
A Planner for Exploratory Data Analysis

Robert St. Amant and Paul R. Cohen

Computer Science Dept., LGRC

University of Massachusetts

Box 34610

Amherst, MA 01003-4610

stamant@cs.umass.edu, cohen@cs.umass.edu

(413) 545-3616, fax (413) 545-1249

Abstract

Statistical exploratory data analysis (EDA) poses a di�cult search problem. How-

ever, the EDA process lends itself to a planning formulation. We have built a system,

called Aide, to help users explore data. Aide relies on partial hierarchical planning,

a form of planning appropriate for tasks in complex, uncertain environments. Our de-

scription of the EDA task and the Aide system provides a case study of the successful

application of planning to a novel domain.

Keywords: reactive planning, partial hierarchical planning, statistics, exploratory data

analysis

1

1 Exploring Data

Data exploration plays a central role in empirical scienti�c research. Sometimes we can build

a model of complex phenomena based on theory alone; often, however, we need to explore

the data. We need to identify suggestive features of the data, interpret the patterns these

features indicate, and generate hypotheses to explain the patterns. Successive steps through

the process lead us gradually to a better understanding of underlying structure in the data

[11, 6]. Exploratory data analysis (EDA) [16] gives us a powerful set of operations for this

process: we �t linear and higher-order functions to relationships; we compose and transform

variables with arithmetic functions; we separate relationships into partitions and clusters;

we extract features through statistical summaries. Through the selective and often intuitive

application of these operations we gradually build a description of a dataset.

Viewed as search, exploration is a di�cult problem. The exibility of exploratory op-

erators gives a large branching factor and an unbounded search space. If an exploratory

analysis were driven purely by successive features discovered in data, the task would be

impossible: Is a partitioning or a functional transformation appropriate? With what pa-

rameters? When should one stop? Though manageable in human hands, exploration is a

di�cult and painstaking task.

We have designed and implemented an Assistant for Intelligent Data Exploration, Aide,

to help users carry out their exploration [15]. In Aide, data-directed mechanisms extract

simple observations and suggestive indications from the data. EDA operations then act in

a goal-directed fashion to generate more extensive descriptions of the data. The system is

mixed-initiative, autonomously pursuing its own goals while still allowing the user to guide

or override its decisions. Our description of the planner and its task provides a case study

of how domain characteristics can inuence planner design.

In the remainder of the paper we discuss an EDA example, describing the types of opera-

tions and results involved in the process. We discuss the planner and its plan representation

in some detail. We then return to the EDA example, to show how it is solved by Aide

acting in concert with a user. We conclude by showing where Aide �ts in the context of

approaches to planning.

2 An EDA Example

We can best illustrate the EDA process with an example, taken from an experiment with

Phoenix, a simulation of forest �res and �re-�ghting agents in Yellowstone National Park [3].

The experiment involved setting a �re at a �xed location and speci�ed time, and observing

the behavior of the �reboss (the planner) and the bulldozers (the agents that put out the

�re). Variability between trials is due to randomly changing wind speed and direction, non-

uniform terrain and elevation, and the varying amounts of time agents take in executing

primitive tasks. In this experiment we collected forty variables over the course of some 340

Phoenix trials, including measurements of the wind speed, the outcome (success or failure),

the type of plan used, and the number of times the system needed to replan. We became

interested in a comparison of the time it takes the planner to put out a �re (Duration) and

the amount of �reline built during the trial (E�ort). Figure 2(a) shows a scatter plot of these

2

D
U
R
A
T
I
O
N

EFFORT

100

200

10000 20000 30000 40000 50000

Scatterplot OF Effort[Pa-Scaled]
VS Duration[Pa-Scaled]

D
U
R
A
T
I
O
N

EFFORT

50

100

10000 20000 30000 40000 50000

(a) Planner E�ort vs Trial Duration (b) E�ort Clusters

two variables.

We begin by observing that the relationship can be partitioned into two parts: a vertical

partition at zero on the Duration axis and a separate, approximately linear partition. Cross-

tabulation with other variables shows that the vertical partition corresponds to trials in

which the outcome was Failure. Concentrating on the Success partition, we note that the

correlation is positive, as expected, but that there are two outliers from the general pattern.

We put these two points aside, to examine them more closely later.

We can be more precise about the \approximately linear" pattern in the Success parti-

tion: we can �t a regression line to the data. We then examine the residuals of the �t|the

degree to which the data are not explained by the description|by subtracting the actual

value of Duration, for each value of E�ort, from the value predicted by the regression line. We

see no indications of further structure, such as curvature, that would render our description

incorrect, and thus we tentatively accept the linear description.

Looking again at the Success partition, we notice small, vertical clusters in the lower

range of E�ort. In a histogram, or a kernel density estimate, these would appear as small

peaks. The clustered points are isolated in Figure 2(b). We can describe the behavior of the

clusters in terms of their central location, by reducing each cluster to its median E�ort and

Duration value. These medians are also linear, with approximately the same slope as the

line �tting the entire partition.

We then try to explain why some observations fall into clusters while others do not. We

create a binary variable that encodes this di�erence. By cross-tabulating this variable with

other discrete experiment variables, we �nd that the clustered data correspond to trials in

which the planner did not need to replan. This is shown in Table 1: observations fall into

clusters only when #Replans = 0.

If we further associate each cluster with a unique identi�er, we �nd that WindSpeed

and PlanType predict cluster membership. We can summarize this relationship as shown in

Table 2, and extract a yet more re�ned description of the behavior of the planner as wind

speed and plan type change.

This brief account gives the avor of EDA. Note our use of indications in the analysis.

Indications are suggestive characteristics of the data, most often involving evaluation of

a statistic or descriptive structure [10]. The gap in the distribution of E�ort indicates

3

Replans = 0 1 2 3 : : :

clustered E�ort 113 0 0 0 : : :

non-clustered E�ort 49 95 45 14 : : :

Table 1: Clustered and non-clustered E�ort for successful trials

WindSpeed = Low Medium High

PlanType = X 11.0 15.5 18.8

PlanType = Y 14.5 26.7 22.1

PlanType = Z 19.5 29.9 29.7

Table 2: Median Duration by WindSpeed and PlanType for clustered data

that a partition is an appropriate description; the clusters in E�ort indicate that another

factor may inuence its behavior. In general, indications help us move from simple, surface

descriptions to more focused descriptions, as we gradually extract more detail from the data.

The process is constructive and opportunistic. A more detailed account of the application of

these procedures to the Phoenix data is given in Empirical Methods in Arti�cial Intelligence

[2].

3 Abstractions in Exploration

In Exploratory Data Analysis, John Tukey describes EDA in this way:

A basic problem about any body of data is to make it more easily and ef-

fectively handleable by minds|our minds, her mind, his mind. To this general

end:

� anything that makes a simpler description possible makes the description

more easily handleable.

� anything that looks below the previously described surface makes the de-

scription more e�ective.

So we shall always be glad (a) to simplify description and (b) to describe one

layer deeper [16, p.v].

Tukey's account of exploration emphasizes two related aspects: description through ab-

straction and description by hierarchical problem decomposition.

Abstraction is ubiquitous in exploration. Fitting a straight line to a relationship involves

deciding that variance around the line, evidence of curvature, outlying values, and so forth

may be ignored at an appropriate level of abstraction. One �ts a simple description, a line,

4

before attempting to describe the residuals, i.e., those data that don't �t the abstraction well.

The e�ect is of moving from higher to lower levels of abstraction. An more subtle example

can be seen in the Phoenix analysis. To describe the behavior of the vertical clusters in E�ort

and Duration, we summarize each cluster in terms of its central location. In other words,

we deal with a simpli�cation of each cluster, in which spread around the central location has

been abstracted away.

Hierarchical problem decomposition plays a large part in exploration as well. The Phoenix

example gives a good illustration: we begin by �tting a partition to the relationship, and

then pursue the description of each component independently. Much of exploration can be

viewed as the incremental decomposition of data into simple descriptions, which are then

combined into a more comprehensive result.

Exploratory procedures often impose top-down structure on the exploration process. In

other words, when we execute an exploratory operation we generally have a good notion of

which operation, of many possible, to execute next. Further, common procedures often fall

into a few basic families that process data in similar ways. It is easy to see, for example,

that constructing a histogram involves the same procedures as constructing a contingency

table: the contingency table is a two-dimensional analog of the histogram, with cell counts

corresponding to bin heights [15]. We can draw similar analogies between procedures for

smoothing and for generating kernel density estimates, or between resistant line �tting and

locally-weighted regression curves. While sometimes novel procedures are constructed from

scratch, variations on existing procedures are much more common.

Knowledge of abstraction, problem decomposition, and common combinations of opera-

tions lets us restructure the EDA search space, to make it more manageable. These elements

identify exploration as a planning problem [7]. There are many di�erent approaches to plan-

ning, however. Other characteristics of the domain help us re�ne our understanding of the

type of planning involved.

Exploratory procedures require control structures more complex than simple sequences

of operations. It is hard to see, for example, how one can iteratively improve a resistant �t

or search through a space of model extensions given only the ability to chain together single

operations. Many procedures are more naturally formulated in terms of tests of generated

values, iteration, recursion, and other forms of control.

Exploratory procedures are opportunistic. Though they often specify in general terms

how one proceeds, there can be a great deal of uncertainty in carrying out the details. Each

operation is simultaneously an e�ective action and an information-gathering action. In the

Phoenix example we could not have predicted that there would be vertical clusters in the

relationship. Once we noticed the clusters, we were able to deal with them by reducing them

to their medians and trying to describe the result. We could not have predicted that these

points would be approximately linear, but this new information let us extend the exploration

further. At each point during the process we can determine what the next few steps should

be; the details of how to proceed must often wait until we have actually performed those

steps.

Finally, the results of an exploratory session are not simply the p-values, tables, graphs,

and so forth that have been computed. Exploration is constructive, in that the interpretation

of these individual results depends on how they were derived. Interpretation of the residuals

of a linear �t depends on whether a regression or resistant line was applied; individual cluster

5

properties depend on clustering criteria. In many cases the knowledge that some operation

has been applied and has failed can inuence our interpretation of a related result. The

result of an exploration, then, must include an annotated trace of the process itself.

These characteristics lead us to cast exploration as a planning problem, though not in

the classical STRIPS formulation. A planner for exploration should be able to represent

goals, to encode potentially complex control procedures, to adapt opportunistically to new

�ndings, and to generate a structured set of justi�cations for its actions and support for its

results.

4 The Planner

A form of reactive planning called partial hierarchical planning [4] turns out to be a good

match for the task. Systems that use the approach include PRS [5], the Phoenix planner [3],

the RESUN system [1], and to some extent languages for reactive control such as PROPEL

[8]. Our design of theAide planner is largely based on experience with Phoenix and RESUN.

In abstract terms, the Aide planner does little more than manipulate a stack of control

units. The planner is essentially a high-level language interpreter, in which the *active-stack*

stores the current execution context. The top level planning loop is simple enough to present

in pseudocode, as shown below:

(loop until (stack-empty-p *active-stack*) do

(let ((current (next-element *active-stack*)))

(case (get-completion-status current)

((:unstarted :in-progress)

(let ((next (execute-stack-element current)))

(when next

(push-element next *active-stack*))))

((:succeeded :failed)

(complete-stack-element current)

(pop-stack *active-stack*)))))

In words, the planner executes the control unit at the top of the planning stack. If this

generates a new control unit, then it is pushed onto the stack to be executed in turn. This

process continues as long as the top stack element has the status :in-progress. If this status

changes to :succeeded or :failed, then the control unit is not executed, but rather popped

o� the stack. The two functions execute-stack-element and complete-stack-element

allow the behavior of control units to be appropriately specialized.

4.1 Plan Representation

We turn now to the representation of plans. An example of a plan speci�cation is given

below. A plan has a name, a speci�cation of a goal that the plan can potentially satisfy,

constraints on its bindings, and a body. The body of a plan is a control schema of subgoal

speci�cations, subgoals which must be satis�ed for the plan to complete successfully. An

action speci�cation is similar to a plan speci�cation, except that its body contains arbitrary

code, rather than a control schema.

6

(define-plan explore-by-incremental-modeling ()

:satisfies (explore-by :modeling ?model-type ?description ?structure ?model)

:constraints ((?structure ((:dataset-type dataset))))

:body (:SEQUENCE

(:WHEN (null ?model)

(:SUBGOAL initialize-subgoal

(generate-initial-model ?description ?structure

?model-type ?model)))

(:SUBGOAL elaborate-model

(elaborate-model ?model-type ?activity

?description ?structure ?model))))

(define-action generate-initial-generic-model

:satisfies (generate-initial-model ?description ?structure :generic ?model)

:action (values t (return-bindings ?model (make-generic-model. . .))))

The plan above is instantiated in the exploration of a dataset. It generates an initial model

of the dataset (unless one is already available) of an appropriate type. It then establishes

the goal of elaborating the model. With the plans in the Aide library, elaboration will

involve adding relationships, one at a time, to the model. One of the plans that matches the

elaborate-model subgoal recursively establishes an identical subgoal, with ?model bound

to the incrementally extended model.

Plan, goal, and action instances are examples of control units. A control unit is specialized

in two ways, through its execution and its completion. A goal instance executes by generating

a new plan instance|searching through the plan library and �nding a matching (unifying)

plan. When a goal instance completes, it sends to its parent plan a completion status,

:succeeded or :failed, along with a set of variable bindings. A plan instance executes

by instantiating the control units represented in its body. It completes by informing its

matching goal of its completion status. An action instance generates no new control units in

its execution, but simply returns a completion status and a set of bindings for its matching

goal.

Schema control constructs, such as :sequence, :when, and :while, are control units as

well. A :sequence construct generates a series of new control units, one at a time, each time

it is executed. If any of these control units fail, then it fails as well; otherwise it succeeds.

A :when construct generates a new control unit, its body, only if its executable test form

returns non-nil. A :while form is similar to a :when form, but iterates its body as long

as its test form returns non-nil. Other control constructs are de�ned for more specialized

processing.

4.2 Branches in the Search Space

This account would be adequate only if the plan library contained a single matching plan for

each goal and a single value for each established variable binding. There are often several

plans that may satisfy a given goal, and sometimes an essentially unlimited number of pos-

sible bindings for its plan variables. To manage these situations we have three mechanisms:

evaluation rules, focus points, and meta-level plans.

7

When more than one plan in the plan library matches a goal, Aide must decide which to

instantiate. Evaluation rules inform its decision. There are three steps involved in executing

a plan to satisfy a goal: matching, activation, and preference. The matching step, already de-

scribed, establishes that the plan is syntactically able to satisfy the goal. power-transform,

for example, satis�es the goal of �tting a power function to a relationship. The activation step

involves running a set of rules that further test the applicability of plans, in order to activate

or deactivate them. The power-transform plan is only activated in the presence of curvature

indications. The preference step involves running another set of rules that apply preferences

to the active plans. In the presence of the curvature indication, the power-transform plan

is preferred to the linear-regression plan. Evaluation of the bindings of plan variables

follows a similar procedure.

Candidate plans and plan variable bindings are maintained by focus points. A focus

point manages branch points in the planning stack. Suppose that a goal instance is the top

entry on the stack. If only a single plan matches this goal, then it is pushed onto the stack

directly. If more than one plan matches the goal, a plan focus point is generated and pushed

onto the stack. The �gure below illustrates the process. The focus point manages a set of

newly created execution stacks, each rooted at a di�erent instance of each plan that matches

the goal. The planning process continues when one of these new stacks is selected, based

on information generated by the evaluation rules, and the stack processed. When any stack

becomes exhausted, the focus point can either select another of the stacks to proceed, or can

return to the stack that originally generated the focus point.

Plan P688

Plan P154

. . .

Stack before adding
a plan focus point

. . .

Plan Library

. . .

Plans P154 and P688
both match goal G566

Stack after adding
a plan focus point

Goal G566

Goal G000

Plan P657

P657: when

Goal G566

Goal G000

Plan P657

P657: when

PFP34

Plan P154 expands
into its own stack

Goal G256

Plan P289

Plan P154

P154: seq

. . .

Plan P688

Plan P688 is the
root of a new stack,
unexpanded

For example, in the Phoenix data we saw that one subset of Duration and E�ort was

approximately linear, but with outliers in the relationship. We have several options: we can

�t a regression line directly to the data; we can remove the outliers and then �t the line; we

can let the outliers remain and �t a resistant line; we can �t a locally-weighted, smoothed

regression curve to the data. Each of these options is implemented by a di�erent plan. Each

plan is instantiated to provide the root of a new execution stack. The set of new stacks is

then associated with the plan focus point. One stack is selected to continue the exploration.

Another type of focus point is a variable focus point. When an action satis�es a goal, it

8

returns a set of data structures that are bound to the plan variables speci�ed in the goal. An

action may return multiple bindings for a single variable, indicating that there are competing

alternative ways to satisfy the goal. When this happens, a new branch point is generated,

managed by a variable focus point. Its behavior is similar to that of a plan focus point.

For example, in the Phoenix data we saw that some of the points fell into small clusters.

Depending on our clustering criterion, we might treat these points as a set of two clusters,

or nine, or fourteen, or some other number. Each of these possibilities is instantiated as a

di�erent possible binding of a ?description plan variable, the di�erent bindings maintained

by the variable focus point.

As plans progress, a tree of focus points is generated. Only a single one is active at any

time. Determining which focus point should be active at any given time is the responsibility

of meta-level plans. A meta-level planner, identical in design to the base-level planner,

handles focus point selection. The meta-level behavior of the system is similar to what

would be provided by rule-based activation of plans; however, incorporating a planner at the

meta-level lets us switch dynamically between plans in progress. This gives us a �ner level of

control over the system's focus of attention than can be provided by a rule-based approach.

5 The Example Revisited

Aide can run without assistance from the user. Its rules let it evaluate candidate data struc-

tures to explore; its library provides the plans that perform the exploration. Not surprisingly,

however, Aide's lack of contextual knowledge will take the exploration in directions an in-

formed human analyst would not need to go. In the Phoenix experiment, for example, we

were interested in a speci�c issue: ability of the planner to solve problems of varying di�culty

under di�erent degrees of time pressure. We collected a wide range of information to test

our hypotheses, as well as subsidiary information for metering and other purposes. In its

exploration of the Phoenix dataset Aide would spend time exploring relationships that are

completely uninteresting to us, or establishing descriptions of factors we are already familiar

with. Human knowledge of context can be essential in focusing on interesting or signi�cant

areas in the exploration search space [9, 12]. To take advantage of this knowledge, Aide

pursues a mixed-initiative approach to exploration.

Exploration is mixed-initiative in the following sense. Aide explores a dataset by elab-

orating and executing a hierarchy of plans. Branch points in the hierarchy are associated

with explicit focus points. The user guides exploration by changing the ordering of candi-

date plans or variable bindings at a single focus point, or by selecting a di�erent focus point

as the currently active one. This guidance includes selecting appropriate dataset variables

and subsets to be explored as well as applying any available statistical manipulations to the

selected data. The arrangement gives the user most of the exibility of the usual statistical

interface, while still remaining within the planning framework.

Each focus point gives the user the opportunity to view the decision|and the data|

currently under consideration. The user can step through the process, letting the planner

execute only until another focus point is reached. The user can continue execution until

the planner reaches a focus point that involves a descriptive result, at which point the user

can decide how to continue. The user can also jump between di�erent focus points, using

9

knowlege of context to explore the most promising areas. At each point the user can view

descriptions of the data being explored, the justi�cations for individual candidate actions at

a focus point, ordering constraints, and descriptions of the plans under consideration.

We begin our analysis by loading the Phoenix dataset. Aide computes indications for

each variable: evidence of clustering, gaps in variable distribution, outliers, and other heuris-

tic evaluations. Without further guidance, Aide will build a model one variable at a time,

in forward-selection fashion, to describe and summarize the patterns it �nds. We provide

guidance at the outset, however, by specifying that exploration should begin with a subset

of the original dataset, the relationship involving E�ort and Duration.

Stepping through Aide's focus points gives the following sequence of decisions. We in-

dicate whether Aide handles the decision on its own (default) or stops to ask the user for

optional guidance (interactive). This sequence is taken from an execution trace of the run-

ning system.

Default. Di�erent types of model-building plans match the top level goal, including plans

to build regression and cluster models. Without guidance from the user, Aide selects

generate-opportunistic-model, a plan that builds a model based on heuristic forward

selection of variables. The model is initialized to contain the variables E�ort and Duration.

Default. Selection of a plan to explore the relationship between E�ort and Duration. Plan

selection is based on indications calculated for the relationship. A partition indication is

active, triggering a partition-dataset plan. Ordering preferences, given the lack of a high

correlation indication, put this plan �rst.

Default. An initiate-exploration goal is established for the partitioned dataset. A

single plan is activated, explore-partitions.

Default. In explore-partitions each partition is explored in turn, managed by a variable

focus point FPv. By default the vertical line partition is explored �rst, with the establish-

ment of an initiate-exploration goal.

Default. A zero variance indication for E�ort in this partition activates a plan (and de-

activates all others) that describes the partition in terms of this indication and features of

Duration. This description is returned to satisfy the initiate-exploration goal.

Interactive. At this point the planner revisits the variable focus point FPv, and stops

to present its (partial) result. Because each description generated can potentially inuence

later decisions, Aide presents each to the user before proceeding. We simply proceed with

the single remaining choice, which is to establish an initiate-exploration goal for the

other partition.

Default. A high correlation indication activates a set of linear �t plans. An indication of

outliers imposes a preference for a resistant �t, rather than a least-squares �t. There is also

evidence of clustering, as in the earlier description. The activated plans are managed by the

creation of a plan focus point FPp. There are no preferences about whether to pursue the

clusters or the linear �t �rst. By default, the resistant linear �t plan is selected.

Interactive. Aide generates the �t and presents it to the user. This presentation is again

in the context of a focus point, this time to decide whether to examine the residuals of the

�t. The line looks like an adequate description, and so we suspend all plans to examine

residuals (i.e., lack of �t.) This returns us to the plan focus point FPp.

10

Interactive. Because we are satis�ed with the resistant �t, we deactivate the regression �t

plan. Instead, we now look at the clusters, by selecting the examine-clusters plan.

Interactive. There are several distinct ways in which the data fall into clusters. These

correspond to choices at a new focus point: we can derive clusters from recurring values

in E�ort; we can generate clusters using a single linkage method on the bivariate relation-

ship, or on E�ort or Duration separately; we can generate clusters by interactively assigning

points. Without guidance, Aide would try each. We select the �rst option.

Default. A describe-cluster-behavior plan is activated. It entails reducing each cluster

to a single, representative value (or set of values) and looking for some pattern in the newly

generated data. We eventually �nd that the cluster locations are approximately linear.

The rest of the analysis follows in a similar way. For the most part the user simply guides

the analysis in appropriate directions, bringing to bear knowledge of context and superior

pattern-matching where appropriate. The results are as described in Section 2.

This example comes from a single analysis, one already performed largely by hand. Aide

can reproduce this analysis, and has been applied to other datasets to generate cluster and

regression models and in an earlier version causal models in the course of its exploration

[14, 13]. We are currently designing a full set of experiments to evaluate its performance.

6 Related Work in Planning

Partial hierarchical planning was introduced by George� and Lansky [4]. Several char-

acteristics distinguish it from classical planning. In the classical formulation a plan is a

partially-ordered sequence of actions, often with annotated links between actions. In partial

hierarchical planners, a plan is a procedural speci�cation of a set of subgoals to be achieved.

A plan may specify that subgoals must be satis�ed sequentially, or conditionally on some

test, or iteratively. Control constructs may also provide for parallel satisfaction of subgoals,

mapping over lists of subgoals, recursion, and domain-speci�c processing.

A partial hierarchical planner executes a plan before it is completely elaborated. In a

sense, these planners do not generate plans at all, but simply execute them. This behavior has

advantages over o�-line planning: in dynamic environments, information necessary to choose

a speci�c action may not be known at planning time; in complex or uncertain environments,

an action may generate too many possible results to enumerate exhaustively in advance. A

disadvantage is the uncertainty about whether a given partial plan will succeed.

As with case-based planning, plan de�nitions are stored in a library. Aide's de�nitions

are not the fully-elaborated sequences of actions that are usually stored in a case library,

however, but are partial speci�cations as described above. Aide constructs plans by search-

ing through the library, its set of partial solutions, for appropriate matches to established

goals.

This lack of emphasis on constructing plans from scratch is balanced by a greater concen-

tration on the meta-level problem of which plan to invoke when several match the current

situation. Meta-level processing can be handled in di�erent ways. PRS uses meta-level

\knowledge areas" that function something like blackboard knowledge sources for control

[5]. The Phoenix planner maintains a time line of subgoals and pending plans, and gives

11

each plan a degree of meta-level control over the actions remaining to be executed. The

RESUN planner establishes focus points during its plan expansion to allow suspension and

resumption of in-progress plans, as a way of focusing attention in its search [1]. These

mechanisms let the planners behave opportunistically.

Reactive planning techniques provide a good match for the EDA problem. Though there

are no hard time constraints on the process, the space of exploration is highly dynamic, in

that each action can provide potentially signi�cant information. All the aspects of partial

hierarchical planning mentioned above contribute to solving the problem.

In summary, we have described the task of EDA and how it can (and should) be cast

as a planning problem. We have presented the Aide planner as part of a solution to the

problem. We have described a representative example in the domain of EDA, and shown

how Aide solves the problem.

Acknowledgments

Thanks to Tim Oates for useful discussion and comments about this work. This research is

supported by ARPA/Rome Laboratory under contract #F30602-93-0100, and by the Dept.

of the Army, Army Research O�ce under contract #DAAH04-95-1-0466. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints for governmental purposes not

withstanding any copyright notation hereon. The views and conclusions contained herein

are those of the authors and should not be interpreted as necessarily representing the o�cial

policies or endorsements either expressed or implied, of the Advanced Research Projects

Agency, Rome Laboratory, or the U.S. Government.

References

[1] Norman Carver and Victor Lesser. A planner for the control of problem solving sys-

tems. IEEE Transactions on Systems, Man, and Cybernetics, special issue on Planning,

Scheduling, and Control, 23(6), November 1993.

[2] Paul R. Cohen. Empirical Methods in Arti�cial Intelligence. MIT Press, 1995.

[3] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe. Trial by

�re: Understanding the design requirements for agents in complex environments. AI

Magazine, 10(3):32{48, Fall 1989.

[4] Michael P. George� and Amy L. Lansky. Procedural knowledge. Proceedings of the

IEEE Special Issue on Knowledge Representation, 74(10):1383{1398, 1986.

[5] Michael P. George� and Amy L. Lansky. Reactive reasoning and planning. In Proceed-

ings of the Fifth National Conference on Arti�cial Intelligence, pages 677{682. American

Association for Arti�cial Intelligence, MIT Press, 1987.

[6] David C. Hoaglin, Frederick Mosteller, and John W. Tukey. Understanding robust and

exploratory data analysis. Wiley, 1983.

12

[7] Richard E. Korf. Planning as search: A quantitative approach. Arti�cial Intelligence,

33:65{88, 1987.

[8] Richard Levinson. A general programming language for uni�ed planning and control. To

appear in the Arti�cial Intelligence Journal's special issue on Planning and Scheduling.

[9] David Lubinsky and Daryl Pregibon. Data analysis as search. Journal of Econometrics,

38:247{268, 1988.

[10] Frederick Mosteller and John W. Tukey. Data Analysis and Regression. Addison-Wesley,

1977.

[11] Stanley A. Mulaik. Exploratory statistics and empiricism. Philosophy of Science,

52:410{430, 1985.

[12] Cullen Scha�er. Domain-independent scienti�c function �nding. Department of Com-

puter Science Technical Report LCSR-TR-149, Rutgers University, New Brunswick, NJ,

1990. PhD Thesis.

[13] Robert St. Amant and Paul R. Cohen. Toward the integration of exploration and mod-

eling in a planning framework. In Proceedings of the AAAI-94 Workshop in Knowledge

Discovery in Databases, 1994.

[14] Robert St. Amant and Paul R. Cohen. A case study in planning for exploratory data

analysis. In Proceedings of the First International Symposium on Intelligent Data Anal-

ysis, 1995.

[15] Robert St. Amant and Paul R. Cohen. Control representation in an EDA assistant.

In Douglas Fisher and Hans Lenz, editors, Learning from Data: AI and Statistics V.

Springer, 1995. To appear.

[16] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

13

