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Abstract

We argue that the ability to find meaningful chunks in se-
quential input is a core cognitive ability for artificial general
intelligence, and that the Voting Experts algorithm, which
searches for an information theoretic signature of chunks,
provides a general implementation of this ability. In sup-
port of this claim, we demonstrate that VE successfully finds
chunks in a wide variety of domains, solving such diverse
tasks as word segmentation and morphology in multiple lan-
guages, visually recognizing letters in text, finding episodes
in sequences of robot actions, and finding boundaries in the
instruction of an AI student. We also discuss further desirable
attributes of a general chunking algorithm, and show that VE
possesses them.

Introduction
To succeed, artificial general intelligence requires domain-
independent models and algorithms that describe and imple-
ment the fundamental components of cognition. Chunking
is one of the most general and least understood phenomena
in human cognition. George Miller described chunking as
“a process of organizing or grouping the input into familiar
units or chunks.” Other than being “what short term mem-
ory can hold 7 +/- 2 of,” chunks appear to be incommen-
surate in most other respects. Miller himself was perplexed
because the information content of chunks is so different. A
telephone number, which may be two or three chunks long,
is very different from a chessboard, which may also con-
tain just a few chunks but is vastly more complex. Chunks
contain other chunks, further obscuring their information
content. The psychological literature describes chunking
in many experimental situations (mostly having to do with
long-term memory) but it says nothing about the intrinsic,
mathematical properties of chunks. The cognitive science
literature discusses algorithms for forming chunks, each of
which provides a kind of explanation of why some chunks
rather than others are formed, but there are no explanations
of what these algorithms, and thus the chunks they find, have
in common.

The Signature of Chunks
Miller was close to the mark when he compared bits with
chunks. Chunks may be identified by an information the-
oretic signature. Although chunks may contain vastly dif-

ferent amounts of Shannon information, they have one thing
in common: Entropy within a chunk is relatively low, en-
tropy at chunk boundaries is relatively high. Two kinds of
evidence argue that this signature of chunks is general for
the task of chunking sequences and series (see (KB01) for
a similar idea applied to two-dimensional images). First,
the Voting Experts (VE) chunking algorithm and its several
variants, all of which detect this signature of chunks, per-
form very well in many domains. Second, when sequences
are chunked all possible ways and ranked by a “chunkiness
score” that combines within- and between-chunk entropy,
the highest-ranked chunks are almost always real chunks ac-
cording to a gold standard. Here, we focus primarily on the
former kind of evidence, but also provide some early evi-
dence of the latter kind.

Voting Experts
What properties should a general-purpose chunking algo-
rithm have? It must not simply exploit prior knowledge of a
particular domain, but rather must be able to learn to chunk
novel input. It must operate without supervision in novel do-
mains, and automatically set any parameters it has to appro-
priate values. For both humans and artificial agents, work-
ing memory is finite, and decisions must be made online,
so the algorithm must be efficient and rely on local informa-
tion rather than global optimization. Finally, learning should
be rapid, meaning that the algorithm should have relatively
modest data requirements.

VE has these properties. Its name refers to the “experts”
that vote on possible boundary locations. The original ver-
sion of VE had two experts: One votes to place bound-
aries after sequences that have low internal entropy, given
by HI(seq) = −log(p(seq)), the other places votes af-
ter sequences that have high boundary entropy, given by
HB(seq) = −

∑
c∈S p(c|seq)log(p(c|seq)), where S is the

set of successors to seq. All sequences are evaluated locally,
within a sliding window, so the algorithm is very efficient.

The statistics required to calculate HI and HB are stored
efficiently using an n-gram trie, which is constructed in a
single pass over the corpus. The trie depth is 1 greater than
the size of the sliding window. Importantly, all statistics in
the trie are normalized so as to be expressed in standard devi-
ation units. This allows statistics from sequences of different
lengths to be compared to one another.



The sliding window is passed over the corpus and each
expert votes once per window for the boundary location that
best matches its criteria. VE creates an array of vote counts,
each element of which represents a location and the number
of times an expert voted to segment at that location. The
result of voting on the string thisisacat could be repre-
sented as t0h0i1s3i1s4a4c1a0t, where the numbers
between letters are the total votes cast to split at the corre-
sponding locations.

With vote totals in place, VE segments at locations that
meet two requirements: First, the number of votes must
be locally maximal (this is called the zero crossing rule).
Second, the number of votes must exceed a threshold.
Thus, VE has three parameters: the window size, the vote
threshold, and whether to enforce the zero crossing rule.
For further details of the VE algorithm see Cohen et al.
(CAH07), and also Miller and Stoytchev (MS08). A fully-
unsupervised version to the algorithm, which sets its own
parameters, is described briefly later in the paper.

Extensions to Voting Experts
Some of the best unsupervised sequence-segmentation re-
sults in the literature come from the family of algorithms
derived from VE. At an abstract level, each member of the
family introduces an additional expert that refines or gener-
alizes the boundary information produced by the two origi-
nal VE experts to improve segmentation quality. Extensions
to VE include Markov Experts (CM05), Hierarchical Vot-
ing Experts - 3 Experts (HVE-3E) (MS08), and Bootstrap
Voting Experts (BVE) (HC09).

The first extension to VE introduced a “Markov Expert,”
which treats the segmentation produced by the original ex-
perts as a data corpus and analyzes suffix/prefix distributions
within it. Boundary insertion is then modeled as a Markov
process based on these gathered statistics. HVE-3E is sim-
pler: The third expert votes whenever it recognizes an entire
chunk found by VE on the first iteration.

The new expert in BVE is called the knowledge expert.
The knowledge expert has access to a trie (called the knowl-
edge trie) that contains boundaries previously found by the
algorithm, and votes to place boundaries at points in the
sequence that are likely to be boundaries given this in-
formation. In an unsupervised setting, BVE generates its
own supervision by applying the highest possible confidence
threshold to the output of VE, thus choosing a small, high-
precision set of boundaries. After this first segmentation,
BVE repeatedly re-segments the corpus, each time con-
structing the knowledge trie from the output of the previous
iteration, and relaxing the confidence threshold. In this way,
BVE starts from a small, high-precision set of boundaries
and grows it into a larger set with higher recall.

Related Algorithms
While Cohen and Adams (CA01) were the first to formulate
the information-theoretic signature of chunks that drives VE,
similar ideas abound. In particular, simpler versions of the
chunk signature have existed within the morphology domain
for some time.

Tanaka-Ishii and Jin (TIJ06) developed an algorithm
called Phoneme to Morpheme (PtM) to implement ideas
originally developed by Harris (Har55) in 1955. Harris no-
ticed that if one proceeds incrementally through a sequence
of phonemes and asks speakers of the language to list all the
letters that could appear next in the sequence (today called
the successor count), the points where the number increases
often correspond to morpheme boundaries. Tanaka-Ishii and
Jin correctly recognized that this idea was an early version
of boundary entropy, one of the experts in VE. They de-
signed their PtM algorithm based on boundary entropy in
both directions (not merely the forward direction, as in VE),
and PtM was able to achieve scores similar to those of VE
on word segmentation in phonetically-encoded English and
Chinese. PtM can be viewed as detecting an information-
theoretic signature similar to that of VE, but relying only on
boundary entropy and detecting change-points in the abso-
lute boundary entropy, rather than local maxima in the stan-
dardized entropy.

Also within the morphology domain, Johnson and Mar-
tin’s HubMorph algorithm (JM03) constructs a trie from a
set of words, and then converts it into a DFA by the pro-
cess of minimization. Within this DFA, HubMorph searches
for stretched hubs, which are sequences of states in the DFA
that have a low branching factor internally, and high branch-
ing factor at the edges (shown in Figure 1). This is a nearly
identical chunk signature to that of VE, only with succes-
sor/predecessor count approximating boundary entropy. The
generality of this idea was not lost on Johnson and Martin,
either: Speaking with respect to the morphology problem,
Johnson and Martin close by saying “We believe that hub-
automata will be the basis of a general solution for Indo-
European languages as well as for Inuktitut.”

Figure 1: The DFA signature of a hub (top) and stretched
hub in the HubMorph algorithm. Figure from Johnson and
Martin.

VE Domains

To demonstrate the domain-independent chunking ability
of VE, we now survey a variety of domains to which VE
has been successfully. Some of these results appear in the
literature, others are new and help to explain previous re-
sults. Unless otherwise noted, segmentation quality is mea-
sured by the boundary F-measure: F = (2 × Precision ×
Recall)/(Precision+Recall), where precision is the percent-
age of the induced boundaries that are correct, and recall is
the percentage of the correct boundaries that were induced.



Language
VE and its variants have been tested most extensively in lin-
guistic domains. Language arguably contains many levels
of chunks, with the most natural being the word. The word
segmentation task also benefits from being easily explained,
well-studied, and having a large amount of gold-standard
data available. Indeed, any text can be turned into a cor-
pus for evaluating word segmentation algorithms simply by
removing the word boundaries.

Word Segmentation Results for one corpus, in particular,
have been reported in nearly every VE-related paper, and so
is the most general comparison that can be drawn. This cor-
pus is the first 50,000 characters of George Orwell’s 1984.
Table 1 shows the aggregated results for VE and its deriva-
tives, as well as PtM.

Algorithm Precision Recall F-score
VE 0.817 0.731 0.772
BVE 0.840 0.828 0.834
HVE-3E 0.800 0.769 0.784
Markov Exp. 0.809 0.787 0.798
PtM 0.766 0.748 0.757
All Points 0.185 1.000 0.313

Table 1: Results for VE and VE variants for word segmen-
tation on an English text, 1984.

Similar results can be obtained for different underlying
languages, as well as different writing systems. Hewlett and
Cohen showed similar scores for VE in Latin (F=0.772) and
German (F=0.794) texts, and also presented VE results for
word segmentation in orthographic Chinese (“Chinese char-
acters”). VE achieved an F-score of 0.865 on a 100,000
word section of the Chinese Gigaword Corpus.

The higher score for Chinese than for the other languages
has a simple explanation: Chinese characters correspond
roughly to syllable-sized units, while the letters in the Latin
alphabet correspond to individual phonemes. By grouping
letters/phonemes into small chunks, the number of correct
boundary locations remains constant, but the number of po-
tential boundary locations is reduced. The means that even a
baseline like All Locations, which places a boundary at ev-
ery possible location, will perform better when segmenting
a sequence of syllables than a sequence of letters.

VE has also been tested on phonetically-encoded English,
in two areas: First, transcripts of of child-directed speech
from the CHILDES database (MS85). Second, on a phone-
mic encoding of 1984 produced with the CMU pronounc-
ing dictionary. On the CHILDES data, VE was able to find
word boundaries as well or better (F=0.860) than several
other algorithms, even though the other algorithms require
their inputs to be sequences of utterances from which in-
formation about utterance beginnings and endings can be
gathered (HC09). VE achieved an F-score of 0.807 on the
phonemically-encoded version of 1984 (MS08).

Morphology While the word segmentation ability of VE
has been studied extensively, its ability to find morphs has

not been examined previously. Morph segmentation is a
harder task to evaluate than word segmentation, because
intra-word morph boundaries are typically not indicated
when writing or speaking. We constructed a gold standard
corpus of Latin text segmented into morphs with the mor-
phological analyzer WORDS.

Algorithm Precision Recall F-score
PtM 0.630 0.733 0.678
VE 0.645 0.673 0.659
BidiVE 0.678 0.763 0.718
All Points 0.288 1.000 0.447

Table 2: Morph-finding results by algorithm. All Points is a
baseline that places a boundary at every possible location.

From the table above (Table 2), it is clear that VE in
its standard form has some difficulty finding the correct
morphs. Still, its performance is comparable to PtM on
this task, as expected due to the similarity in the two al-
gorithms. PtM’s advantage probably is due to its bidirec-
tionality: VE only actually examines the boundary entropy
at the right (forward) boundary. VE was modified with the
addition of an expert that places its votes before sequences
that have high boundary entropy in the backward direction.
This bidirectional version of VE, referred to as BidiVE, is
a more faithful implementation of the idea that chunks are
sequences with low internal entropy and high boundary en-
tropy. BidiVE performed better than VE at finding morphs
in Latin, as shown in the table.

For reference, when the task is to find word boundaries,
the F-score for VE is approximately 0.77 on this same cor-
pus. The reason for this is somewhat subtle: Because VE
only looks at entropy in the forward direction, it will only
consider the entropy after a morph, not before it. Consider
a word like senat.us: The entropy of the next character
following senat is actually fairly low, despite the fact that
it is a complete morph. This is because the set of unique
endings that can appear with a given stem like senat is
actually fairly small, usually less than ten. Furthermore, in
any particular text a word will only appear in certain syntac-
tic relationships, meaning the set of endings it actually takes
will be smaller still. However, the entropy of the character
preceding us is very high, because us appears with a large
number of stems. This fact goes unnoticed by VE.

Child Language Learning VE has also provided evi-
dence relevant to an important debate within the child lan-
guage learning literature: How do children learn to seg-
ment the speech stream into words? Famously, Saffran et
al. (SAN96) showed that 8-month-old infants were able to
distinguish correctly and incorrectly segmented words, even
when those words were nonsense words heard only as part
of a continuous speech stream. This result challenges mod-
els of word segmentation, such as Brent’s MBDP-1 (Bre99),
which cannot operate without some boundary information.
Saffran et al. proposed that children might segment continu-
ous sequences at points of low transitional probability (TP),
the simplest method which would successfully segment their



data.
However, TP alone performs very poorly on natural lan-

guage, a fact which has not escaped opponents of the view
that word segmentation is driven by distributional properties
rather than innate knowledge about language. Linguistic na-
tivists such as Gambell and Yang (GY05), argue that this
failure of TP to scale up to natural language suggests that
the statistical segmentation ability that children possess is
limited and likely orthogonal to a more powerful segmenta-
tion ability driven by innate linguistic knowledge. Gambell
and Yang demonstrate that an algorithm based on linguis-
tic constraints (specifically, constraints on the pattern of syl-
lable stress in a word) significantly outperforms TP when
segmenting a corpus of phonetically-encoded child-directed
speech. In fact, VE can further outperform Gambell and
Yang’s method (F=0.953 vs. F=0.946) even though VE has
no prior knowledge of linguistic constraints, suggesting that
adding innate knowledge may not be as useful as simply in-
creasing the power of the chunking method.

Algorithms like VE and PtM provide a counter-argument
to the nativist position, by fully explaining the results that
Saffran et al. observed, and also performing very well at seg-
menting natural language. When represented symbolically
as a sequence of phonemes, VE perfectly segments the sim-
ple artificial language generated by Saffran et al. (SAN96),
while also performing well in the segmentation of child-
directed speech. Miller et al. (MWS09) reinforce this case
by replicating the experimental setup of Saffran et al., but
feeding the speech input to VE instead of a child. The audio
signal had to be discretized before VE could segment it, but
VE was able to achieve an accuracy of 0.824.

Vision
Miller and Stoytchev (MS08) applied VE in a hierarchical
fashion to perform a visual task similar to optical charac-
ter recognition (OCR). The input was an image containing
words written in a particular font. VE was to first segment
this image into short sequences corresponding to letters, and
then chunk the short sequences into longer sequences cor-
responding to words. The image was represented as a se-
quence of columns of pixels, where each pixel was either
black or white. Each of these pixel columns can be repre-
sented by a symbol denoting the particular pattern of black
and white pixels within it, thus creating a sequence of sym-
bols to serve as input to VE. Depending on the font used, VE
scored between F=0.751 and F=0.972 on segmenting this
first sequence.

After finding letters, VE had to chunk these letters to-
gether into words, which is essentially the same as the well-
studied word segmentation problem except with some noise
added to the identification of each character. VE was still
able to perform the task, with scores ranging from F=0.551
to F=0.754 for the three fonts. With perfect letter identifica-
tion, VE scored F=0.776.

Robot Behaviors
Cohen et al. (CAH07) tested VE on data generated by a
mobile robot, a Pioneer 2 equipped with sonar and a pan-
tilt-zoom camera running a subsumption architecture. The

robot wandered around a large playpen for 20-30 minutes
looking for interesting objects, which it would orbit for a
few minutes before moving on. At one level of abstraction,
the robot engaged in four types of behaviors: wandering,
avoiding, orbiting and approaching. Each behavior was im-
plemented by sequences of actions initiated by controllers
such as move-forward and center-camera-on-object. The
challenge for Voting Experts was to find the boundaries of
the four behaviors given only information about which con-
trollers were on or off.

This experiment told us that the encoding of a sequence
matters: When the coding produced shorter behaviors (aver-
age length of 7.95 time steps), VE’s performance was com-
parable to that in earlier experiments (F=0.778), but when
the coding produced longer behaviors, performance is very
much worse (F=0.183). This is because very long episodes
are unique, so most locations in very long episodes have zero
boundary entropy and frequency equal to one. And when the
window size is very much smaller than the episode length,
then there will be a strong bias to cut the sequence inappro-
priately.

Instruction of an AI Student
The goal of the DARPA’s Bootstrapped Learning (BL)
project is to develop an “electronic student” that can be in-
structed by human teachers, in a natural manner, to perform
complex tasks. Currently, interaction with the electronic stu-
dent is not very different from high-level programming. Our
goal is to replace many of the formal cues or “signposts” that
enable the electronic student to follow the teacher, making
the interaction between them more natural. VE can largely
replace one of these cues: the need to inform the student
whenever the teacher’s instruction method changes.

In BL, teachers communicate with the student in a lan-
guage called Interlingua language (IL). Some IL messages
serve only to notify the student that a “Lesson Epoch” (LE)
has ended.

Several curricula have been developed for BL. VE finds
LE boundaries with high accuracy in all of them – and can
be trained on one and tested on another to good effect. To
illustrate, we will present results for the Unmanned Aerial
Vehicle (UAV) domain. To study the detection of LE bound-
aries, a training corpus was generated from version 2.4.01
of the UAV curriculum by removing all of the messages that
indicate boundaries between LEs. This training corpus con-
tains a total of 742 LEs. A separate corpus consisting of 194
LEs served as a test corpus. As the teacher should never have
to provide LE boundaries, the problem is treated as unsuper-
vised and both the training and test corpora are stripped of
all boundary information.

Each individual message in the corpus is a recursive struc-
ture of IL objects that together express a variety of relations
about the concepts being taught and the state of teaching.
LEs are defined more by the structure of the message se-
quence than the full content of each message. Thus, we rep-
resent each message as a single symbol, formed by concate-
nating the IL type of the two highest composite IL objects
(generally equivalent to the message’s type and subtype).
The sequence of structured messages is thus translated into



TRAINING TEST
Size P R F P R F

1.00 0.927 0.888 0.907 0.933 0.876 0.904
0.75 0.881 0.839 0.859 0.904 0.829 0.864
0.50 0.905 0.784 0.840 0.871 0.772 0.819
0.25 0.961 0.772 0.856 0.836 0.606 0.703

Table 3: BVE Results on UAV Domain trained on different
subsets of the training corpus. “Size” is percentage of the
training corpus given to BVE.

a sequence of symbols, and it is this symbol sequence that
will be segmented into LEs.

BVE is allowed to process the training corpus repeatedly
to gather statistics and segment it, but the segmentation of
the test corpus must be done in one pass, to model more
closely the constraints of a real teacher-student interaction.
If allowed to operate on the full UAV corpus, BVE finds LE
boundaries handily, achieving an F-score of 0.907. How-
ever, this domain is non-trivial: VE achieves an F-score of
0.753, only slightly lower than its score for word segmenta-
tion in English text. As a baseline comparison, segmenting
the corpus at every location results in an F-score of 0.315,
which indicates that LE boundaries are roughly as frequent
as word boundaries in English, and thus that high perfor-
mance is not guaranteed simply by the frequency of bound-
aries of the data.

Results from segmenting a test corpus (not drawn from
the training corpus) consisting of 194 lesson epochs are
shown in Table 3. “Training Size” refers to the percentage
of the training corpus processed by BVE before segmenting
the test corpus. From these results, it is evident that BVE
can perform very well on a new corpus when the training
corpus is sufficiently large. However, with a small training
corpus BVE does not encounter certain boundary situations,
and thus fails to recognize them during the test, resulting in
lower recall.

Evidence for Generality

So far, we have discussed in detail one kind of evidence for
the general applicability of VE, namely that VE success-
fully performs unsupervised segmentation in a wide variety
of domains. In order for VE to be successful in a given do-
main, chunks must exist in that domain that adhere to the
VE’s signature of chunks, and VE must correctly identify
these chunks. Thus, the success of VE in each of these
domains is evidence for the presence of chunks that ad-
here to the signature in each domain. Also, VE’s chunk
signature is similar to (or a direct generalization of) sev-
eral other independently-developed signatures, such as PtM,
HubMorph, and the work of Kadir and Brady (KB01). The
independent formulation of similar signatures by researchers
working in different domains suggests that a common prin-
ciple is at work across those domains.

Optimality of the VE Chunk Signature
Though the success of VE in a given domain provides in-
direct evidence that the chunk signature successfully iden-
tifies chunks in that domain, we can evaluate the validity
of the chunk signature much more directly. To evaluate the
ability of the chunk signature to select the true segmentation
from among all possible segmentations of a given sequence,
we developed a “chunkiness” score that can be assigned to
each possible segmentation, thus ranking all possible seg-
mentations by the quality of the chunks they contain. The
chunkiness score rewards frequent sequences that have high
entropy at both boundaries (Equation 1), just as in VE. The
score for a complete segmentation is simply the average of
the chunkiness of each segment. If the chunk signature is
correct, the true segmentation should have a very high score,
and so will appear close to the top of this ranking. Unfor-
tunately, due to the exponential increase in the number of
segmentations (a sequence of length n has 2n−1 segmenta-
tions), this methodology can only be reasonably applied to
short sequences. However, it can be applied to many such
short sequences to better gain a better estimate of the de-
gree to which optimizing chunkiness optimizes segmenta-
tion quality.

Ch(s) =
Hf (s) + Hb(s)

2
− log Pr(s) (1)

For each 5-word sequence (usually between 18 and 27
characters long) in the Bloom73 corpus from CHILDES, we
generated all possible segmentations and ranked them all by
chunkiness. On average, the true segmentation was in the
98.7th percentile. All probabilities needed for computing
the chunkiness score were estimated from a training corpus,
the Brown73 corpus (also from CHILDES). Preliminarily, it
appears that syntax is the primary reason that the true seg-
mentation is not higher in the ranking: When the word-order
in the training corpus is scrambled, the true segmentation is
in the 99.6th percentile. Still, based on these early results we
can say that, in at least one domain, optimizing chunkiness
very nearly optimizes segmentation quality.

Automatic Setting of Parameters
VE has tunable parameters, and Hewlett and Cohen (HC09)
showed that these parameters can greatly affect perfor-
mance. However, they also demonstrated how these pa-
rameters can be tuned without supervision. Minimum De-
scription Length (MDL) provides an unsupervised way to
set these parameters indirectly by selecting among the seg-
mentations each combination of parameters generates. The
Description Length for a given hypothesis and data set refers
to the number of bits needed to represent both the hypoth-
esis and the data given that hypothesis. The Minimum De-
scription Length, then, simply refers to the principle of se-
lecting the hypothesis that minimizes description length. In
this context, the data is a corpus (sequence of symbols), and
the hypotheses are proposed segmentations of that corpus,
each corresponding to a different combination of parameter
settings. Thus, we choose the vector of parameter settings
that generates the hypothesized segmentation which has the
minimum description length.



Extension to Non-Symbolic Data
Strictly speaking, VE can only operate over sequences of
discrete symbols. However, as already demonstrated by
Miller et al.’s applications of VE to the visual and auditory
domains, many sequences of multivariate or continuous-
valued data can be transformed into a symbolic representa-
tion for VE. Also, the SAX algorithm (LKWL07) provides
a general way to convert a stream of continuous data into a
sequence of symbols.

Allowing Supervision
While the ability of VE to operate in a fully unsupervised
setting is certainly a strength, the fact that VE contains no
natural mechanism for incorporating supervision may be
seen as a limitation: If some likely examples of ground truth
boundaries are available, the algorithm ought to be able to
take advantage of this information. While VE itself cannot
benefit from true boundary knowledge, one of its extensions,
BVE, does so handily. BVE’s knowledge trie can store pre-
viously discovered boundaries (whether provided to or in-
ferred by the algorithm), and the knowledge expert votes for
boundary locations that match this prior knowledge. The
Markov Experts version is able to benefit from supervision
in a similar way, and, if entire correct chunks are known,
HVE-3E can as well.

An Emergent Lexicon
VE does not represent explicitly a “lexicon” of chunks that
it has discovered. VE produces chunks when applied to a
sequence, but its internal data structures do not represent the
chunks it has discovered explicitly. By contrast, BVE stores
boundary information in the knowledge trie and refines it
over time. Simply by storing the beginnings and endings
of segments, the knowledge trie comes to store sequences
like #cat#, where # represents a word boundary. The set
of such bounded sequences constitutes a simple, but accu-
rate, emergent lexicon. After segmenting a corpus of child-
directed speech, the ten most frequent words of this lexicon
are you, the, that, what, is, it, this, what’s, to, and look. Of
the 100 most frequent words, 93 are correct. The 7 errors
include splitting off morphemes such as ing, and merging
frequently co-occurring word pairs such as do you.

Conclusion
Chunking is one of the domain-independent cognitive abili-
ties that is required for general intelligence, and VE provides
a powerful and general implementation of this ability. We
have demonstrated that VE and related algorithms perform
well at finding chunks in a wide variety of domains, and pro-
vided preliminary evidence that chunks found by maximiz-
ing chunkiness are almost always real chunks. This suggests
that the information theoretic chunk signature that drives VE
is not specific to any one domain or small set of domains.
We have discussed how extensions to VE enable it to operate
over nearly any sequential domain, incorporate supervision
when present, and tune its own parameters to fit the domain.
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