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1 Understanding Complex Data

Data analysis plays a central role in our attempts to understand the behavior of complex systems.

While research in both statistics and arti�cial intelligence has addressed issues in the automation of

later stages of analysis, such as theory generation, model selection, and experiment design [7], less

attention has been given to initial exploration of data. Deriving structure from data is nevertheless

a necessary �rst step.

Exploratory data analysis (EDA) [8] provides a wide range of statistical tools for looking at data.

Human analysts �nd it straightforward to select and apply these tools e�ectively. The di�culty in

automating exploration is one of control. At any point we can apply a large number of complex

functional transformations or clustering operations to the data; to each result we can apply the

same set of operations. The problem grows explosively.

We have developed a blackboard-based design of an automated system that acts as an EDA

assistant to a human analyst. The system maintains a sharp boundary between data-directed and

goal-directed exploration. Data-directed mechanisms extract simple observations and suggestive

indications from the data. EDA operations are then applied in goal-directed fashion to generate

deeper descriptions of the data. Control rules guide the EDA operations, relying on intermediate

results for their decisions.

This abstract gives an overview of the design, which is partly implemented. We emphasize that

the work is incomplete.

2 Exploratory Data Analysis

We can best illustrate the EDA approach with a simple example. Much of our research deals with

the behavior of AI planners in demanding simulation environments. One such system is TransSim, a

transportation planner/simulator [6]. In an early experiment we examined the relationship between

the costs of two resources, port cost (P ) and ship cost (S), measured over the duration of a trial.

Figure 1a shows the sorted values of S for the 107 trials of the experiment, Figure 1b the relationship

between P and S (denoted hP; Si.)
We begin with summary statistics for the variable S (Figure 1a): the mean is about 31, the

median 30, the interquartile range 9.5, and there is a slight skew toward lower values. More

signi�cantly, there are three clear gaps that separate the data into four clusters. Our preliminary

partial description of S comprises the statistics and our observations about the clustering.
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Figure 1: Examples

When we turn to the relationship hP; Si (Figure 1b), we see a di�erent pattern: the values fall

into �ve clusters. The distinct separation in hP; Si values, as well as the observation that one of the
S clusters is twice as large as the others, leads us to return to our description of S. We establish

an alternative description of S as containing �ve clusters, consistent with the clusters in hP; Si.
Continuing with our analysis of hP; Si, we see that values in the �rst cluster (which we denote

ps1) can be �t by a straight line. In fact, this is true for all �ve clusters, though it is a di�erent line

in each case. Once we settle on the description of each cluster as a line, we can add the observation

that the slopes of the lines decrease as the clusters move toward the right.

If we were to plot the central locations of the clusters ps1 through ps5 (e.g., the coordinates

Pmedian and Smedian for each cluster) we would see that these �ve summary points fall along a

smooth curve. Further exploration shows that the curve is of the form Smedian = c=Pmedian. When

we perform this transformation it straightens the curve, leaving no clear pattern in the residuals.

To summarize, we begin with initial descriptions of the data, such as the observation of gaps

between adjacent values. From these we generate indications [5], or suggestive characteristics: the

data fall into clusters. Based on these indications we apply speci�c EDA procedures: we break the

data down and analyze the clusters individually. These procedures may involve iterative re�nement,

as with the alternative descriptions of clusters in S. When we �nd that a particular description,

a straight line, applies to one cluster of hP; Si, we try to generalize that description to all clusters

in the relationship. We extend the generalization by exploring features shared by the clusters|

features derived from the generalization|such as the slopes of the lines. The result is a coherent,

structured description of the data.

3 System Design

Exploration begins with initial descriptions of data. We generate summary statistics for single vari-

ables, correlations for bivariate relationships, single-linkage clustering for multivariate relationships,

and so on. The results are all atomic: numbers and symbols, plus a few special, non-decomposable

structures. These di�erent types of description divide the data and derived results naturally into

these types:

� Variables: Sequences of values, such as S and P , are variables. We can also generate derived

variables, as we did by aggregating line slopes. (See Figure 2a.)

� Relationships between variables: A bivariate relationship such as hP; Si is a relationship

between variables. Multivariate relationships and datasets are also examples. Notably, the
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Figure 2: Data Structures

individual clusters ps1 through ps5 resulting from the partitioning of hP; Si all have the same

form as the original relationship: they are derived relationships between variables. (See Figure

2b.)

� Relationships between relationships: The clusters ps1 through ps5 are related to one an-

other, by their derivation from the same parent data. We represent this grouping of clusters

by an explicit data structure, a structural description object. We similarly break down the

hPmedian; Smediani relationship into �t and residuals by a functional description. These data

structures, relationships between relationships, are composite structural and functional de-

scriptions of data. (See Figure 2c.)

The blackboard is divided into spaces, one for each of these data types. Initial descriptions are

generated by data-driven knowledge sources, or KSs, associated with each space. When a structure,

such as S, is added to the variable space on the blackboard, the description KSs (DKSs) associated

with the space (thus with the type variable) automatically generate descriptions for it. The DKSs

incrementally add information to the structures on the blackboard.

Indication KSs (IKSs) monitor the initial descriptions, looking for unusual properties. As

with descriptions, these calculations are also carried out automatically. Indications often rely on

heuristically set thresholds for their activation. For example, the IKS that detects the separations

in S and hP; Si looks for outliers in the distance array produced by the clustering description.

Large, outlying distances, as determined by a fourth-spread test [3], indicate gaps between clusters.

Other indications include presence of outliers, high correlation, excessive skew, and curvature.

While the blackboard gives one view (by data type) of the structures produced by explo-

ration, a di�erent view is also possible: the interrelated structures form a hierarchical semantic

network. The data and exploration results on the blackboard are related by semantic links run-

ning through and and between the spaces. The variable S on the variable space, for example, is

related to hP; Si on the relationship space by a component-of link. The clusters ps1 through

ps5 are related by subset/superset links to hP; Si on the same space. Lines and clusters on

the relationship between relationships space are linked with their source relationships by

functional-description and structural-description.

Speci�c EDA procedures, triggered by indications, add new structures to the hierarchical net-

work, which simultaneously become visible on the blackboard. A high correlation indication in a

bivariate relationship, for example, may cause a resistant line structure to be generated. A cur-

vature indication in a sequence of residuals causes a heuristic straightening transformation to be

applied. A gap indication, described earlier, causes the generation of clusters corresponding to the

gap positions.

EDA procedures are implemented by script-like plans. As has been shown elsewhere [1, 4], AI

planning structures provide a useful representation for exploration and modeling operations. As

exploration plans execute they establish subgoals to be satis�ed. Subgoals activate other plans in

turn. Control is the one of the main issues in exploration|the desirability of �nding new structure

must be balanced against the possibility of the search space growing unreasonably large. Search is

3



Blackboard

spaces by data type

by hierarchical network Control

exploration scripts

DKSs

IKSs

control rules

Figure 3: System Components

controlled here by focusing rules that control the matching of exploration plans with goals and the

selection of structures to be explored. [2] While the initial stages of exploration involve data-driven

calculation, the planning representation casts the later stages as goal-driven search.

Rules take advantage of the context provided by the hierarchical network to make their control

decisions. They search through the network, with the purpose of

� selecting the structure to explore next, possibly suspending exploration of the current struc-

ture (e.g., we explore individual variables before relationships containing the variables);

� selecting appropriate plans, and suppressing inappropriate plans, for exploration of a structure

(e.g., distinct clusters will often disturb a functional �t to a bivariate relationship);

� �nding similarities between structures so that earlier results may be reused (e.g., successive

line �ts to clusters);

� reconsidering earlier decisions based on new information (e.g., reparameterizing a clustering

script to increase consistency);

� incorporating user preferences into the analysis, by overriding default heuristics.

Control rules are invoked at explicit decision points to make the choices above. An example

should give the 
avor of the process. Suppose we are trying to characterize cluster ps2 in the

breakdown of hP; Si, after having established a description of ps1 as description h type = line, F1:

slope, F2: intercept i. These rules become applicable:

IF structure S has an is-a sibling structure Ssib,

and Ssib has associated description D(F1; F2),

THEN or select plan apply-partial-description D(F1; F2), S.

IF structure Si has description Di, and structure Sj has description Dj ,

and Si and Sj are is-a siblings with parent Spar,

and Di and Dj are similar,

THEN select plan generalize-descriptions Di, Dj , Spar.

An overview of the system is shown in Figure 3. We have completed implementation of most of

the required statistical procedures and data structures, as well as the planning structures that sup-

port the control rules. Our current work is aimed at integrating system components and extending

the scope of the control rules.
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