
On-line Planning Simulation

Scott D. Anderson

Spelman College

Atlanta, GA 30314-4399

anderson@auc.edu

Paul R. Cohen

Experimental Knowledge Systems Laboratory

University of Massachusetts

Amherst, MA 01003-4610

cohen@cs.umass.edu

Submitted to AIPS-96
keywords: Simulation, On-line, Real-Time

Abstract

Mess is a substrate for building simulation environments suitable for testing plans

and on-line or real-time planners. The article describes the design of Mess, how simu-

lations are built and how on-line planners integrate with the substrate. Mess supports

activities, de�ned as processes over some time interval, and interactions between ac-

tivities and other simulation events. Mess interfaces with TCL, which is a portable,

extensible de�nition of computation time, enabling Mess to be used for platform-

independent simulations of real-time planning. Mess has been used to re-implement

the Phoenix testbed, which simulates forest �res and planning for �re-�ghting agents.

1

1 The Need for Simulation

As planners become more sophisticated, they will solve increasingly large planning problems

involving, for example, the movement and actions of thousands of vehicles, over many hours

and under changing conditions. It is extremely di�cult to inspect such elaborate plans and

determine, for example, their probability of success, the extent to which their goals will be

satis�ed, and so forth. Nevertheless, such evaluation is critical to a scienti�c understanding

of how and how well a sophisticated planner works.

We believe simulation is necessary to evaluate planners: plans are run many times in

the space of conditions that they were meant to handle, and various dependent variables

are measured and statistically analyzed. Furthermore, simulators enable the planner to be

on-line: it can be an agent in an ongoing environment, monitoring the progress of the plan

and making additions or corrections as necessary. An on-line planner can even scrap a failing

plan or sub-plan and replan [8]. If the thinking time of the planner is limited, so that there

is time pressure on its thinking, the on-line planning becomes real-time planning.

A number of simulation environments already exist to support research in on-line and

real-time planning [7]. Some of these simulators are quite domain-speci�c, such as our

own Phoenix testbed [4], which simulates forest �res in Yellowstone National Park. Other

examples are Truckworld [6] and Trains [10], where trucks or trains move cargo in a

graph of depots, cities and towns. Other testbeds are much more domain-independent, such

as the Mice testbed [5], in which agents move in a generic gridworld.

With such a plethora of testbeds, there have been many good ideas and much duplication

of e�ort. In addition to implementing the domain dynamics, these testbeds all have to solve

the fundamental issues of simulation, such as managing events from many sources and getting

them to occur in the correct order. They have to deal with the interface between planners

and the environment, and often that interface is not well de�ned. Will the testbed have

multiple agents, and how is their concurrent thinking coordinated? How is thinking time

represented and integrated into a discrete event simulation? The solutions are often not as

exible and powerful as the planning community might like. Because of these many design

decisions, these testbeds are often not as easily shared as their authors intended. This article

describes our work onMess [1], which we believe captures the best of the common, domain-

independent aspects of these simulators, and improves the representation of thinking agents

and the measurement of time.

Mess (Multiple Event Stream Simulator) is best described as a simulation substrate,

rather than a simulated environment in itself. It makes no domain commitment because

it works with abstractions called \events," \event streams" and \activities," among others.

One builds a simulation environment in Mess by de�ning the events that happen, thereby

changing the state of the world, and de�ning the event streams that produce those events.

The Mess substrate takes care of synchronizing all the events so that the simulation un-

folds in the correct way, with processes interacting as they should. Our goals in designing

Mess were (a) domain independence, (b) planner independence, meaning that we pose little

constraint on the kind of planner that can be integrated with Mess, (c) extensibility by the

user, (d) portability to any Common Lisp platform, and, most importantly, (e) a
exible,

platform-independent de�nition of planning duration, so that real-time simulations will have

those properties.

2

Simulation

Engine

list ES

function ES

function ES

Z
Z

Z
ZZ}

�

�
�

�
��=

�

�

�mess
high-wind

scenario

weather

simulation

function

�re simulation

function

Figure 1: The architecture of theMess simulation substrate. Mess is structured as a central

engine, driving instances of di�erent kinds of event stream (ES). Mess itself is domain

independent; the streams listed at the right (weather, �re, scenario) are examples drawn

from the Phoenix domain.

2 Mess Design

Mess makes no commitment to a domain but instead supplies the materials to build any

domain, namely events and event streams. For example, the ignition of a �recell is an event

in Phoenix, the appearance of a tile is a TileWorld event [9, 11], and a train traversing

a route is an event in Trains. Events are de�ned in Mess using Clos, where the user

supplies code that determines when the event occurs and how it modi�es the representation

of the world. The \how" code is the realization method of the event, and executing that code

is called realizing the event. The hierarchy of event classes can be used to group kinds of

events, such as all the movement events or all the �re events, so that they can be controlled

and modi�ed as a group.

Mess is a process-oriented simulator [3, p. 13], which means that each event is produced

by a process, and that process determines subsequent events. For example, things like

�re, weather, and particularly an agent's thinking might each be separate processes in the

simulation. The representations of processes are called event streams. Event streams are

also de�ned using Clos, so that users can add other kinds of event streams if they need a

particular way of producing events.

Figure 1 shows the structure of Mess. The simulator has a central \engine," which

interleaves the streams of events that represent di�erent real-world processes. These events

are drawn from and generated by event streams of various kinds. A very general kind of

event stream (ES) is a function ES, where a function computes the next event upon demand.

Another kind of ES is a list ES, which produces a pre-de�ned sequence of events. The Mess

engine controls instances of these kinds of event streams, one instance for each world process.

The Mess engine is so called because it controls all the events and event streams, and it

invokes the realization of events. Discrete event simulators go from state to state in discrete

steps, which I have called advancing the simulation. Figure 2 presents pseudo-code for the

3

Algorithm to Advance the simulation:

increment event counter

advance time by head of PEL

If head of PEL is an event stream

Set ES to head of PEL

Peek ES

Set E to event in ES

else

Set ES to nil and set E to head of PEL

Check for Interaction

Realize E

Illustrate E (optional)

Unless ES = Nil

Pop ES

Do Every Event Stu�

Check Wakeup Time Functions

Write out E (optional)

Change Activity

Figure 2: Pseudo-code for the Mess engine.

algorithm to advance the simulation. Each time the simulation is advanced, exactly one

event is realized.

The event to be realized is whichever is nearest in the future. In a queuing simulation,

if we have a customer arrival scheduled for time 18 and a departure scheduled for time 13,

the departure must obviously come before the arrival. The simulation literature has several

terms for the data structure holding these events; we call it the \pending event list" or PEL.

The exact representation used for the PEL is not important here; you may think of it as a

totally ordered list of events. When an event is scheduled, it is inserted into the PEL in the

correct place; when the simulation is advanced, the �rst event in the PEL is realized and

removed from the list.

InMess, there can be two kinds of object in the PEL: an event or an event stream (ES).

In some ways, an ES can be treated just like an event, because it always has a particular

event that is the next event in the stream. If we think of an event as a sheet of paper, an ES

is like a pad of paper: it has a bunch of sheets, only one of which shows at a time. The PEL

in Mess contains either individual events, or event streams. In practice, in the simulators

implemented using Mess, most of the objects in the PEL are event streams.

Let's look brie
y at the pseudo-code to see howMessworks. (A more detailed description

is available in the �rst author's dissertation [1].) The primary objective of the engine is to

realize events, which we see in the center of the algorithm. If the �rst thing in the PEL is

an ES, the engine must make the ES produce an event to realize, which is done by the peek

operation. (Later, the event is removed from the ES by the pop operation.) After the event

is realized, the event is illustrated. The purpose of realization is to change the state of the

4

simulation, while the purpose of illustration is to modify the graphical user interface (GUI),

if any. This separation of realization from illustration aids in running batch simulations,

because all the GUI code can be ignored. The separation also helps keep testbeds portable,

since GUI code is a common source of portability troubles.

The highlighted operations|peek , interaction , realize, illustrate, and pop|are all

Closmethods that can be specialized by the user. Indeed, the realize and illustrate methods,

which operate on events, must be specialized, since their default behavior is to do nothing.

The peek and pop methods operate on event streams; as mentioned above, several general

event stream classes are implemented in Mess already. The user can arrange for particular

events to happen during a simulation by using the list event stream. The function ES

classes run a function, supplied by the user, to generate an event either during the peek or

pop operation. We've found it straightforward to implement many kinds of processes using

just these event streams, but the protocol is designed for extensibility by the implementer

of a simulation.

Several minor steps in the pseudo-code deserve mention. The \every event" step executes

all the code in a list supplied by the user at the start of the simulation, and so it's easy to

arrange for something to be executed continuously during the simulation. For example,

data-collection code is often executed this way. The \wakeup time" step awakens event

streams that have been put to sleep for some reason. For example, the �re-simulation ES

is asleep when no �re is burning. The \write out" step saves every event to a �le, so that

a simulation can be analyzed or replayed if desired. Finally, the protocol includes steps to

check for interactions and change activities; these are discussed in the next section.

3 Activities and Interactions

Events are \point-like," in that they happen at a moment in time. For example, a customer

arrives in a queuing simulation, or a tile disappears in TileWorld. However, many kinds

of simulations involve things that happen over an interval of time; these are called activities

in Mess. For example, a train travelling from one station to another would be represented

as an activity. Activities are represented as a pair of point-like events, representing the

beginning and ending of the activity.

Mess is designed not only to support activities, but also interactions between activities

and other events, including other activities. Suppose a bulldozer (or other vehicle) is traveling

from A to B, while another is traveling on an intersecting course from C to D. In many

simulators, this collision would never be noticed, butMess keeps track of all current activities

and checks for interactions.

Activities are essentially a kind of event that happens twice. Whenever an activity starts,

it is placed on a list by the Mess engine, and it is removed when the activity ends. Each

event that happens while the activity is on the list has the opportunity to interact with

the activity. This opportunity is implemented via the interaction function. The interaction

function is a two-argument Clos generic function, extended by the user, since the semantics

of the interaction between the activity and the event is necessarily domain-dependent.

The interaction can a�ect either the activity or the event, or both. A rain activity might

cancel a scheduled �re-ignition event (which is why the Mess engine checks for interactions

before realizing the event). An event representing the �ring of a surface-to-air missile might

5

terminate a �ghter plane's
ight activity. The movement activities of two vehicles might

result in a collision, with both activities a�ected by the interaction. Complex interactions

like these are the bane of planners, so it's crucial that we challenge our sophisticated planners

with these situations.

Activities are represented as a single object, a sub-class of an event. This representation

allows an easy sharing of information that might be needed for the realizations at the start

and �nish of the activity. It also yields a single object for specializing the interaction function.

The engine takes care of \informing" the object that its role as the beginning of the activity

is over and it now represents the end of the activity; this is the purpose of the \change

activity" step in the pseudo-code in �gure 2.

4 Planners

An on-line or real-time planning agent is integrated into a Mess-based simulation as just

another event stream. The agent discovers the state of the simulation by producing sensory

events, and it acts by producing e�ector events. Thus, from the viewpoint of the Mess

engine, a thinking agent appears to be the same as any event stream, obeying the same peek

and pop protocol.

Some planners can certainly be implemented using the pre-de�ned function event streams,

but because the function is executed from scratch each time, there is no continuous \stream

of thought." Therefore, most agents will want to use the pre-de�ned class of thinking event

streams. These event streams run the planner as a co-routine, switching control back to the

Mess engine whenever the planner produces an event, since an event signi�es interaction

with the simulation, and so the simulation must be brought up to date.

The Mess engine lets the agent ES have its turn when it needs to get the next event

from that ES, and the ES runs until it computes an event, whereupon it returns control

to the engine. To be precise, an agent event stream gets its turn when it is popped, and

when it computes an event, the event becomes the pending event in the event stream. The

timestamp on the pending event determines when the event is realized and when the ES

runs again.

How is the timestamp on the pending event calculated? Note that this is not a question

we have considered before. We assumed that the event streams compute the timestamp

in domain-speci�c ways, involving, for example, models of how fast vehicles move or �re

spreads. With a thinking ES, we want the timestamp on the event to be determined by

the amount of computation that has occurred during this turn. That is, the computation of

the timestamp on the next event in the agent is a side-e�ect of its getting a turn to think:

the agent thinks until it gives an event to the substrate for realization, and the amount of

thinking determines the timestamp of the event.

Thinking time only matters for real-time agents. A planner that is merely on-line may

think for as long as it wants. It must therefore determine in some other way when it will

get another chance to think. It may, for example, simply get to run every �ve simulated

minutes. While theMess substrate can easily accommodate on-line agents, it is particularly

designed for real-time agents, as the next section on thinking time will show.

Before discussing thinking time, let's clarify the integration of planning agents with an ex-

6

160

0 40 90 140

0 20 70 110

1600 20

0 40

20 70

40 90

70 110

90 140

110

Figure 3: The chess players thinking in parallel. White is below and Black above. Control

starts in the center with the Mess engine, which transfers control to White, which thinks

for 20 time units and transfers control back to the engine. The engine then transfers control

to Black, which thinks from time 0 to time 40 and transfers control back, and so on. The

short lines perpendicular to the arrows indicate interruption points, which are described in

the text.

ample. Consider two computer chess programs playing one another. They play the following

game, a classic fool's mate.

1. P-K4 P-K4

2. B-B4 B-B4

3. Q-B3 N-QB3

4. QxP mate

For this example, let's �x the times that the agents �nd their moves as follows.

1. 20 40

2. 70 90

3. 110 140

4. 160

White starts the game, thinks for 20 time units, and creates an event representing its

�rst move. It uses theMess function make-event-during-thinking to make the event and

transfer control back to the engine. Its thinking will be resumed after the event takes place,

but the engine must �rst simulate all events prior to time 20. Consequently, the engine starts

Black's event stream, and its co-routine runs from time 0 to time 40, the �rst 20 of which

coincide with White's turn. Given Black's move scheduled at time 40 and White's scheduled

at time 20, the engine realizes White's move, and gives White control again, to think of its

second move. The transfer of control is depicted in �gure 3.

It's possible to de�ne intervals of an agent's thinking as interruptible activities, allowing

the kind of modeling described in the previous section. Indeed, there is a role for interruptible

thinking in the chess example. Suppose that, in their search for a move, the players lower

their threshold for move quality when it's their own turn, so that they are more willing to

7

accept a candidate move, thereby decreasing the time until they �nd a move. To change the

threshold, an agent's thinking must be interrupted by the opponent's move. Furthermore,

a real chess-playing agent would interrupt its thinking to observe its opponent's move and

take that into account.

In the Mess implementation of this example, when the opponent makes its move, this

move interrupts a move-searching loop and changes to another loop that uses a lower accep-

tance threshold for moves. The interruptible loop is wrapped with a Lisp form marking it

as interruptible, and specifying an \interruption handler" to be executed should an inter-

ruption occur. Places in the loop where interruptions are allowed are marked with an ip

form, noting that location as an interruption point. (Requiring the ip form avoids problems

with critical sections being interrupted, thereby corrupting data structures or control
ow.)

These interruption points have been depicted with short tick marks in �gure 3.

How is interruptible thinking activity implemented? To understand this, we have to take

a slightly di�erent view of time, because thinking that happens simultaneously in the real

world must happen sequentially in the simulation. The thinking of the chess agents happens

as follows:

1. White thinks until it comes up with its �rst move, at time 20. The move event is

scheduled but not realized.

2. Black's interruptible thinking activity starts (with its clock at time 0) and is allowed

to think until the interruption occurs at time 20.

3. White's move is realized at time 20, interrupting Black's thought activity.

4. Black switches to its other thinking loop (the one with the lower threshold), and thinks

until time 40, when it �nds a move. Again, the move is scheduled but not realized.

5. White's interruptible thinking activity starts (with its clock at 20) and thinks until 40,

when it is interrupted.

6. Black's move is realized at time 40, interrupting White.

7. and so on, as in the �rst step.

The Mess engine takes care of orchestrating all of this, so that agents can be implemented

with little concern for all these details.

5 The Duration of Computation

As mentioned in the �rst section, a number of simulators for real-time planning already

exist, so Mess is not unique in this regard. Most of those simulators, however, use CPU

time to measure the amount of computation performed by an agent, mapping CPU time

into the amount of simulation time that passes while the agent thinks. This approach is

intuitive and straightforward to implement, but it has a number of drawbacks. First, it

is platform-dependent, so a simulation will run di�erently on a di�erent CPU, operating

system, Lisp implementation, or even a di�erent release of the Lisp compiler. In fact, a

8

simulation will behave di�erently from run to run even if none of these factors change, due

simply to variability in CPU time. (Indeed, this variability can be quite striking [1].) One of

the few simulators to avoid CPU time is TileWorld, and it's instructive to see why they

abandoned it:

The noise in the data comes, we believe, largely from our decision to use actual

CPU-time measurements to determine reasoning time. If we wish to get the

cleanest trials possible, we may need to use a time estimate that does not depend

on the vagaries of the underlying machine and Lisp system. [11]

Later implementations of TileWorld incremented the simulation clock by a �xed quantity

for each iteration of the IRMA agent architecture.

Mess also abandons the CPU time approach, but our solution makes no commitment

to an agent architecture. Instead, it interfaces with agents implemented in Timed Common

Lisp (TCL). In TCL, every primitive of the Common Lisp language has been assigned a

duration, de�ned in arbitrary units, and each primitive advances the clock as a side-e�ect of

its execution. At the beginning of an agent's turn, the TCL event stream representing the

agent sets an internal counter, called *duration*, to zero. As the computation of the turn

progresses, TCL functions will increment this counter. At the end of the turn, when the

agent has computed an event, let's suppose that the counter stands at 580. This number must

now be mapped to an amount of simulation time, so that the event can have a meaningful

timestamp. For this purpose, the event stream has a parameter called the \real-time knob"

which is a linear mapping from \duration units" to simulation seconds. (The default time

unit of simulations is seconds, but this also can be changed.) If the real-time knob is set to

1/10, 58 simulation seconds have passed and the agent's next event is scheduled to occur 58

seconds after its previous event.

5.1 Timed Common Lisp

TCL is implemented in a Lisp package, allowing it to de�ne a twin to every Common Lisp

function. For example, the cosine function is de�ned as if it were:

(defun tcl:cos (x)

(incf *duration* 100)

(cos x))

In truth, TCL does more elaborate bookkeeping than just this simple increment, so the

cosine function is actually de�ned as follows:

(declare-primitive cos :constant 100)

(defun tcl:cos (x)

(call-book tcl:cos x)

(cos x))

This bookkeeping includes looking up a database entry for the cos primitive; the database

speci�es (1) a duration model and (2) a proportionality constant. The duration model

describes the number of operations performed by the primitive as a function of its arguments

and the program state. For example, the :constant model speci�es that the primitive does

9

one operation regardless of its arguments, hence taking constant time. Another model is

:length, which speci�es that the number of operations equals the length of the primitive's

�rst argument. The :length model is used for a number of list-manipulation functions.

Many other duration models are implemented in TCL, and this set is extensible by the user,

so that domain-speci�c duration models can be de�ned, say for anytime algorithms [2] or

deliberation scheduling [12, 13]. Of course, not every constant-time function takes the same

amount of time, and similarly for other duration models. Therefore, the database entry

includes a proportionality constant, to be multiplied by the value of the duration model to

yield a duration. The database is initialized using over 600 forms like the one preceding the

de�nition of tcl:cos, above.

5.2 Free Operations

When implementing an agent whose thinking time should be \on the clock," we can im-

plement it in the TCL package (or a package that uses it), and any function we refer to

will increment the clock in some way. But suppose we don't want to increment the clock.

Suppose that we are inserting some code to help in debugging the agent, to collect data,

or to measure performance or quality, and we don't want that code to a�ect the timing

behavior of the agent. That is, we want to let the code execute \for free." Let's call the code

\insertion" code. Executing insertion code for free is quite straightforward in TCL, using

one of two techniques.

The �rst technique is simply to call functions that don't advance the clock. None of

the normal Common Lisp functions (in the CL package) advance the clock, and neither do

functions de�ned using them.

The problem is slightly harder if the insertion code was de�ned using TCL functions,

since they will increment the clock. The solution is to wrap the call to the TCL function

with a free form:

(in-package :timed-common-lisp-user)

(defun agent-function-3 (x)

...)

(defun agent-function-5 (x y)

...

(free (agent-function-3 x))

...)

Under normal circumstances, calling agent-function-3 would advance the clock by some

amount, depending on its code. The free form lets the function go ahead and advance the

clock, but then restores the clock to its original value. Note that the free form is for code

that is not part of the agent's normal thinking, so make-event-during-thinking should

not be called within its scope.

10

5.3 Querying the Database

Agents will want access to the duration database, so that they can reason using the durations

of various primitives. For example, a scheduler or meta-reasoner will need this information.

This is easily done with the TCL function primitive-duration. The duration, of course,

depends on the real-time knob of the agent, so that parameter is the �rst argument of

primitive-duration. Here are some examples, using 1 and 2 as values of the real-time

knob.

(primitive-duration 1 'cos) => 100

(primitive-duration 2 'cos) => 200

(primitive-duration 1 '+ 3 4) => 1

(primitive-duration 1 '+ 3 4 5) => 2

The last example reminds us that, in general, the duration of a function may depend

on its arguments. Here, the + function costs 1 tick for each operation, and the number of

operations is one less than the number of arguments. Therefore, with the real-time knob

set to 1, the �rst addition takes one simulation time unit, while the second takes two. In

fact, the �rst two examples should, for consistency, have supplied the argument to cos. We

could get away with omitting it because the duration model of cos was :constant, so the

argument was not needed.

This ability to be aware of the duration of its reasoning can allow a real-time agent to

adjust its planning to the time pressure of the environment.

6 Status

Mess and TCL are fully implemented. Indeed, they've been used to re-implement the

Phoenix testbed, so that it now runs portably on Common Lisp implementations. The

Phoenix graphical user interface is implemented using the Common Lisp Interface Manager

(Clim). We hope that other researchers will try their planners in the Phoenix environment.

Failing that, we hope that they will use Mess and TCL for implementing new simulation

environments. Having a common substrate will make it easier for planning researchers to

share simulators and planners, and we looking forward to more comparative, empirical work.

All of this software is available by anonymous FTP from ftp.cs.umass.edu in clearly

named subdirectories of /pub/eksl/. Documentation is included, as are well over a dozen

\miniatures": simple Mess-based simulations that demonstrate how particular features are

used. For example, several variations on the chess example described above are implemented

as miniatures and distributed with Mess.

7 Summary

Mess is a domain-independent substrate for implementing simulation environments, which

we feel are necessary for evaluating complex plans and planners. Mess makes no commit-

ments to a domain or a planner architecture, so it should be usable by anyone working in

Common Lisp. Mess includes support for representing ongoing activities and implementing

11

interactions between activities and concurrent events.

Mess combines with TCL to support empirical research in real-time planning because

TCL provides a platform-independent \virtual machine" for executing the Lisp code that

implements an agent's thinking. TCL is
exible and extensible, so that duration models

can be modi�ed, and new domain- or planner-dependent duration models can be de�ned.

Mess captures much of the important core functionality of a simulator for real-time

planning, relieving researchers from implementing this core. Simulation environments built

usingMess will have a clear interface between agent and environment, making it much easier

to plug in a di�erent agent or environment and test hypotheses about relative behavior and

performance. It's for these reasons that we believe Mess will be helpful to the planning

community.

Acknowledgments

We gratefully acknowledge the assistance of David L. Westbrook in the design and imple-

mentation of Mess, TCL and the new implementation of Phoenix. We thank David M.

Hart for clarifying the prose of this article.

This work is supported by ARPA/Rome Laboratory under contract numbers F30602-93-

C-0100 and F30602-95-1-0021. The US Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright notation here-on. The

views and conclusions contained herein are those of the authors and should not be interpreted

as necessarily representing the o�cial policies or endorsements either expressed or implied,

of the Advanced Research Projects Agency, Rome Laboratory or the US Government.

References

[1] Scott D. Anderson. A Simulation Substrate for Real-Time Planning. PhD thesis, Uni-

versity of Massachusetts at Amherst, February 1995. Also available as Computer Science

Department Technical Report 95{80.

[2] Mark Boddy and Thomas Dean. Solving time-dependent planning problems. In Pro-

ceedings of the Eleventh International Joint Conference on Arti�cial Intelligence, pages

979{984, 1989. Detroit, Michigan.

[3] Paul Bratley, Bennett L. Fox, and Linus E. Schrage. A Guide to Simulation. Springer-

Verlag, 1983.

[4] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe. Trial by

�re: Understanding the design requirements for agents in complex environments. AI

Magazine, 10(3):32{48, Fall 1989.

[5] Edmund H. Durfee and T. A. Montgomery. MICE: A
exible testbed for intelligent

coordination experiments. In L. Erman, editor, Intelligent Real-Time Problem Solving:

Workshop Report, Palo Alto, CA, 1990. Cim
ex Teknowledge Corp.

12

[6] Steve Hanks, Dat Nguyen, and Chris Thomas. The new Truckworld manual. Technical

report, Department of Computer Science and Engineering, University of Washington,

1992. Forthcoming. Contact truckworld-request@cs.washington.edu.

[7] Steve Hanks, Martha E. Pollack, and Paul R. Cohen. Benchmarks, testbeds, controlled

experimentation, and the design of agent architectures. AI Magazine, 13(4):17{42, 1993.

[8] Adele E. Howe. Accepting the Inevitable: The Role of Failure Recovery in the Design

of Planners. PhD thesis, University of Massachusetts at Amherst, February 1993. Also

available as Computer Science Department Technical Report 93{40.

[9] David Joslin, Arthur Nunes, and Martha E. Pollack. TileWorld user's manual. Technical

Report 93-12, Department of Computer Science, University of Pittsburgh, 1993. Contact

tileworld-request@cs.pitt.edu.

[10] Nathaniel G. Martin and Gregory J. Mitchell. A transportation domain simulation for

debugging plans. Obtained from the author, martin@cs.rochester.edu, 1994.

[11] Martha E. Pollack and Marc Ringuette. Introducing the Tileworld: Experimentally

evaluating agent architectures. In Proceedings of the Eighth National Conference on

Arti�cial Intelligence, pages 183{189. American Association for Arti�cial Intelligence,

MIT Press, 1990.

[12] Stuart Russell and Eric Wefald. Decision-theoretic control of reasoning: General theory

and an application to game playing. Technical Report UCB/CSD 88/435, UC Berkeley,

October 1988.

[13] Stuart J. Russell and Eric H. Wefald. On optimal game-tree search using rational meta-

reasoning. In Proceedings of the Eleventh International Joint Conference on Arti�cial

Intelligence, pages 334{340, 1989. Detroit, Michigan.

13

