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Abstract

To develop an initial understanding of complex data, one often begins with exploration.

Exploratory data analysis (EDA) provides a set of statistical tools through which patterns in

data may be extracted and examined in detail. The search space of EDA operations is

enormous, too large to be explored directly in a data-driven manner. More abstract EDA

procedures can be captured, however, by representations commonly used in AI planning

systems. We describe an implemented planning representation for Aide, an automated EDA

assistant, with a focus on control issues.
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1 Understanding Complex Data

Data analysis plays a central role in our attempts to understand the behavior of complex systems.

Exploratory studies are one part of the descriptive process; they provide an informal prelude to

experiments, in which questions and procedures can be re�ned. Exploration is a kind of detective

work: to make a formal presentation of a case, the researcher must follow subtle and potentially

conicting clues to a set of possible conclusions. Exploratory results give rise to con�rmatory

studies in a cycle of successively more re�ned exploration and con�rmation [Cohen95, Hand86].

Exploratory data analysis (EDA) o�ers a wide range of statistical tools for the early stages of

analysis [Tukey77]. Simple exploratory procedures generate histograms of discrete and continuous

variables, scatter plots and box plots for bivariate relationships, partitions of relationships that

distinguish di�erent modes of behavior, simpli�ed functional relationships, and two-way tables

such as contingency tables. From a consideration of these partial descriptions of data, a more

complete picture emerges.

Viewed as search, exploration is a di�cult problem. The exibility of exploratory operators

entails a large branching factor and an unbounded search space. If an exploratory analysis were

to be driven purely by successive features discovered in data, the task would be impossible: Is a

partitioning or a functional transformation appropriate? With what parameters? When should

one stop? Though di�cult and painstaking, exploration is nevertheless manageable in human

hands. Several characteristics of exploration make this possible: relatively few general principles

guide exploratory procedures; di�cult problems are often decomposed into smaller or simpler parts;

exploration is constructive, often relying on partial results and incremental improvement to reach

solutions. We can draw a natural analogy between exploration and planning.

We have designed an Assistant for Intelligent Data Exploration, Aide, to assist humans in

the early stages of data analysis [StAmant94a, StAmant94b]. In Aide, data-directed mechanisms

extract simple observations and suggestive indications from the data. Scripted EDA operations then

act in goal-directed fashion to generate simpler, deeper, and more extensive descriptions of the data.

Control plans guide the EDA operations, relying on intermediate results for their decisions. The

system is mixed-initiative, capable of autonomously pursuing high and low level goals while still

allowing the user to guide or override its decisions.

Aide is currently a prototype under development. Though capable of the analysis we present

here, Aide has not yet been extensively tested.

2 The Problem

In Exploratory Data Analysis [Tukey77, p.v], John Tukey describes EDA in this way:

A basic problem about any body of data is to make it more easily and e�ectively

handleable by minds|our minds, her mind, his mind. To this general end:

� anything that makes a simpler description possible makes the description more

easily handleable.

� anything that looks below the previously described surface makes the description

more e�ective.

So we shall always be glad (a) to simplify description and (b) to describe one layer

deeper.

Our design revolves around an understanding of the EDA process as the iterative application

of four classes of operations: description, simpli�cation, deepening, and extension.
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Descriptive operations produce conventional summaries of data: single-valued statistics such as

means and medians, or structures such as histograms and �tted lines. Such results can be directly

used or interpreted by the user.

Simpli�cation operations transform data to facilitate description. A log transform that straight-

ens a skewed relationship is one example. Irregularities such as outliers are more easily detected

in linear relationships than in nonlinear ones; a change in density can often enhance patterns in

data; many statistical operations, even ones as simple as Pearson's correlation coe�cient, rely on

linearity. A straightening operation simpli�es in that it enhances our observation, manipulation,

and evaluation|in a word, our description|of the data.

Deepening operations increase the detail, accuracy, and precision of descriptions, as a micro-

scope enhances observation by trading a global perspective for local detail. An example is the

common practice of examining the residuals of a linear �t. The examination itself is carried out

by simpli�cation and description operations. Residual examination can bring to light structure

not captured by the line, such as clustering, unequal variance in residuals, or local deviations from

linearity.

With descriptive, simplifying, and deepening capabilities, EDA builds descriptions of single

variables, bivariate relationships, tables, partitions and clusters. Local descriptions can have non-

local, often widespread implications, however; these are examined by extension operations. When

clustering is observed in two di�erent relationships, for example, an extension operation prompts

a comparison and an attempt to consolidate the descriptions of the relationships.

EDA operations give local detail about patterns in variables and relationships. If a dataset con-

tains dozens or even hundreds of variables, however, it becomes di�cult to determine where these

operations should be applied. Modeling procedures serve to focus exploration. Such procedures

include regression analysis, discriminant analysis, clustering, and causal modeling. In the case

of regression, one explores to see whether there are nonlinear relationships between a regression

variable and a regressor, or whether there are patterns in residuals [Daniel80]. In cluster analysis

one searches for functional relationships that may distort cluster shapes [Chen74]. In causal mod-

eling one searches for patterns that inuence conditional independence [StAmant94b]. Modeling

constrains the application of EDA operations and supplies context for interpretation of their results.

3 A Brief Example

Much of our research deals with the behavior of AI planners in demanding simulation environments.

One such system is TransSim, a transportation planner/simulator [Oates94]. In TransSim, ships

travel between ports carrying cargo along assigned routes. Bottlenecks and other occurrences

change the environment in unexpected ways. The planner must react dynamically to these changes

by rescheduling dock and ship assignments and rerouting cargo through di�erent intermediate ports.

An early experiment examined relationships between resource costs. We collected measurements

of cumulative port cost (P ), ship cost (S), and dock cost (D), the number of ships (N), and trial

duration (TD). We were particularly interested in the relationship between the resource costs P

and S over the duration of a trial. While we set N at di�erent values, we �xed per-day port, ship,

and dock costs. In this example, we assume that a modeling procedure (here a regression or causal

modeling procedure) requires examination of the relationship hP; Si.

We begin with summary statistics for each variable. For S, cumulative ship cost, we �nd that

the median is about 310K, the interquartile range 95K, and there is a slight skew toward lower

values. More signi�cantly, when we examine a histogram of S (Figure 1a), there are four distinct

clusters in the data. Our preliminary partial description of S comprises the statistics and our
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Figure 1: Exploring ship and port costs

observations about the clustering. Our observations of P are comparable.

When we turn to the relationship hP; Si (Figure 1b), we see a di�erent pattern: the values fall

into �ve clusters. The distinct separation in hP; Si values, as well as the observation that one of

the modes in the histogram of S (Figure 1a) corresponds to a cluster twice as large as the others,

leads us to return to our description of S. We establish an alternative possible description of S as

containing �ve clusters, consistent with the clusters in hP; Si.

Continuing with our analysis of hP; Si, we see that values in the leftmost cluster (which we

denote psa) can be �t by a straight line. In fact, this is true for all �ve clusters, though it is a

di�erent line in each case. Once we settle on the description of each cluster as a line, we can add

the observation that the slopes of the lines decrease as the clusters move toward the right.

If we plot the central locations of the clusters psa through pse (i.e., the median coordinates Pmed

and Smed for each cluster), as shown in Figure 1c, we see that these �ve summary points can be �t

by a smooth curve. Further exploration shows that the curve is of the form Smed = 1=Pmed. When

we perform this transformation (Figure 1d) it straightens the curve, leaving no clear pattern in the

residuals.

Extending the analysis, we �nd that the �ve discrete values of the variable N , the number of

ships, correspond to the clusters found in the relationship hP; Si. Because we have experimental

control over the number of ships but not the cumulative costs, we count an observation about the

former measurements as an explanation of the latter. In this case, N explains the clustering of

resource costs.

This description, though brief, should give the avor of the analysis. To summarize, we begin

with initial descriptions of the data, such as the observation of gaps between adjacent values. From

these we generate indications [Mosteller77], or suggestive characteristics: the data fall into clusters.
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Based on these indications we apply speci�c EDA procedures: we break the data down and analyze

the clusters individually. These procedures may involve iterative re�nement, as with the alternative

descriptions of clusters in S. When possible, we simplify; instead of dealing with all data points, we

work with a reduced dataset of just the median points of the clusters. We then follow two separate

courses: we extend current results, here by considering other variables, and we deepen results, in

this case by turning from a surface description of the clusters to an examination of the behavior of

the data within each cluster. The result is a coherent, structured description of the data.

4 Data Manipulation

Datasets are the basic level of data representation. A dataset is an extension of the familiar

relational table of attributes and values. Extensions capture implicit and explicit knowledge we have

about the data. Datasets and attributes can be specialized as distinct types, the most common cases

being relationships (or multivariate subsets of datasets) and variables (or univariate relationships).

While there exist operations applicable only to variables, or to relationships, there is a large set of

shared operations that make it desirable for all data to be handled in tabular form.

We manipulate a dataset in three distinct ways. The �rst kind of manipulation involves subdi-

viding or combining elements of datasets. In order to construct �tted lines to each cluster in the

TransSim data, we partitioned the original data into �ve smaller datasets. We then examined

each cluster independently, at a �ner level of detail. We call an operation that breaks data into

smaller but similar parts a data decomposition. A data decomposition generates a mapping from

the elements of a dataset to membership in a set of new, derived datasets. Operations that bin

data, exhaustively partition data, or nonexhaustively cluster data all decompose data in this way.

The inverse operation, data composition, combines separate datasets. Data decompositions and

compositions let us capture independent detail in subsets of data and recombine results.

The second kind of manipulation involves deriving new attributes for elements of the dataset.

During the TransSim analysis we performed a transformation of cluster medians to remove cur-

vature. Operationally the procedure transformed a single attribute, Pmed, into a new attribute,

P 0, where P 0 = 1=P . We call such an operation an attribute transformation. A special type of

transformation is attribute composition: consider the transformation from attributes port cost,

ship cost, and dock cost to S + P +D, or total cost. Another type of transformation is attribute

decomposition: to conclude that a given line is a good �t to a relationship, we need to generate the

residuals by subtracting P̂ from P|by decomposing the attribute into structure and residual.

Because dataset attributes may contain datasets as well, another useful transformation is the

mapping of a statistic over the elements of an attribute. Our data decomposition of the hP; Si re-

lationship generates �ve new datasets. More precisely, the result is a new dataset, PSc, containing

a single attribute \Clusters", whose value is these new datasets. We can now apply an attribute

transformation to the \Clusters" attribute, to produce newa ttributes such as \x-median" and

\y-median". We continue by �tting a line, a further attribute transformation. Functions for at-

tribute transformation include arithmetic operations, exponentiation, and these higher level dataset

operations.

The third kind of manipulation is reduction, which is the type of function performed by summary

statistics such as means and medians. Correlations and partial correlations are similarly reductions

of bivariate and multivariate relationships.

Designing a system around such general structures and operations is not simply an attempt at

conciseness. Rather, the design is geared speci�cally toward the kinds of operations appropriate

for EDA. Consider the example of generating a histogram for a discrete variable N in a dataset T .
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To build a histogram we divide a variable into bins and count the number of observations that fall

into each bin. Using the operations describe above, we can implement a histogramming procedure

as follows. First we apply a data decomposition to T . The result is a set of new datasets that form

disjoint subsets of T , stored as an attribute \Data" in a new dataset, Th. Our operations now work

on Th. An attribute transformation of \Data", based on the count statistic, gives the size of the

bins. Another transformation using the mode statistic gives the value of N associated with each

bin. These distinct values and their counts can then be displayed directly in histogram form.

This may seem an inordinate e�ort to produce such a basic structure, but consider a simple

extension: the contingency table. To build a contingency table between N and Cmem, an attribute

that records the membership of each data point in a speci�c cluster, we follow essentially the

same procedure. This time the decomposition simultaneously bins N and Cmem. Decomposition

operations are not limited to single variables; they can just as easily decompose two variables or

an entire dataset. The result of the operation is a dataset, Tc, with a two-dimensional attribute

containing the partitions, one for each unique value of N and Cmem. Again we transform by the

count statistic. Calculating the N;Cmem values for each bin is equally straightforward. The desired

contingency table data is the result. A simple variation of this procedure produces a box plot, by

computing letter values rather than counts. More complex two-way tables can also be generated

in a similar way, by calculating statistics for a third variable in each of the partitions.

Producing structures in this way has two abstract bene�ts: complex procedures can often be seen

as natural extensions of existing procedures, and natural connections between conceptually similar

structures become clear. While it is trivial to observe that a contingency table is a two-dimensional

histogram, it is worth stressing that the two structures can be produced by very similar proce-

dures, and that both procedures are di�erent instances of a single canonical, divide-and-conquer

EDA procedure. A data decomposition breaks a dataset into smaller parts; dataset-level attribute

transformations compute a set of features of the reduced data; these features are explored both

individually and in aggregate. The procedure is a simple, powerful example of generalization, as

described in the conceptual clustering and constructive induction literature [Michalski83, Fisher86].

Planning o�ers a natural framework for representing EDA procedures. A planning representa-

tion can capture general procedures and intermediate goals, constructive derivation of results, and

hierarchical problem decomposition|necessary elements for exploration. At the core of Aide is a

script-based planner with a library of partial plans, or scripts, which can be combined as required

by the characteristics of the data.

(define-script variable-histogram

:goal (describe ?variable ?directives ?histogram)

:vars (variable directives (histogram :output))

:features ((:content-type :categorical))

:bindings ((histogram (partitions index count)))

:grammar (:SEQUENCE

(script-partition variable 'identity

:output histogram

:names '(partition index))

(script-transform histogram #'(lambda (partition)

(script-reduce partition 'count))

:key (attributes partitions)

:name count)))

The scripting language is based on work in control planning for knowledge-based signal process-

ing [Carver93]. In its simplest form, a script has a goal form with input and output variables, a set

of bindings, and a grammar of actions to execute. Grammar constructs allow sequencing, iteration,

5



mapping, and conditionalizing of actions. A script becomes active when a goal is established at a

higher level that matches its goal form; it succeeds when its own grammar of actions completes. A

script to generate a histogram, slightly abbreviated, is shown above.

We have already mentioned variants of the histogramming procedure, which are implemented

by similar scripts. Other scripts compute initial values for parameters of resistant lines, transfor-

mations of skewed relationships, and so forth. Each script produces a set of new or transformed

structures, appropriately annotated and related to existing structures. As scripts execute, a growing

hierarchy of datasets, relationships, and their attributes is generated.

5 Control Planning

The scripting representation lets Aide search through a space of general procedures rather than

primitive data manipulations. Guiding the search are indications, or suggestive characteristics of

the data. Indications involve evaluation of a statistic or descriptive structure derived from the data.

For example, evidence of clustering is an indication, as is the presence of outliers, and curvature in

the residuals of a linear �t. Indications may be simple computations, such as testing the skew of a

distribution against a preset threshold. A more complex indication involves constructing a nearest

neighbors clustering for a relationship and checking for outlying distances between adjacent clusters.

In each case the presence of an indication leads to the selection of scripts that can potentially explain

its presence.

This representation restructures the search space of exploration into a more appropriate form.

Unfortunately, the problem of choosing an appropriate search operation still applies, even at this

higher level. The space remains too large to be searched with only data-driven operations.

Control planning addresses the problem [Carver93]. Control plans are a simple extension of

data manipulation scripts. A control plan grammar contains subgoals rather than actions, and

can implement more general procedures than those provided by scripts. Control plans guide the

activation of data manipulation scripts and other control plans. The control plan given below is a

generalization of the histogramming script.

(define-control-plan* describe-cluster-behavior

:goal (select-control ?relationship ?directives ?result)

:vars (relationship directives (result :output))

:features ((:dataset-type relationship)

(:cardinality 2))

:indications ((clustering-indication *))

:grammar (:SEQUENCE cluster-subgoal

extract-components-subgoal

(:MAP (substructure*)

describe-substructure-subgoal)

compose-descriptions-subgoal

explore-composition-subgoal))

This control plan is used in the TransSim analysis to describe the data in terms of the locations

of the clusters, rather than the data points themselves. It decomposes a dataset into separate

components, describes each component, and aggregates the results into a single structure, to be

explored in turn. A lower level plan supplies descriptions in the form of the location of each cluster.

While the behavior of this plan is similar to that of a script, it can be used more generally to

explore the locations of the clusters, their sizes, their functional behaviors, and so forth. The entire
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process is an example of simpli�cation, in which we work with an abstraction of the original data

to facilitate a high level functional description.

The combination of control plans with data manipulation scripts further restructures the search

space; focusing heuristics provide the �nal component. Actions that later turn out to be incorrect

or irrelevant are inevitable in the analysis. This means that at points during the execution of

a plan, an intermediate result can obviate some set of pending actions. When this happens, a

focusing heuristic can abandon the current plan and select a new one based on the current state of

knowledge.

More speci�cally, focusing allows context-sensitive information to inuence the order in which

subgoals are satis�ed and the selection of appropriate parameter values. The most important role

of focusing heuristics is to allow for user interaction in the analysis. We often �nd that information

external to the data a�ects our decisions about the course of exploration. We may know that a

relationship falls naturally into three clusters, rather than four, because of a known sampling bias,

or that some variable value acts as a natural threshold between di�erent behaviors in the data.

Focusing heuristics take such user-supplied information into account where needed: in the decisions

about which plans are applicable, and which input values are appropriate for their execution.

A broad view of the exploratory analysis, using the TransSim example, is as follows. A

modeling procedure generates a relationship hP; Si between port cost and ship cost. Exploration

results are interpreted in the context of the model. The exploratory phase of the analysis begins

with the generation of features and indications for the relationship: relatively high correlation, a

hierarchical clustering with clear separation between individual groups, evidence of curvature, skew

in both variables.

A focusing heuristic evaluates the relevant control plans, using information provided by the

indications, and selects the plan describe-cluster-behavior. The rest are suspended, to be pursued

when the �rst returns with more information. The selected control plan breaks down into three

main subgoals: (a) the generation of clusters, (b) the exploration of each cluster, and (c) the

exploration of the aggregated descriptive results of the clusters. Subgoal (a) can be satis�ed by

di�erent plans: one that attends to clusters in the entire relationship, and others that detect clusters

in the component variables. The bivariate clustering plan is selected, again by a focusing heuristic.

This plan generates three candidate assignments of points to clusters; the heuristic threshold for

the indication is not sensitive enough to make an unambiguous assignment. A single assignment is

selected. As with plan selection, the remaining possibilities are suspended until later, if needed.

The selected cluster assignment gives a decomposition of the relationship into separate clusters.

In control phase (b), each is explored in turn. A focusing heuristic, taking into account the context

of the cluster description control plan, selects a data manipulation plan to determine the location

of each cluster. Location is computed from the features of each cluster: from the mean, median,

and other summary statistics. The values generated are returned and aggregated into a single

relationship.

Subgoal (c) is then established to explore this new relationship. Based on indications for the

reduced data, a new control plan is selected that will straighten the curved relationship and �t a

line to the result. The linear �t is then explored in turn as a form of deepening.

Each decision point is controlled by a focusing heuristic. If a selected plan or variable value

results in either failure or inadequate information, the focusing heuristic will be reactivated to make

a di�erent selection, to try to satisfy the goal in a di�erent way. Focusing and refocusing give a

needed exibility to the exploration process. Sometimes a shallow exploration will be su�cient to

show, for example, that there are no gross departures from linearity in a relationship; a focusing

heuristic can evaluate indications in context and decide not to reactivate other pending plans.

Sometimes a result can show that there are patterns deeper in the data; a focusing heuristic can
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direct attention toward the patterns in an opportunistic way.

6 Related Work

This work draws on a number of di�erent sources. The clearest relationship is to early work in de-

veloping concepts of statistical strategy, or the formal descriptions of actions and decisions involved

in applying statistical tools to a problem [Hand86]. The REX system, for example, implemented

a strategy for linear regression [Gale86]. Comparable complex strategies were developed by oth-

ers for collinearity analysis [Oldford86]. The goals of Aide bear a resemblance to those of TESS

[Lubinsky88], which supports analysis by accommodating user knowledge of context in a search

good descriptions of data. aide extends this work by supplying an appropriate taxonomy for EDA

operations and using this taxonomy to guide search at di�erent levels of abstraction.

Central to Aide is the opportunistic, incremental approach to discovery described by Tukey,

Mosteller, and other advocates of EDA. There are some obvious di�culties: maintaining consistency

in an incrementally growing set of descriptions can be di�cult; in many cases local techniques can

miss simple global patterns; local techniques can lead to a plethora of spurious results. Nevertheless

many such problems can be alleviated in a system does not always act autonomously, focuses on

both data and on goals of the analysis, and pursues exploration paths with the aid of external

knowledge and the context supplied by its own actions.
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