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Abstract

Providing a complete and accurate domain model for an agent situated in a complex

environment can be an extremely di�cult task. Actions may have di�erent e�ects de-

pending on the context in which they are taken, and actions may or may not induce their

intended e�ects, with the probability of success again depending on context. In addi-

tion, the contexts and probabilities that govern the e�ects and success of actions may

change over time. We present an algorithm for automatically learning planning operators

with context-dependent and probabilistic e�ects in environments where exogenous events

change the state of the world. Our approach assumes that a situated agent has knowledge

of the types of actions that it can take, but initially knows nothing of the contexts in

which an action produces change in the environment, nor what that change is likely to

be. The algorithm accepts as input a history of state descriptions observed by an agent

while taking actions in its domain, and produces as output descriptions of planning oper-

ators that capture structure in the agent's interactions with its environment. We present

results for a sample domain showing that the computational requirements of our algo-

rithm scale approximately linearly with the size of the agent's state vector, and that the

algorithm successfully locates operators that capture true structure and avoids those that

incorporate noise.
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1 Introduction

Research in classical planning has assumed that the e�ects of actions are deterministic and the

state of the world is never altered by exogenous events, simplifying the task of encoding domain

knowledge in the form of planning operators [13]. These assumptions, which are unrealistic

for many real-world domains, are being relaxed by current research in AI planning systems

[5] [7]. However, as planning domains become more complex, so does the task of generating

domain models. In this paper, we present an algorithm for automatically learning planning

operators with context-dependent and probabilistic e�ects in environments where exogenous

events change the state of the world.

Our approach assumes a situated agent and a weak initial domain model, consisting only of

a list of the di�erent types of actions that the agent can take. The agent initially knows nothing

of the contexts in which actions produce changes in the environment, nor what those changes

are likely to be. To gather data for the learning algorithm, the agent explores its domain by

taking random actions and recording state descriptions.1 From the agent's history of state

descriptions, the learning algorithm produces predictive planning operators that characterize

how the agent's world changes when it takes actions in particular contexts.

In section 2 we de�ne a space of planning operators, then we show how to search this space

e�ciently for predictive operators. The search is performed by an algorithm called Multi-Stream

Dependency Detection (msdd, see section 3) which �nds statistical dependencies among cat-

egorical values in multiple data streams over time [9]. msdd is a general search algorithm;

it relies on domain knowledge to guide its search and decide when to prune in an otherwise

exponential space of planning operators (see section 4). Not all points in operator space rep-

resent true dependencies between agent actions and e�ects|some may describe changes that

are actually due to exogenous events|so we augment msdd with a �ltering algorithm to �nd

operators that describe e�ects that the agent itself can reliably bring about.

The e�ciency and e�ectiveness of our approach are demonstrated in a simulated robot

domain. Eleven planning operators with conditional and probabilistic e�ects characterize the

robot's interactions with its environment. The number of search nodes required by msdd

to �nd these target operators scales approximately linearly with the size of the agent's state

description, even though the size of the operator space increases exponentially (see section 5).

Moreover, the algorithm consistently returns small sets of operators that contain the target

operators, as well as operators that capture structure that is implicit in the de�nition of the

sample domain but that was not explicitly codi�ed in the target operators. We contrast our

approach with related work in section 6 and describe future research directions in section 7.

2 Domain Model

The agent's domain model is weak in the sense that it includes only the agent's repertoire of

actions and sensors, and values that can be returned by sensors. With this information, we

de�ne a space of possible planning operators.

1Clearly, random exploration is ine�cient, especially when actions need to be combined into long sequences

to achieve certain states. The utility of goal-directed exploration and learning is well documented [10]. However,

nothing in our approach precludes non-random exploration (see Section 7).
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2.1 The Agent and its Environment

The agent is assumed to have a set of m sensors, S = fs1; : : : ; smg, and a set of n possible

actions, A = fa1; : : : ; ang. At each time step, each sensor produces a single categorical value,

called a token, from a �nite set of possible values. Let T
i
= ft

i1
; : : : ; t

ik
g be the token values

associated with the i
th sensor, and let st

i
denote the value obtained from sensor s

i
at time t.

Each sensor describes some aspect of the state of the agent's world; for example, s2 may indicate

the state of a robot hand, taking values from T2 = fopen, closedg. The state of the world as

perceived by the agent at time t, denoted x(t), is simply the set of values returned by all of the

sensors at that time. That is, x(t) = fst
i
j1 � i � mg is a state vector.

Agent actions are encoded in a special sensor, s
a
; e�ects show up as changes in state vectors

observed on subsequent time steps. In general, sa 2 Taction = A [ fnoneg, and indicates which

one of the possible actions was attempted. For any time step t on which the agent does not take

an action, st
a
= none. Actions require one time step, only one agent action is allowed on any

time step, and resulting changes in the environment appear a constant number of time steps

later. (Section 7 discusses ways to eliminate those restrictions.) Without loss of generality, we

will assume that the e�ects of actions appear one time step later. We assume that the state of

the world can change due to an agent action, an exogenous event, or both simultaneously. The

latter case complicates the learning problem.

Consider a simple robot whose task it is to pick up and paint blocks. (This domain is

adapted from [5], where it is used to explicate the Buridan probabilistic planner.) The robot

has four sensors and can determine whether it is holding a block (HB), has a dry gripper (GD),

has a clean gripper (GC), and whether the block is painted (BP). In addition, the robot can take

one of four actions. It can dry its gripper (DRY), pick up the block (PICKUP), paint the block

(PAINT), or obtain a new block (NEW). In terms of the notation developed above, the robot's

initial domain model can be summarized as follows:

S = fACTION, BP, GC, GD, HBg

A = fDRY, NEW, PAINT, PICKUPg

T
ACTION

= fDRY, NEW, PAINT, PICKUP, NONEg

TBP = fBP, NOT-BPg; TGC = fGC, NOT-GCg

TGD = fGD, NOT-GDg; THB = fHB, NOT-HBg

2.2 Planning Operators

The STRIPS operator representation includes a set of preconditions, an add list, and a delete list

[2]. The STRIPS planner assumed that actions taken in a world state matching an operator's

preconditions would result in the state changes indicated by the operator's add and delete

lists without fail. We take a less restrictive view, allowing actions to be attempted in any

state; e�ects then depend on the state in which actions are taken. Speci�cally, an operator

O =< a; c; e; p > speci�es an action, a context in which that action is expected to induce some

change in the world's state, the change itself, and the probability of the change occurring. If

the agent is in a state matching the context c and it takes action a, then it will enter a state

matching the e�ects e with probability p.

Contexts and e�ects of operators are represented as multitokens. A multitoken is an m-tuple

that speci�es for each sensor either a speci�c value or an assertion that the value is irrelevant. To

denote irrelevance, we use a wildcard token *, and we de�ne the set T �

i
= Ti[f�g. A multitoken
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is any element of the cross product of all of the T �

i
; that is, multitokens are drawn from the set

T �

1
� : : :� T �

m
. Consider a two-sensor example for which T1 = T2 = fA, Bg. Adding wildcards,

T �

1
= T �

2
= fA, B, *g. The space of multitokens for this example (fA, B, *g�fA, B, *g) is

the following set: f(A A), (A B), (A *), (B A), (B B), (B *), (* A), (* B), (* *)g.

An operator's context speci�es a conjunct of sensor token values that serve as the operator's

precondition. For any given action, the values of some sensors will be relevant to its e�ects and

other sensor values will not. For example, it might be more di�cult for a robot to pick up a

block when its gripper is wet rather than dry, but the success of the pickup action does not

depend on whether the block is painted. A multitoken represents this contextual information

as (* * GD *), wildcarding irrelevant sensors (e.g. the sensor that detects whether a block is

painted) and specifying values for relevant sensors (the sensor that detects whether the gripper

is dry).

While contexts specify features of the world state that must be present for operators to apply,

e�ects specify how features of the context change in response to an action. We allow e�ects

to contain non-wildcard values for a sensor only if the context also speci�es a non-wildcard for

that sensor. To understand this restriction, consider the following operator:

<dry, (* * * *), (* * GD *), 0.5>

Because the context of this operator does not specify whether the gripper is wet or dry, it is

impossible to interpret the probability associated with the operator. Perhaps the base proba-

bility of a dry gripper in the robot's environment is 0.45 and the dry action succeeds 10% of

the time; alternatively these probabilities could be 0.17 and 0.4, respectively. Both pairs of

probabilities would produce p = 0:5 in the operator above. Thus, an agent with a wet gripper

cannot use this operator to calculate its chances of obtaining a dry gripper via the dry action.

The situation is very di�erent in the following operator, which speci�es non-wildcards in the

e�ects only for sensors containing non-wildcards in the context:

<dry, (* * NOT-GD *), (* * GD *), 0.5>

In this case it is clear that attempting a dry action with a wet gripper (NOT-GD) results in a

dry gripper 50% of the time.

We also require that each non-wildcard in the e�ects be di�erent from the value given by

the context for the corresponding sensor. That is, operators must describe what changes in

response to an action, not what stays the same.

Assume that our block-painting robot's interactions with the world are governed by the

following rules. The robot can successfully pick up a block 95% of the time when its gripper

is dry, but can do so only 50% of the time when its gripper is wet. If the gripper is wet, the

robot can dry it with an 80% chance of success. If the robot paints a block while holding it,

the block will become painted and the robot's gripper will become dirty without fail. If the

robot is not holding the block, then painting it will result in a painted block and a dirty gripper

20% of the time, and a painted block the remaining 80% of the time. Finally, when the robot

requests a new block, it will always �nd itself in a state in which it is not holding the block, the

block is not painted, and its gripper is clean; however, the gripper will be dry 30% of the time

and wet 70% of the time. This information is summarized in our representation of planning

operators in Figure 1. Note the wildcards. In the �rst operator, for example, the success of the

pickup action depends on whether the gripper is dry (GD in the context) but it doesn't depend

on whether the block is painted.
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<pickup, (* * GD NOT-HB), (* * * HB), 0.95>

<pickup, (* * NOT-GD NOT-HB), (* * * HB), 0.5>

<dry, (* * NOT-GD *), (* * GD *), 0.8>

<paint, (NOT-BP * * *), (BP * * *), 1.0>

<paint, (* GC * HB), (* NOT-GC * *), 1.0>

<paint, (* GC * NOT-HB), (* NOT-GC * *), 0.2>

<new, (BP * * *), (NOT-BP * * *), 1.0>

<new, (* NOT-GC * *), (* GC * *), 1.0>

<new, (* * * HB), (* * * NOT-HB), 1.0>

<new, (* * GD *), (* * NOT-GD *), 0.7>

<new, (* * NOT-GD *), (* * GD *), 0.3>

Figure 1: Planning operators in the block-painting robot domain.

3 The MSDD Algorithm

The msdd algorithm �nds dependencies|unexpected co-occurrences of values|in multiple

streams of categorical data [9]. msdd is general in that it performs a simple best-�rst search

over the space of possible dependencies. It is adapted for speci�c domains by supplying domain-

speci�c evaluation functions.

msdd assumes a set of streams, S, such that the ith stream, s
i
, takes values from the set T

i
.

We denote a history of multitokens obtained from the streams at �xed intervals from time t1

to time t2 as H = fx(t)jt1 � t � t2g. For example, the three streams shown below constitute

a short history of twelve multitokens, the �rst of which is (A C B). msdd explores the space

of dependencies between pairs of multitokens. Dependencies are denoted prec
k

) succ, and

are evaluated with respect to H by counting how frequently an occurrence of the precursor

multitoken prec is followed k time steps later by an occurrence of the successor multitoken

succ: k is called the lag of the dependency, and can be any constant positive value. In the

history shown below, the dependency (A C *)
1
) (* * A) is strong. Of the �ve times that we

see the precursor (A in stream 1 and C in stream 2) we see the successor (A in stream 3) four

times at a lag of one. Also, we never see the successor unless we see the precursor one time

step earlier.

Stream 1: A D A C A B A B D B A B

Stream 2: C B C D C B C A B D C B

Stream 3: B A D A B D C A C B D A

When counting occurrences of a multitoken, the wildcard matches all other tokens; for

example, both (D B A) and (C D A) are occurrences of (* * A), but (C D D) is not.

msdd performs a general-to-speci�c best-�rst search over the space of possible dependencies.

Each node in the search tree contains a precursor and a successor multitoken. The root of the

tree is a precursor/successor pair composed solely of wildcards; for the three streams shown

earlier, the root of the tree would be (* * *) ) (* * *). The children of a node are its

specializations, generated by instantiating wildcards with tokens. Each node inherits all the

non-wildcard tokens of its parent, and it has exactly one fewer wildcard than its parent. Thus,

each node at depth d has exactly d non-wildcard tokens distributed over the node's precursor

and successor. For example, both (A * *) ) (* * *) and (* * *) ) (* D *) are children
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of the root node; and both (* * B)) (* C *) and (* * *)) (* A A) are children of nodes

at depth one.

The space of two-item dependencies is clearly exponential. The number of possible mul-

titokens is given by jT �

1
� : : : � T �

m
j =

Q
m

i=1
jT �

i
j. If each stream contains k distinct tokens

(including *) and there are m streams, then the number of possible multitokens is k
m, and

the number of possible dependencies is k2m. Given the size of the search space, msdd requires

domain knowledge to guide the search and to allow e�cient pruning. Section 4 describes how

these requirements are met; here, we con�ne ourselves to the general framework of msdd search.

Speci�cally, the children of a node are generated by instantiating only those streams to the right

of the right-most non-wildcarded stream in that node. This method doesn't say which children

should be generated before others (see section 4.1), but it does ensure that each dependency

is explored at most once, and it facilitates reasoning about when to prune. For example, all

descendants of the node (* A *) ) (B * *) will have wildcards in streams one and three in

the precursor, an A in stream two in the precursor, and a B in stream one in the successor. The

reason is that these features are not to the right of the rightmost non-wildcard, and as such

cannot be instantiated with new values. If some aspect of the domain makes one or more of

these features undesirable, then the tree can be safely pruned at this node.

Formal statements of both the msdd algorithm and its node expansion routine are given

in Algorithms 3.1 and 3.2. The majority of the work performed by msdd lies in evaluating

f for each expanded node. Typically, f will count co-occurrences of the node's precursor and

successor, requiring a complete pass over H. Assuming that H contains l vectors of size m, the

computational complexity of msdd is O(m � l �maxnodes).

Algorithm 3.1 msdd

msdd(H; f;maxnodes)

1. expanded = 0

2. nodes = root-node()

3. while not-empty(nodes) and expanded < maxnodes do

a. remove from nodes the node n that maximizes f(H; n)

b. expand(n), adding its children to nodes

c. increment expanded by the number of children generated in (b)

Algorithm 3.2 expand

expand(n)

1. for i from m downto 1 do

a. if n:precursor[i] 6= `*' then

return children

b. for t 2 Ti do

i. child = copy-node(n)

ii. child:precursor[i] = t

iii. push child onto children

2. repeat (1) for the successor of n

3. return children
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4 Learning Planning Operators with MSDD

To learn planning operators, msdd �rst searches the space of operators for those that capture

structure in the agent's interactions with its environment; then, the operators found by msdd's

search are �ltered to remove those that are tainted by noise from exogenous events, leaving

operators that capture true structure. This section describes both processes.

First, we map from the operator representation of section 2.2 to msdd's dependency repre-

sentation. Consider the planning operator described earlier:

O =< a; c; e; p > = <pickup, (* * NOT-GD NOT-HB), (* * * HB), 0.5>

The context and e�ects of that operator are already represented as multitokens. To incorporate

the idea that the pickup action taken in the given context is responsible for the changes

described by the e�ects, we include the action in the multitoken representation:

(pickup * * NOT-GD NOT-HB)) (* * * * HB)

We have added an action stream to the context and speci�ed pickup as its value. Because

msdd requires that precursors and successors refer to the same set of streams, we also include

the action stream in the e�ects, but force its value to be *. The only item missing from

this representation of the operator is p, the probability that an occurrence of the precursor

(the context and the action on the same time step) will be followed at a lag of one by the

successor (the e�ects). This probability is obtained empirically by counting co-occurrences of

the precursor and the successor in the history of the agent's actions (H) and dividing by the

total number of occurrences of the precursor. For the sample domain described previously, we

want msdd to �nd dependencies corresponding to the planning operators listed in Figure 1.

These dependencies are given in Figure 2.

(pickup * * GD NOT-HB) ) (* * * * HB)

(pickup * * NOT-GD NOT-HB) ) (* * * * HB)

(dry * * NOT-GD *) ) (* * * GD *)

(paint NOT-BP * * *) ) (* BP * * *)

(paint * GC * HB) ) (* * NOT-GC * *)

(paint * GC * NOT-HB) ) (* * NOT-GC * *)

(new BP * * *) ) (* NOT-BP * * *)

(new * NOT-GC * *) ) (* * GC * *)

(new * * * HB) ) (* * * * NOT-HB)

(new * * GD *) ) (* * * NOT-GD *)

(new * * NOT-GD *) ) (* * * GD *)

Figure 2: The planning operators in the block-painting robot domain represented as msdd

dependencies.

4.1 Guiding the Search

Recall that all descendants of a node n will be identical to n to the left of and including the

rightmost non-wildcard in n. Because we encode actions in the �rst (leftmost) position of the

precursor, we can prune nodes that have no action instantiated but have a non-wildcard in any

other position. For example, the following node can be pruned because none of its descendants

will have a non-wildcard in the action stream:

(* * * GD *) ) (* * * * *)
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Also, the domain model of Section 2 requires that operator e�ects can only specify how non-

wildcarded components of the context change in response to an action. That is, the e�ects

cannot specify a value for a stream that is wildcarded in the context, and the context and

e�ects cannot specify the same value for a non-wildcarded stream. Thus, the following node

can be pruned because all of its descendants will have the value BP in the e�ects, but that

stream is wildcarded in the context:

(pickup * * GD *) ) (* BP * * *)

Likewise, the following node can be pruned because all of its descendants will have the value

GD instantiated in both the context and the e�ects:

(pickup * * GD *) ) (* * * GD *)

The search is guided by a heuristic evaluation function, f(H; n), which simply counts the

number of times in H that the precursor of n is followed at a lag of one by the successor of

n.2 This builds two biases into the search, one toward frequently occurring precursors and

another toward frequently co-occurring precursor/successor pairs. In terms of our domain of

application, these biases mean that, all other things being equal, the search prefers commonly

occurring state/action pairs and state/action pairs that lead to changes in the environment

with high probability. The result is that operators that apply frequently and/or succeed often

are found by msdd before operators that apply less frequently and/or fail often.

4.2 Filtering Returned Dependencies

Not all of the dependencies produced by msdd's search are equally interesting. Interesting

dependencies tell us about structure in the environment; that is, they tell when changes in the

environment are associated with particular actions more or less often than we would expect

by random chance. Suppose our robot spins a roulette wheel on each time step, and the color

of the outcome is available via one of its sensors. Further, there is a button underneath the

wheel that the robot can push. Assuming a fair wheel, we expect (* * RED) to be be followed

by (* * BLACK) with a probability of 0.5. If we also �nd that (push * RED) is followed by

(* * BLACK) with a probability of 0.5, we are not interested. The push action does not a�ect

the relationship between RED and BLACK. However, if we �nd that (push * RED) is followed by

(* * BLACK) with a probability of 0.6, our interest is piqued; and if that probability is 0.8 or

0.2, we are even more interested. Therefore, a dependency, when viewed as a planning operator,

is interesting to the extent that the probability of the e�ects given the context depends on the

action. Said di�erently, we want to know for each operator O =< a; c; e; p > how di�erent

p(ejc; a) and p(ejc) are.

We must be careful to avoid non-wildcards that \freeload" on interesting operators. In our

sample block-painting robot domain, it is the case that (paint * GC * HB) is always followed

by (* * NOT-GC * *). If, by random chance, the robot's gripper is dry when it paints a block

that it is holding with a clean gripper, then (paint * GC GD HB) will also be followed by

(* * NOT-GC * *) without fail. In this case, GD is a freeloader. It has no impact on the e�ects

of (paint * GC * HB) or on the probability of the e�ects given the context and the action.

All other things being equal, we prefer operators that are more general; that is, we prefer

(paint * GC * HB) ) (* * NOT-GC * *) to (paint * GC GD HB) ) (* * NOT-GC * *).

The question that needs to be answered is whether the probability of the e�ects in one context

2Rules with successors containing only wildcards are problematic because they predict nothing. We assign

such nodes a value equal to the average of f(H; n) for their children, and delete them during a later step.
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is signi�cantly di�erent from the probability of the e�ects in a more speci�c context. If not, we

keep the general operator and discard the more speci�c one.

The G statistic computed for 2x2 contingency tables provides a simple metric for the de-

gree to which two empirically-derived conditional probabilities di�er. Returning to our wheel-

spinning robot, suppose the wheel comes up red 100 times, followed by black 48 times. Fur-

ther, on 20 of the time steps for which the wheel came up red, the robot also performed

a push action, followed on the next time step by black 12 times. We can summarize this

information with two conditional probabilities: p(blackjred ^ push) = 36=80 = 0:45 and

p(blackjred ^ push) = 12=20 = 0:6. We can also use a contingency table representation as

shown in Figure 3. We want to know whether the distribution of red and black following

an occurrence of red depends on whether a push action was also attempted. The G statistic

measures nonindependence, with larger values of G representing more dependence between the

precursor and successor. The value of G in this case is 1.45, which is small; however, if black

followed red and push 16 times rather than 12, G would be 10.77, and we would be inclined to

conclude that push does a�ect the relationship between red and black.3

black black

red ^ push 36 44

red ^ push 12 8

Figure 3: A contingency table that summarizes the distribution of black and red (black) fol-

lowing either red and no push action or red and a push action.

Pseudocode for the filter routine is shown in Algorithm 4.1. filter accepts as input

a list of dependencies returned by msdd, D, the history used during msdd's search, H, and

two parameters that control the sensitivity of the algorithm, n and g. It returns a list of

dependencies that represent the interesting operators found bymsdd. To evaluate dependencies

as planning operators, we need to map from the former to the latter. Let e(d) denote dependency

d's e�ects, and n(d) denote the the number of times that d's precursor was followed by d's

successor in H. We de�ne the function subsumes(d1; d2) to return true if dependency d1 is a

generalization of dependency d2. We de�ne the function G(d1; d2;H) to return the G statistic

computed for the contingency table used to determine whether the conditional probability of d1's

successor given its precursor is di�erent from the conditional probability of d2's successor given

its precursor. For example, the function G would compute a G statistic for a table such as the

one shown in Figure 3 for the two dependencies (* * RED)) (* * BLACK) and (push * RED)

) (* * BLACK). The parameter g is used in steps (4:c:i) and (5:b) as a threshold which

G(d1; d2;H) must exceed before d1 and d2 are considered to represent \di�erent" conditional

probabilities. The parameter n is used in step (1) of the algorithm to remove dependencies

with low frequency of co-occurrence, because such dependencies are likely to be spurious.

filter begins in step 1 by removing all dependencies that have low frequency of co-

occurrence or contain nothing but wildcards in the successor. Step 4 processes operators in

order of generality, due to the sort in step 2, repeatedly retaining the most general operator

and removing from further consideration any other operators that it subsumes and that do

3We can, of course, test whether a value of G is statistically signi�cant, but this raises problems of multiple

testing [1] and it is not necessary if we use G only to rank operators.
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Algorithm 4.1 filter

filter(D;H; n; g)

1. remove from D all dependencies d such that n(d) < n or e(d) contains only wildcards

2. sort D in non-increasing order of generality

3. S = ;

4. while not-empty(D) do

a. s = pop(D)

b. push(s; S)

c. for d 2 D do

i. if subsumes(s; d) and G(s; d;H) < g then remove d from D

5. for s 2 S do

a. let s0 be a copy of s with the action in the precursor wildcarded

b. if G(s; s0;H) < g then remove s from S

6. return S

not have signi�cantly di�erent conditional probabilities. All of the operators retained in step 4

are then tested in step 5 to ensure that the change from the context to the e�ects is strongly

dependent on the action, where the degree of dependence is measured by G.

5 Empirical Results

To test the e�ciency and completeness of msdd's search and the e�ectiveness of the filter

algorithm, we created a simulator of the block-painting robot and its domain as described in

Section 2. (We have successfully applied msdd to much larger problems in other domains.

A brief summary of that work is given in Section 6.) The simulator contained �ves streams:

ACTION, BP, GC, GD and HB. Each simulation began in a randomly-selected initial state, and

on each time step the robot had a 0.1 probability of attempting a randomly selected action.

In addition, we added varying numbers of noise streams that contained values from the set

Tn = fA, B, Cg. There was a 0.1 probability of an exogenous event occurring on each time

step. When an exogenous event occurred, each noise stream took a new value, with probability

0.5, from Tn.

We ran the simulator for 5000 time steps, recording all stream values on each iteration.

These values served as input to msdd, which we ran until it found dependencies corresponding

to all of the planning operators listed in Figure 1. As the number of noise streams, N , was

increased from 0 to 20 in increments of two, we repeated the above procedure �ve times, for

a total of 55 runs of msdd. The goal was to determine how the number of nodes that msdd

expands to �nd all of the interesting planning operators increases as the size of the search space

grows exponentially. A scatter plot of the number of nodes expanded vs. N is shown in Figure

4. If we ignore the outliers where N = 12 and N = 20, the number of nodes required by msdd

to �nd all of the interesting planning operators appears to be linear in N , with a rather small

slope. This is a very encouraging result.

To explain the outliers, consider what happens to the size of the search space as N increases.

When N is 0, the space of possible two item dependencies contains more than 164,000 elements.

Compare this with a space of more than 1024 elements with 20 noise streams. Recall that msdd

10



�nds operators that apply frequently and/or succeed often before operators that apply less

frequently and/or fail often. The outliers correspond to cases in which the robot's random

exploration did not successfully exercise one or more of the target operators very frequently.

Therefore, the search was forced to explore more of the vast space of operators to �nd them.

5000

10000

5 10 2015

Noise Streams

Nodes
Expanded

Figure 4: The number of search nodes required to �nd all of the target planning operators in

the block-painting robot domain as a function of the number of noise streams.

In a second experiment, we evaluated the ability of the filter algorithm to return exactly

the set of interesting planning operators when given a large number of potential operators. We

gathered data from 20,000 time steps of our simulation, with 5, 10, and 15 noise streams. For

each of the three data sets, we let msdd generate 20,000 operators; that is, expand 20,000 nodes.

Figure 4 tells us that a search with far fewer nodes will �nd the desired operators. Our goal

was to make the task more di�cult for filter by including many uninteresting dependencies

in its input. We used n = 6 and g = 30, and in all three cases filter returned the same set

of dependencies. The dependencies returned with N = 5 are shown in Figure 5. Note that

all of the operators listed in Figure 1 are found, and that the empirically-derived probability

associated with each operator is very close to its expected value. The �ve noise streams occupy

the �rst �ve slots of the context and e�ects multitokens, and none contain instantiated values.

Interestingly, the last two operators in Figure 5 do not appear in Figure 1, but they do

capture structure in the robot's domain that was implicit in the description of Section 2.2. The

penultimate operator in Figure 5 says that if you paint the block with a clean gripper, there is

roughly a 40% chance that the gripper will become dirty. Since that operator does not specify

a value for the HB stream in its context, it includes cases in which the robot was holding the

block while painting and cases in which it was not. The resulting probability is a combination

of the probabilities of having a dirty gripper after painting in each of those contexts, 1.0 and 0.2

respectively. Similarly, the last operator in Figure 5 includes cases in which the robot attempted

to pick up the block with a wet gripper (50% chance of success) and a dry gripper (95% chance

of success).

The e�ect of g on the sensitivity of filter can be demonstrated by looking at the operators

returned when g is lowered from 30 to 20. Recall that g is used as a threshold when determining

whether two conditional probabilities are di�erent. When we lower g, we �nd all of the operators

shown in Figure 5, as well as the following:
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<pickup, (* * * * * * * GD NOT-HB), (* * * * * * * * HB), 0.984>

<pickup, (* * * * * * * NOT-GD NOT-HB), (* * * * * * * * HB), 0.494>

<dry, (* * * * * * * NOT-GD *), (* * * * * * * GD *), 0.773>

<paint, (* * * * * NOT-BP * * *), (* * * * * BP * * *), 1.0>

<paint, (* * * * * * GC * HB), (* * * * * * NOT-GC * *), 1.0>

<paint, (* * * * * * GC * NOT-HB), (* * * * * * NOT-GC * *), 0.175>

<new, (* * * * * BP * * *), (* * * * * NOT-BP * * *), 1.0>

<new, (* * * * * * NOT-GC * *), (* * * * * * GC * *), 1.0>

<new, (* * * * * * * * HB), (* * * * * * * * NOT-HB), 1.0>

<new, (* * * * * * * GD *), (* * * * * * * NOT-GD *), 0.714>

<new, (* * * * * * * NOT-GD *), (* * * * * * * GD *), 0.313>

<paint, (* * * * * * GC * *), (* * * * * * NOT-GC * *), 0.383>

<pickup, (* * * * * * * * NOT-HB), (* * * * * * * * HB) 0.701>

Figure 5: Operators returned after �ltering 20,000 search nodes generated for a training set

with 5 noise streams.

<paint, (* * * * * GC * * NOT-GD), (* * * * * NOT-GC * * *), 0.263>

<paint, (* * * * * GC * * GD), (* * * * * NOT-GC * * *) , 0.505>

Both of these operators are subsumed by the operator in which the paint action is attempted

with a clean gripper, resulting in a dirty gripper 38% of the time (the penultimate operator in

Figure 5). It is interesting to note that, according to these operators, the probability of having

a dirty gripper after painting is higher if the gripper is dry than if the gripper is wet. If the

robot had attempted to pick up the block before painting during its random exploration, these

probabilities would make perfect sense. With a wet gripper, the robot's attempts to pick up the

block often fail, resulting in a dirty gripper only 10% of the time after painting. If the gripper is

dry, the robot almost always succeeds in picking up the block, resulting in a dirty gripper 100%

of the time. Looking at the execution trace of the robot con�rms that this is exactly what is

going on. By lowering g from 30 to 20 we have found more structure in the environment, but

this structure includes subtle e�ects that we may or may not wish to enshrine in a planning

operator.

6 Related Work

msdd's approach to expanding the search tree is similar to that of Rymon's Set Enumeration

trees (SE-trees) [11], which in turn are related to Knuth's trie data structure [4]. Rymon uses

SE-trees to systematically enumerate the elements of the power set of a set given a total or-

dering on the set's elements. He demonstrates the exibility of that approach by implementing

e�cient SE-tree based versions of several algorithms (such as Reiter's hitting-set algorithm).

Our contribution with msdd is a novel approach to the problem of �nding structure in multiple

streams of data, and showing how that approach is both general and e�cient. We have suc-

cessfully applied msdd to classi�cation problems [8] and to learning rules in a shipping network

that relate current states to future pathologies [9]. That work involved data sets with more

than 50 streams, indicating that msdd scales well with problem size.

Symbolic approaches to learning planning knowledge via interaction with the environment

have typically assumed a deterministic world in which actions always have their intended e�ects,

and the state of the world never changes in the absence of an action [3] [12]. The work described
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in this paper applies in domains that contain uncertainties associated with the outcomes of

actions, and noise from exogenous events. Subsymbolic approaches to learning environmental

dynamics, such as reinforcement learning [6], are capable of handling a variety of forms of noise.

Reinforcement learning requires a reward function that allows the agent to learn a mapping

from states to actions that maximizes reward. Our approach is not concerned with learning

sequences of actions that lead to \good" states, but rather attempts to learn explicit, conditional

and probabilistic planning operators.

7 Conclusions and Future Work

As research in planning attacks increasingly complex domains, the task of obtaining models of

those domains becomes more di�cult. In this paper we presented and evaluated an algorithm

that allows situated agents to learn planning operators for complex environments. The algo-

rithm requires a weak domain model, consisting of knowledge of the types of actions that the

agent can take, the sensors it possesses, and the values that can appear in those sensors. With

this model, we developed methods and heuristics for searching through the space of planning

operators to �nd those that capture structure in the agent's interactions with its environment.

For a sample domain in which a robot can pick up and paint blocks, we demonstrated that

the computational requirements of the algorithm scale approximately linearly with the size of

the robot's state vector, in spite of the fact that the size of the operator space increases expo-

nentially. The algorithm consistently returns a small set of planning operators that contains

all of the target operators for our sample domain, and never includes noise introduced by ex-

ogenous events. In addition, the algorithm �nds structure in the domain that is implicit in

our construction of the domain, but that was not explicitly formulated as a target planning

operator.

We will extend this work in several directions. We can easily relax the requirement that

the e�ects of an action appear a constant number of time steps after the action. One approach

would be to run msdd with di�erent lags on the same history, collecting a pro�le over time

of the e�ects of an action. Another approach would be to encode multiple time steps in the

successor of a dependency. That is, rather than using x(t + 1) following an action at time t

as the successor, we could concatenate x(t + 1), x(t + 2), : : :, x(t + k), and use the resulting

multitoken of size km as the successor. Similarly, we can concatenate multiple state vectors

in the precursor, capturing contexts with temporal extent. Another interesting area is the

relationship between exploration and learning. How would the e�ciency and completeness of

learning be a�ected by giving the agent a probabilistic planner and allowing it to interleave

goal-directed exploration and learning?
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