatial problems this can

be due to sensor or movement errors, or to movement

of the goal point itself; in temporal problems the agent's

internal clock might be inaccurate. We have studied one-

and two-dimensional cupcake problems. Most of the re-

sults in this paper concern the former.

3 A Strategy for One-dimensional Cup-

cake Problems

In a one-dimensional cupcake problem, an agent moves

toward its goal along a line, and errors in the agent's

estimate of its location accumulate. For instance, if you

close your eyes and start walking toward a wall, you will

experience uncertainty about how far you are from the

wall. This is a one-dimensional problem in the sense that

drift away from a line normal to the wall is negligible,

and, in any case, the painful error accumulates along

this line. Assume you begin with an accurate estimate

of the distance to the wall. You close your eyes and begin

walking. When should you look again?

To answer the question we need to model how errors

in estimates of location accumulate. We assume a simple

but quite 
exible binomial model: Let G be the distance

an agent must travel by taking steps of size 1 � d. On

each step the agent will travel 1� d or 1 + d with equal

probability. If the agent takes N steps it will travelD(N )

units of distance. The mean of D(N ) is N and the vari-

ance of D(N ) is Nd2.1

If d > 0 and the agent aims for the goal (i.e., N = G)

then it will overshoot the goal with probability .5. Per-

haps this is satisfactory, but often the agent will want

a smaller probability. Let D(N )
:01 be a distance that

the agent will exceed no more than 1% of the time it

moves N steps. Because the distribution of D(N ) is bi-

nomial with p = :5 we may approximate it with a normal

1On each step the agent goes forward one unit and then forward
or backwards by d units, so D(N) = n + d(f � (n � f)) = 2df �

n, where f is the number of times in n steps the agent travelled
forward by d. The variance of 2df � n is 4d2�2

f
and because f is

binomial, with variance n=4, the variance of D(N) is Nd2.

distribution with mean N and variance Nd2. If we can

�nd a value above which 2% of the distribution of D(N )

lies, then we can expect the agent to exceed this value

in 1% of its trials: The error model is symmetric, so

every extremely large value of D(N ) is matched by an

extremely small one. We know that 2% of a normal dis-

tribution lies more than 2.05 standard deviations above

its mean. Thus, if an agent travels 10 steps, D(10) will

exceed 10+2:05(
p
10d2) no more than one percent of the

time. In general,

D(N )
�

= N + z2�
p
Nd2

where z2� is the number of standard deviations above the

mean of a normal distribution that cuts o� the highest

100�% of the distribution.

To ensure that an agent does not exceed the desired

distance, G, with greater than �=2 probability, we set

D(N )
�

= G and solve the previous equation for N :

N =
2G+ d2z2

�

� (dz
�

p
4G+ d2z2

�

)

2
(1)

We call this policy sir for simple interval reduction. In

all our experiments, we allowed the agent to quit when it

came within one unit of its destination (otherwise Zeno

would have the last laugh). For example, assume d = :5

and the agent wants a low probability, say .01 or less,

of overshooting its destination G = 100 units away. sir

says the agent should travel

(2 � 100 + :52 � 2:052 � (:5 � 2:05 �
p
4 � 100 + :52 � 2:052))

2

= 90:26

units before monitoring again. This, then, is how far

the agent intends to travel, but due to accumulating er-

rors its actual location after 90.26 steps will be some-

thing other than 90.26. Let's say D(90:26) = 93. Now

the agent must travel seven more units to its goal, and

sir says it should go 4.76 units before monitoring again.

Note, however, that the total probability of overshooting

the goal, denoted �
t

, is now greater than .01 because the

agent has taken this bet twice, once on each move. The

probability that it will not overshoot during m moves is

(1� �)2, so �
t

= (1 � (1 � �)), which is approximately

m� for small m. Because an agent under the control of

sir rarely monitors more than three or four times (see

below) it su�ces to reduce � by a factor of �ve, say, to

ensure a desired �
t

.

4 An Optimal Policy for One-

dimensional Cupcake Problems

sir is suboptimal if there are costs for monitoring and

penalties for overshooting (or falling short of) the goal.



If monitoring costs are large and penalties small, then

monitoring isn't worthwhile, but sir will do it anyway.

Unfortunately the tradeo� between monitoring costs and

penalties can be played out at every place the agent

might stop to monitor. In fact, deciding when to monitor

is a sequential decision problem [24]. Finding an opti-

mal control policy is also a sequential decision problem.

Actions can have delayed e�ects that must be consid-

ered in choosing the action to take in each state, and

a policy that chooses actions solely for their immediate

e�ects may not be optimal over the long term. Monitor-

ing problems have an additional aspect: a control action

need not be taken every time a process is monitored (in

cupcake problems the control action is to quit|take the

cupcakes out of the oven, quit walking toward the wall).

Deciding whether to act immediately or wait and mon-

itor again with the option of acting later is a sequential

decision problem because a sequence of later opportuni-

ties for acting must be considered in deciding what to do

[13, 14].

Stochastic dynamic programming is a well-known op-

timization technique for solving sequential decision prob-

lems, but monitoring problems di�er from conventional

control problems in two respects: It isn't necessary to

take a control action each time a process is monitored,

and it isn't necessary to observe the process at each time

step. The �rst di�erence is easily modeled by including a

null action in the controller's action set. The second and

more signi�cant di�erence comes into play if monitoring

incurs a cost and the controller itself must decide when

to observe the state of the process.

To compute a monitoring policy as well as a control

policy, the key idea is to distinguish the time steps of a

sequential decision problem from its decision points (or

\stages"). At a decision point, the controller observes

the state of the process and makes a decision. The as-

sumption in conventional dynamic programming is that

a decision point takes place at each time-step. This as-

sumption is relaxed when computing a monitoring pol-

icy. When the controller is responsible for deciding when

to observe the state of the process, it can wait an arbi-

trary number of time-steps before monitoring, as deter-

mined by its monitoring policy. However, this means

that the conventional payo� functions and state transi-

tion probabilities must be extended so they are de�ned

for an arbitrary number of time steps instead of a sin-

gle step. Multi-step state transition probabilities and a

multi-step payo� function let the controller project the

state of a process and the payo� it expects to receive

an arbitrary number of time-steps into the future. They

also add complexity to the dynamic programming search.

Hansen [14] has shown that the curse of dimensionality is

ameliorated if utility is assumed to be a monotonic func-

tion of monitoring interval, and he also suggests �nding

an acceptable but coarse-grained time interval. This sug-

gestion was tested with good results in [23].

5 Genetic Algorithm Solutions to One-

and Two-dimensional Cupcake Prob-

lems

Given parameterized functions describing when to mon-

itor next, the mon system runs a genetic algorithm to

determine the best parameter values|the ones that min-

imize the expected cost. For the cupcake problem, the

function was N = ct+ b. Given the time t remaining till

the deadline, N = ct+b computes when to monitor next.

When b = 0 and c > 0, the resulting strategy is a form

of interval reduction called proportional reduction; for in-

stance, if c = :8 then the strategy would always go 80% of

the remaining distance before monitoring again. We call

c the proportional reduction constant. If c = 0 and b > 0

then the strategy is a form of periodic monitoring. mon

also learned a maximum number of times to monitor. It

would quit a trial when this number was exceeded or if

it went past the goal. The cost function consisted of the

cost of monitoring multiplied by the number of times the

agent monitored, plus the squared distance to the goal

upon trial termination. This cost was also the �tness

measure used by the genetic algorithm. The rest of the

genetic algorithm was very basic, too. It used roulette

wheel selection, �xed mutation and crossing over rates,

and a population size typically around 100 [1]. mon's

strategies have been tested with results shown in Table 1.

Until now we have described rather abstract one-

dimensional monitoring problems. ltb is a genetic pro-

gramming algorithm that evolves monitoring strategies

for simulated robots in two-dimensional worlds. The pro-

grams that control all the robots' activities, including

monitoring, are expressed in a language of basic e�ector

commands such as monitor, move and turnright,

and some control structures such as loops and simple

conditionals.

The robots in ltb monitor as they approach a par-

ticular position in the map, the goal point , which has

an obstacle on it. Their aim is to get as close to this

point as possible without hitting it. They have a sensor

(activated by monitor) that returns the distance to the

goal and a command turntogoal that points them in

the right direction. Since overshooting the goal point is

penalized highly, this problem is in fact an asymmetric

cupcake problem.

The version of ltb that produced the data in Ta-

ble 1 represents programs as linear lists of commands,

instead of the tree structures common in the Genetic

Programming �eld [16, 17]. Crossing over simply swaps

two chunks of code between two individuals; mutation

changes one command into another. Since the language

is relatively simple, only a few constraints are needed to

keep programs legal. Tournament selection with a tour-



Main program:
NOP
NOP
TURNTOGOAL
MOVEQUICK
LOOP 5 time(s):
MOVE
MONITOR: object_distance
NOP
NOP
NOP
NOP
NOP
LOOP (object_distance)/10+1 times:
LOOP 2 time(s):
MOVE
NOP
MOVE
NOP

*reached_goal* interrupt handler:
DISABLE: reached_goal
NOP
LOOP (direction)/10+1 times:
NOP
NOP

*object_distance* interrupt handler:
NOP
*hit_object* interrupt handler:
NOP
NOP
NOP
IF (object_distance) <= 75 THEN STOP
MOVEQUICK
MONITOR: reached_goal

Figure 1: A proportional reduction strategy generated

by LTB

nament size of two was chosen as the selection scheme,

the population size was set at 1000. Since genetic al-

gorithms are not guaranteed to produce optimal results,

the system was rerun 10 times on each training problem

and the best program from these 10 runs was selected as

the monitoring strategy for a case.

An example for a monitoring strategy evolved by ltb

is given in Figure 1. The program is the best output of

ltb for a test case corresponding to d = 1:0, G = 150.

The top half the code is the main body of the program;

the bottom half consists of the three interrupt handlers

corresponding to the agent's sensors; they are not used,

however2. The program itself is quite simple: After turn-

ing itself towards the goal via turntogoal, the agent

goes into a �nite loop. Within this loop, it will measure

the distance to the goal (monitor: object distance)

and then loop over this distance. Since it is executing

four move commands for every ten distance units, it is

moving 40% of the distance remaining after each mon-

itoring action. The proportional reduction constant is

therefore c = :4. The program will terminate after mon-

itoring �ve times. Note that there is an extra move in-

struction within the outermost loop, so the pure propor-

2Interrupt handlers are the mechanism by which a robot can
react directly to external events. Each program contained an inter-

rupt handler for each kind of sensor the robot had. They executed
automatically when the corresponding sensor value changed.

tional reduction strategy will be distorted very slightly.

All the other LTB programs in this study did implement

proportional reduction, however.

6 Adult Human Strategies for a One-

dimensional Cupcake Problem

We implemented a \video game" cupcake problem for

human subjects. On the display, the subject sees a line

marked with ticks at regular intervals. When a trial be-

gins, a ball is at the leftmost end of the line. The goal is

to get the ball as close as possible to the end of the line,

while simultaneously minimizing the number of moves

required to do it and the penalty for falling short or over-

shooting the end. The subject moves the ball by pointing

to a tick mark with the mouse. This is equivalent to se-

lecting N in the sir model or the dynamic programming

or genetic algorithm policies. When the subject clicks on

the line, the ball travels N steps of size 1�d. The subject
is then assessed the cost of monitoring and is given the

opportunity to quit the trial or move again toward the

goal. A trial ends when the subject decides to move no

closer to the goal, or if the ball overshoots the goal. On

each trial the subject is told d, the error function param-

eter, and also the cost of monitoring. During training the

subject is told that the penalty for stopping short of the

goal or overshooting the goal is the squared distance to

the goal. The cost of a trial is the penalty plus the num-

ber of monitoring events. No incentives (besides pride)

are provided to encourage the subjects to minimize costs.

We explain to the subjects that movement errors accu-

mulate with distance, so if d is high, aiming for the end

of the line can produce big errors and penalties. We also

train the subjects on as many problems as they desire

before presenting them with a set of test problems.

7 Comparing Strategies

We compared humans, mon parametric functions, opti-

mal dynamic programming policies and sir policies on a

set of one-dimensional cupcake problems. ltb programs

were tested on two-dimensional versions of very similar

problems. The apparatus for humans was the \video

game" described earlier. mon, sir and the optimal poli-

cies were tested in a simulator, in which each trial went

as follows:

Loop

1. Monitor to �nd distance to the goal

� If beyond the goal, quit; else

� If within one unit of the goal, quit; else

2. Decide N , the number of steps to move be-

fore monitoring again.

3. Take N steps of 1� d units



G mon.- optimal SIR MON LTB human

cost mon's cost mon's cost mon's cost % mon's cost mon's cost

20 .5 1.94 .99 2.75 1.97 1.0 4.08 84

50 .5 1.92 1.0 2.76 1.89 1.43 1.2 90

100 .5 2.14 1.18 3.05 2.11 1.55 1.05 67

150 .5 2.66 1.37 3.1 2.27 1.67 1.53 84

20 1.0 1.65 1.81 2.65 2.68 1.0 3.38 58 1.0 15.33 2.07 2.51

50 1.0 1.9 1.96 3.11 3.35 1.6 2.03 87

100 1.0 2.22 2.25 3.11 3.52 1.46 2.7 93

150 1.0 2.34 2.38 3.92 3.52 1.55 2.32 84 2.0 65.33 2.72 3.18

20 2.0 1.34 3.06 2.68 4.34 1.0 3.75 60

50 2.0 1.68 3.72 2.93 4.88 1.0 7.57 42

100 2.0 1.86 4.2 2.93 5.35 1.5 3.52 90

150 2.0 1.82 4.12 3.08 5.89 1.69 4.56 98

20 10.0 1.0 11.37 2.22 14.74 1.0 12.05 21 1.84 19.42

50 10.0 1.05 13.19 2.53 17.71 1.0 16.44 52

100 10.0 1.14 15.55 2.66 19.89 1.0 24.0 65

150 10.0 1.3 16.78 2.75 20.69 1.0 24.97 51 2.11 23.1

20 .5 3.34 1.7 3.17 3.97 2.74 3.69 98

50 .5 3.67 1.93 3.66 4.17 2.74 4.38 93

100 .5 4.92 2.57 3.84 7.26 3.64 4.3 100

150 .5 4.4 2.27 3.71 8.16 3.35 5.51 97

20 1.0 3.36 3.45 3.10 5.14 1.85 7.00 80 1.0 38.92 2.13 4.42

50 1.0 3.77 3.88 3.48 5.6 2.66 5.02 88

100 1.0 4.5 4.54 3.67 5.71 2.28 8.43 95

150 1.0 4.34 4.5 3.54 14.26 2.42 8.29 92 5.0 37.38 2.9 10.35

20 2.0 2.36 5.77 3.42 8.08 1.91 9.65 96

50 2.0 3.15 6.88 3.33 9.26 2.72 8.75 98

100 2.0 3.75 8.13 3.89 9.98 2.79 10.99 99

150 2.0 3.56 8.53 3.68 16.28 2.47 9.89 93

20 10.0 1.48 19.27 3.05 23.86 1.0 32.79 66 1.90 24.43

50 10.0 2.06 25.37 3.37 26.66 1.75 28.15 92

100 10.0 2.59 30.45 3.75 34.46 1.64 29.26 67

150 10.0 2.54 29.44 4.01 38.02 1.72 32.76 82 2.34 32.54

Table 1: The results of the cupcake experiments for all �ve domains; the top section is for d = 0:333, the bottom

section for d = 1:0.

The three approaches di�ered only in how they se-

lected N , with mon consulting its parametric equation

N = ct + b, sir consulting Equation 1, and the opti-

mal approach consulting its policy. The apparatus for

ltb was the two-dimensional simulated robot world, de-

scribed earlier. Robots try to get as close to a point in

the world as they can; bumping into it or moving past

it is equivalent to running o� the end of the line in the

humans' video game or going beyond the goal in the sim-

ulator, above. All these conditions terminate the trial.

Trials di�ered in the following factors and values:

G, the initial distance to the goal. The four values

of G were 20, 50, 100, 150. In the two-dimensional

world, G was the length of a line between the robot's

starting location and the goal object.

M, the cost of monitoring. We tried four monitoring

costs: .5, 1, 2, and 10

d, the error function parameter. In pilot exper-

iments we varied d from .2 to .5, but when we ran

human subjects we discovered that these errors were

too small to bother them. The current experiment is

for d = :333 and d = 1:0.

The penalty function. We set the penalty to be the

square of the distance between the goal and the lo-

cation of the agent when it quits a trial. We tried a

cubic function but it made little di�erence to moni-

toring strategies.

We did not run humans in all 32 conditions of this

experiment, fearing that fatigue would a�ect their per-

formance. Instead, we ran two levels of each of three

factors: M = 1; 10, d = :333; 1:0, and G = 20; 150: Each

of six subjects was tested on ten problems in each condi-

tion, for a total of 80 trials per subject. mon, sir and the

optimal policies were tested in 100 trials in each of the
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32 conditions. ltb was trained and tested in just four

conditions. We have always had considerable di�culties

getting ltb to consistently evolve monitoring strategies,

even when the environment was designed in such a way

that monitoring strategies were favored with higher �t-

ness values [3].

The results of this experiment are shown in Table 1.

Most data are two numbers: �rst, the mean number

of monitoring events in a trial, and second, the mean

cost of a trial. This cost is the number of monitoring

events times the cost of monitoring, plus the penalty for

falling short of the goal or overshooting it (the square

of the �nal distance to the goal). For example, for

d = :333; G= 20;M = :5, the optimal strategy monitors

1:94 times on average and incurrs an average penalty of

.99. Data for mon include, in italics, the number of times

in 100 trials that the �ttest agent monitored at all during

the trial. The summary statistics are based on this sub-

set. Six trials of 448 with the human subjects were dis-

carded because they had huge trial costs|incurred when

the subjects became confused about whether a trial had

ended|that skewed the means and variances.

Data from the lower half of Table 1, for d = 1:0, are

plotted in Figure 2. The top two graphs show the average

number of monitoring events plotted against G and M ,

respectively, and the numbers represent mean trial costs;

the lower graphs show mean trial costs plotted against

G and M , and the numbers represent mean monitoring

incidence. Our principal observations follow:

All the agents used an interval reduction or propor-

tional reduction strategy. The genetic algorithms, mon

and ltb evolved other strategies, but they never per-

formed as well as proportional reduction. In other

words, the �tness of the proportional reduction agents

was higher.

The interval reduction and proportional reduction

strategies are very e�cient compared to, say, periodic

monitoring. Note that the optimal strategy never mon-

itored more than �ve times and, averaged over all trials

and conditions, it monitored 2.52 times per trial. It's

easy to show that, except for very short distances, a pe-

riodic monitoring strategy will incur high penalties if it

monitors as infrequently as an interval or proportional

reduction strategy.

As expected, the incidence of monitoring generally de-

creased with M , the cost of monitoring. (The exception

is sir which doesn't take the cost of monitoring into ac-

count.) The incidence of monitoring generally increased

with d, the parameter of the error function, and G, the

initial distance to the goal. Note also that mon evolved

a monitoring stategy least often when the cost of mon-

itoring was high, but more often when error (D) was

high. Agents monitor because they must|because error

or initial distance is high.

Not surprisingly, the optimal dynamic programming

strategies had the lowest trial costs in all conditions.

Individual human subjects had remarkably consistent

average trial costs, yet some monitored often and others

infrequently. A one-way analysis of variance showed no

signi�cant di�erence over subjects on mean trial cost (the

means ranged from 13.62 to 18.2); but individuals dif-

fered signi�cantly (p < :0001) on their mean numbers of

monitoring episodes (ranging from 1.8 to 3.23 per trial).

This suggests that some people kept trial costs down by

monitoring relatively often and incurring small penalties,

while others avoided monitoring costs and occasionally

incurred large penalties.

Human trial costs were statistically indistinguishable

from those of the optimal strategy when the error (d) and

the monitoring cost (M ) were both low. In the other six

conditions, the optimal strategy outperformed humans

(two-sample t tests, p < :0001), who tended to monitor

too much when M was high and too little when M was

low.

The sir strategy paid dearly for monitoring too often.

This is partly because it doesn't take M into account,

partly because it treats monitoring decisions are inde-

pendent. In trials with G = 150; d = 1:0, for example,

sir would �nd itself, say, six distance units shy of the

goal and it would decide to move, say, four units. When

the error was high it would sometimes not move at all,

or might move only one unit. At this point a human will

say, \I paid for a monitoring event and yet I moved no

closer to my goal; I won't let that happen again. This

time I will aim closer to the goal and I will just have

to risk overshooting it." The optimal strategy will have

compiled similar reasoning into its policy. But sir will

treat the next movement decision exactly as the previous

one. We observed sequences of up to six useless or nearly

useless monitoring events in a single trial.

The mon strategies don't perform well (compared with

the optimal strategy) when initial distance to the goal G

is low. They usually monitor just once in these condi-

tions and they run up big penalties for overshooting the

goal. It's surprising that better strategies don't evolve,

given that mon is a simple parameter optimization algo-

rithm.

The ltb strategies produce much more variable results

than any others, in part because ltb robots are tested

in a two-dimensional environment where they wander

around instead of moving on a line toward the goal. Nev-

ertheless, in this experiment and others, involving hun-

dreds of trials with ltb and other genetic programming

approaches to two-dimensional cupcake problems [2, 3]

we have never observed a �tter strategy than interval

reduction.



8 Discussion

Given the opportunity, adults and genetic algorithms will

use interval reduction to solve cupcake problems. Dy-

namic programming tells us that interval reduction is

optimal. So why is periodic monitoring, which is much

less e�cient, the norm?

One answer is that periodic monitoring always works,

whereas interval reduction assumes that the agent mon-

itors to �nd out where it is with respect to a goal. If

the agent doesn't have a goal, or if the environment pro-

vides no information about it, then interval reduction

won't help. Suppose your goal is to detect an event and

you know the probability that it will happen in any time

interval, but it happens without warning (i.e., you are

monitoring a stationary Bernoulli process). If C is the

cost per time unit of not detecting the event andH is the

cost of monitoring for it, and p is its probability in each

time unit, we can show easily that the optimal interval

between monitoring is
p
2H=Cp. This periodic strat-

egy is necessary because absolutely nothing is known

about the event besides its probability of occurring, and

nothing is learned about it by monitoring (other than

whether it happened). However, if monitoring provides

estimates about when or where future events will occur,

then we believe periodic monitoring is inferior to interval

reduction.3

Another answer goes like this: Periodic monitoring

might be ine�cient, but monitoring is free, so who cares?

Monitoring is not free, of course, but in distributed ar-

chitectures it can be o�oaded to dedicated processors

and so appears to be free. What happens when one of

these processors detects something? It sends a message

to other processors who must monitor their messages, or

it sends an interrupt. In the �rst case monitoring obvi-

ously isn't free, and in the second it is bad design if the

dedicated processor learns anything from its monitoring

about the system's goals. Norman and Bobrow [20] show

convincingly that distributed systems can avoid catas-

trophic failure if they adopt the principle of continuously

available output , in e�ect sharing intermediate results

among components. If monitoring provides information,

it shouldn't be held privately by the dedicated monitor-

ing processor, but if it is shared with other processors,

they must attend to it, and monitoring is not free.

We have not found any convincing reasons to pre-

fer periodic monitoring over interval reduction, except

in situations where an agent has no goal or monitor-

ing provides no information about progress toward the

goal. Both \goal" and \progress" should be broadly con-

strued, because the interval reduction strategy appears

to be preferred in spatial and temporal domains; in one

and two dimensions; when errors are due to sensor inac-

3We have not been able to prove this as a general proposition,

but we have proved it for special cases and we have the empirical
evidence presented earlier.

curacy or movement inaccuracy; when penalty functions

are symmetric or asymmetric, continuous or discrete;

by agents as diverse as humans and simple, simulated

robots, evolved by genetic programming.
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