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ABSTRACT

Recently there has been great interest in the development of
information technology for Link Discovery (LD). LD is rele-
vant to a wide range of research topics, including social net-
work analysis, fraud detection, graph theory, pattern anal-
ysis and link analysis. The main goal of this research is the
development of techniques for mining large amounts of data
to find hidden patterns, extract valuable knowledge and dis-
cover hidden links among sparse pieces of evidence. In LD
many such algorithms are deterministic and the constructed
hypotheses are not qualified by probabilities. However, for
nearly all applications the data available are sampled from
a population. Hence, the discovered knowledge and implied
hypotheses is probabilistic in nature and such uncertainty
has to be measured. Due to the nature of the LD prob-
lems many of the current techniques and methods lack such
measurement. We are interested in addressing this method-
ological problem and provide a general method for measur-
ing the confidence intervals of hypotheses generated by LD
algorithms. In this paper, we examine the bootstrap resam-
pling method to measure the uncertainty in LD hypotheses.
We study and analyze an example of of this method ap-
plied to the problem of discovering group membership, and
discuss the effect such evaluation has on the generated hy-
potheses and their interpretation. Our preliminary results
are encouraging and indicate that the bootstrap confidences
are correlated with derived hypothesis.

1. INTRODUCTION

Recently there has been great interest in developing infor-
mation technology for Link Discovery (LD). LD is relevant
to a wide range of research topics, including social network
analysis, fraud detection, graph theory, pattern analysis and
link analysis. The common goal of this research is the devel-
opment of techniques for mining large collections of data to
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extract valuable knowledge that may be present as hidden
patterns or links among seemingly unrelated items. Suc-
cessful LD applications will discover the hidden structure of
organizations, relate groups, identify fraudulent behavior,
model group activity and provide early detection of emerg-
ing threats.

LD requires a radically different approach to knowledge
discovery, both in techniques and in approaches to evaluat-
ing LD algorithm results. The departure from standard ap-
proaches is made clear in the following five characteristics of
LD problems and their representation: 1) Data is heteroge-
nous, arriving from multiple sources. The data and patterns
sought include representations of people, organizations, ob-
jects, actions and events. Each of these entities has its own
set of attributes, and there are many types of relations that
might exist between them. 2) Unlike conventional data min-
ing, in which nodes are variables and links are statistical
relations among variables, nodes represent entities and links
are relations amongst entities. 3) LD assesses the likelihood
that an instance of a specific graph-theoretic structure in
the data matches a pattern of interest. The structure may
include temporal, spatial, organizational, and/or transac-
tional patterns. 4) All LD problems involve estimating a
population based on a sample of data. Typically, a rela-
tively low number of observations for each entity can be
recorded, and the overall sample is typically small relative
to the size of the population. 5) The data becomes available
over time, so the timing of when to make a decision based
on LD analysis is a central issue.

In LD many such algorithms are deterministic and the
constructed hypotheses are not qualified by probabilities.
However, for nearly all applications the data available are
sampled from a population. Hence, the discovered knowl-
edge and implied hypotheses is probabilistic in nature and
such uncertainty has to be measured. Due to the nature of
the LD problems many of the current techniques and meth-
ods lack such measurement. We are interested in addressing
this methodological problem and provide a general method
for measuring the confidence intervals of hypotheses gener-
ated by LD algorithms. Bootstrap sampling has been suc-
cessfully applied in the areas of finance, modern economet-
rics, biomedical engineering, data mining, machine learning
and applied statistics. In this paper, we examine the boot-
strap resampling method to measure the uncertainty in LD
hypotheses. We study and analyze an example of of this



method applied to the problem of discovering group mem-
bership, and discuss the effect such evaluation has on the
generated hypotheses and their interpretation.

The rest of this paper is organized as follows. We begin
with a brief introduction to LD and identify the problem
of measurement of confidence intervals in such space. Next,
we briefly review bootstrap sampling and we illustrate ap-
plication of such technique in LD. At the end, we report
our finding of exploitation of bootstrap sampling on group
membership followed by conclusion remarks.

2. CONFIDENCEINTERVALSINLINKDIS-
COVERY

The central goal of LD is to identify the relations amongst
a wide variety of entities that may represent objects, events,
persons, organizations and plans. Such identification may
be based on known, complex and multi-relational patterns,
or may be the product of the LD process itself. Many of
the applications of LD are intended for real world databases
that include information about people. Concerns about pri-
vacy and accuracy become paramount as LD technology is
developed for applications to aid law enforcement and intel-
ligence organizations in their efforts to detect and prevent
illegal and fraudulent activities and threats to national se-
curity. For this reason, accuracy and justification for our
confidence in a LD algorithm result are essential. For in-
stance, the measures of the precision and recall of suspected
individuals should be known: if considering a population of
2000 individuals, a 5% change in accuracy could translate
into whether 100 of those individuals are correctly classified.

Figure 1 (left) illustrates the problem of LD in general.
As it shows almost all entities are connected to each other
directly or indirectly. Red (dark) nodes represent suspected
individuals or Bad Guys. Assume a few members of this
set are known in advance. The challenge then is to dis-
cover potential additional hidden members of such a group
given evidence of low level sparse data such as communica-
tion events, business transactions, familial relationships, etc.
The right part of Figure 1 illustrates the same environment
after removing many weak connections among individuals.
The new graph (on right)make it easier to separate dark and
bright nodes form each other.

3. CONFIDENCE INTERVALS AND BOOT-
STRAP RESAMPLING

Similar to other machine learning and data mining tech-
niques, LD algorithms generate hypotheses about a popula-
tion from sample data.

Our hope is that our LD algorithms accurately character-
ize the population based on properties identified in the sam-
ple. However, most current LD algorithms do not charac-
terize the probabilistic properties of the hypotheses derived
from the sample of data: if a community finding algorithm
reports that an individual is part of a hypothesized commu-
nity, what is our confidence in that report? Such confidence
can be measured.

The conventional way to assess the certainty of a hypoth-
esis generated from a sample is to first characterize the hy-
pothesis as a function © of the sample (O is usually called
a statistic) and then to imagine drawing an infinite num-
ber of samples from the sample space 5, recalculating © for
each sample. The resulting distribution of © will have some

variance, called the standard error of ©. The standard error
is used to define an interval called a confidence interval. In
general, we prefer hypotheses to have small standard error
and associated small confidence intervals.

The standard error captures a simple intuition: the sam-
ple we observe is just one of a potentially unbounded number
of samples. If the variability of the sample space is large and
we could have drawn a very different sample, then we should
not put a lot of faith that the hypothesis based on our cur-
rent sample is representative of the population. There are
three ways to estimate the variability of a sample space.
One is to have some information about the population from
which samples are drawn (e.g., the population variance).
The other two approaches infer the variance of the popula-
tion from the sample. Of these, the more ”classical” obtains
the standard error of a statistic via the central limit theorem
or some other asymptotic theorem. The other approach ob-
tains the standard error via bootstrap resampling. It is this
latter approach that we will investigate here.

Bootstrap resampling, similar to other nonparametric meth-
ods, is used in estimating and testing hypotheses while min-
imizing the number of arbitrary assumptions required. The
value of assumptions, such as the assumption that the un-
derlying sampling distribution is normal, is that they can
lead to greater precision. However, these methods only work
if the assumptions are valid. In many real-world problems,
these assumptions are violated or their status is unknown,
limiting the applicability of the methods. Bootstrap resam-
pling trades precision for robustness. Bootstrap resampling
makes no assumptions about the underlying sampling dis-
tribution, so is ideal for estimating statistical parameters,
such as those used in LD, where the underlying sampling
distribution is not well understood.

We employ the bootstrap method to estimate group mem-
bership standard errors and their associated confidence in-
tervals. The bootstrap procedure uses resampling with re-
placement from an already-acquired sample, and thus does
not incur further cost in acquiring more data. With an ap-
proximate of standard errors, we can associate p-values on
estimates of the population parameters.

4. USING BOOTSTRAP TO ESTIMATE LD
CONFIDENCE INTERVALS

In this section, we present the steps for deriving the con-
fidence interval for a LD hypothesis generated by a group-
finding algorithm. Although we focus on this one type of
hypothesis, we believe this procedure is generally applicable
to a large class of LD hypothesis generating methods.

A large class of LD algorithms is devoted to discovering
hidden members of a group. Typically, a set of known group
members is already available, acquired through some other
process. The challenge is to discover the rest of the members
that belong to the group.

Figure 2 represent the group detection space by projecting
the whole data to a graph. Each node represents an entity
(e.g., a person) and each link between two entities represents
a set of events (e.g., sending e-mails, making phone calls,
etc.). [?] provide a framework to measure the connections
among individuals. In that work, characterizations of an
individual’s activities and events are exploited as indicators
of whether two individuals are strongly connected to one
another.



Figure 1: Visualization of the Link Discovery Problem. Red (dark) nodes represent suspected individuals
or Bad Guys and yellow (bright) nodes represent Good Guys. The challenge is to identify the link structure
that will separate the two kinds of nodes with high accuracy. The left graph shows the original problem. The
right graph shows the same graph after removing weak links using a group finding technique.
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Figure 2: Representation of the link discovery space as a graph. Nodes represent people, links represent sets
of events resulting from activities such as phone calls, meetings and emails. People are associated with each

other through their activities.



4.1 Group Finder

[?] introduces the Integrated Knowledge-Based and Sta-
tistical Reasoning Group Finder system. One of the mod-
ules in this system is the Group Finder algorithm. The
system accesses a large database of the activities of indi-
viduals and events and projects them into random variables
in a graph representation. (Figure 2) Once in this repre-
sentation, the Group Finder employs a measure of mutual
information (MI) to assess the relations between variables.
If two variables are independent, then the MI between them
is zero. If the two variables are strongly dependent, as is
the case if one is a function of the other, then the MI be-
tween them is large. In other words, the MI between two
random variables indicates how much we know about the
first one given all information about the second, and vice
versa. MI measures general (non-linear) dependence while
a correlation function measures linear dependence, so MI is
more desirable.

Each group is identified by its seed members — the individ-
uals we assume we already know are members of the group.
The challenge is to identify all other hidden members of all
groups in the dataset. We assume there are P = {p, ..., pn}
individuals and G = {gi, ..., gm} in the database and each
g; represents by its seed members. For each g; in G, Group
Finder provides a list of individuals, ranked by the strength
of their relation to seed members in g; , according to the re-
lation of all individuals in the database provides by MI mod-
ule as {M1I(ps, g;),..., MI(pn,g;)}. The higher the value of
M1I(pi, g;) the stronger the relationship between p; and g;.

Group Finder begins from the set of seed members and for
each seed members it retrieves all activities it participated
in and adds any new individuals previously not recorded but
also participating in those activities. Next, it considers the
expanded group as the new universe and computes MI for
each connected pair in the graph. Finally, it looks for indi-
viduals that either have high MI score with one of the seed
members or high MI with all of the seed members combined
as one entity. Members whose score is below a user-defined
threshold are dropped from the list. Group Finder then
selects settings for the best precision and recall, using the
F-measure defined as

(b + 1) x Precision x Recall
b2 x Precision + Recall

Freasure = —

In the equation, b indicates the desired weight for precision
and recall. For our experiment, we used b = 1.5 which put
more emphasis on recall than precision.

We may replace the Group Finder module with any other
module capable of assigning group membership to individu-
als in the system’s database. While the Group Finder output
is outstanding, it does not provide the probability that an
individual is a member of a group, let alone a confidence in-
terval for the hypothesis. Instead it only ranks their relation
strength based on the MI model.

We introduce a membership function O(p, g) as a binomial
variable on relations of the form “individual p belongs to
group g.” If we assume there are GG groups available in a
given dataset, then for each g; in G = {g1, g2, ..., gm } and
for each p; in P = {p1,p2,...,pN}, ©(pi,g;) indicates the
probability of such membership. As illustrated in Figure 2
all group membership hypotheses are extracted form events
and activities among individuals

Since we have seen such events only once any group mem-

bership hypothesis is uncertain.To measure the confidence
interval of such hypothesis we apply the bootstrap technique
to the problem of group membership. Suppose that a sam-
ple X is used to estimate a membership function ©(p, g) of
the distribution and let © = s(X) be a statistic that es-
timates © given a sample X = {X1, X>,..., X, }. For the
purpose of statistical inference on ©, we are interested in
the sampling distribution of © to evaluate the accuracy of
our estimator and to set confidence intervals for our esti-
mate of ©. If the true distribution 7 were known, we could
draw samples X(b), b=1, ..., B from 7 and use Monte Carlo
methods to estimate the sampling distribution of our esti-
mate ©. Since 7 is unknown and we cannot sample from it,
the bootstrap resampling method allows us to achieve our
goal by resampling from the original sample instead. The
distribution from which the bootstrap samples are drawn is
called the empirical distribution.

4.2 The Bootstrap Principle

The basic idea of the bootstrap resampling method is that,
in the absence of any other information about the distribu-
tion the observed sample contains all the available informa-
tion about the underlying distribution. Thus, resampling
the sample is the best estimate available for estimating the
population distribution. .

Let X = (X1,..., Xn) be a sample of events and let © =
s(X) be a statistic that estimates ©. For a sample X1, ..., X,
of independent real-valued random variables with distribu-
tion 7, we define a probability distribution by:

7 is the empirical distribution of the sample X. 7 can be
thought of as the distribution which puts mass 1/n on each
event X;. Clearly for events that occur more than once in
the sample, the mass will be a multiple of 1/n. It follows
that 7 is a discrete probability distribution with the effec-
tive sample space {X1,..., Xn}. It can be shown that # is
a nonparametric maximum likelihood estimator of w — this
justifies our use of 7 to estimate m when no other informa-
tion about 7 is available (such as, e.g., that # belongs to
a parametric family). This addresses precisely the problem
faced in nearly all LD problems, where the distribution of
the population is generally unknown.

Suppose we want to draw an identically and independently
distributed sample X* = (X7, ..., X)) from 7. As we have
noted above, 7 puts mass 1/n on each observation X;. Thus,
when sampling from 7, the i*" observation X; in the original
sample is selected with probability 1/n. This leads to the
following two-step procedure:

e Draw i1, ...,i, independently from the uniform distri-
bution on {1,...,n}

e Set X7 = X5 and X™ = (X7,..., X;).

In other words, we sample with replacement from the orig-
inal sample X1, ..., X,,. Sampling with replacement means
that if any member X; of the original set is chosen as the first
value of the bootstrap sample, it could also be chosen as any
of the successive values. In principle, therefore, a bootstrap
sample could consist of the same value repeated n times.
However, the probability of this actually happening is quite
small as the number of different bootstrap samples available
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is n". Sampling with replacement preserves the a priori
probabilities of the classes throughout the random selection
process. The bootstrap principle assumes X = (X1, ..., X»)
is a random sample from a distribution P and © = s(X) is
an estimation for ©.

The bootstrap methods mimic the data generation pro-
cess by sampling from P of the unknown distribution 7.
Hence, X* = (X7,...,,X,;) is a bootstrap sample from 7
and ©* = s(X™*) is the bootstrap replication of ©. Fig-
ure 3 contrasts direct sampling from the population with
the bootstrap resampling from the original sample.

The sampling distribution of © is then estimated by its
bootstrap equivalent. Having generated the B bootstrap
resampling-based estimates 9(1)7 s (:)(B)7 we have an esti-
mate of the sampling distribution 6. From this, we can
construct confidence intervals for ©. [[Is this supposed to
be © or O]] If © is approximately normally distributed with
mean O and variance se(é)Q, then an approximate 1—a« con-

fidence interval for © ranges from O = © — z4/25€p00¢(O)
to Oy = 6 + :/:a/gs?aboot(C:))7 where z, is the « critical value
of the standard normal distribution. However, since making
such assumption is contrary to the nonparametric aspect of
bootstrap, instead we can obtain the [p, 1 —p] confidence in-
terval (e.g., [0.05, 0.95]) by finding the corresponding quan-
tiles of bootstrapped sampling distribution (e.g., the 5" and
95" values in a sorted list of 100 bootstrap variates).

4.3 A Link Discovery Bootstrap Procedure

In this section, we briefly illustrate how to apply the boot-
strap resampling method for the group membership prob-
lem. In order to perform the bootstrap procedure for a
membership function ©(p,g), for each g; in G, we follow
steps similar to the generic algorithm outlined by [?], as
follows.

Assume we have a set of events (similar to the data in
Figure 2)

1. Given a sample of events of size n, draw a random
“bootstrap” sample of size n with replacement from
X,

2. Calling Group Finder to represent the sampled events
as a graph, expand the graph and find the strength of
the relation between all individuals in the expanded
graph and all g; € G.

3. For each g;, construct a list of all p; for which MI
is above the user-defined threshold. In this list, store

Lb(g;),b =1, ..., B. Thus, each row of L’(g;) indicates
the MI of an individual with g; in the b** run.

4. Repeat steps 1 through 3 for some large number of
times B.

5. Finally, estimate the “bootstrap standard error” of the
parameter of interest using the B bootstrap statistics.
An estimate of the bias of the statistic of interest is
obtained by subtracting the mean bootstrap statistic
from the original sample statistic.

We can compute the boundary of group membership fol-
lowing the method described in the previous section. For a
[p, 1 — p] confidence interval (e.g., [0.05, 0.95]), we find the
corresponding quantiles. Figure 4 illustrates this procedure.

4.4 Group Membership Probability

So far we have defined the confidence interval for a LD
hypothesis such as that generated by the Group Finder al-
gorithm. Group Finder provides a ranked list of individuals
and the strength of the relation to a given group. For each g;
in G ={q, g2, ..., 93} and for each p; in P = {p1,p2,...,pN},
M1 (pi, g;) indicates the MI between group g; and p;.

We may define O(p, g) as follows:

pr(©(pi, ;) IMI(pi,g;)) =

pr(©(pi,g;
pr(MI(pi, 9:)|0(pi, 95)) x el

pr(©(ps, g5)) is the prior probability that an individual
belongs to a group. Such probability is proportional to the
size of the group (the seed members). There is no addi-
tional information about group membership and each indi-
vidual might be the member of more than one group. We
are also able to calculate pr(MI(ps, g;)) because each group
has a set of seed members which belongs to the group with
a 100% certainty (by assumption). Since pr(©(ps,g;)) and
pr(MI(pi,g;)) can be calculated for each group g;, we have:

pr(©(pi, g5))
pr(MI(ps, g;))

5. EXPERIMENTAL RESULTS

In order to evaluate our method empirically, we applied
the bootstrap procedure to measure the confidence in hy-
potheses generated by the Group Finder for a wide variety
of synthetic data for which we know the true population
parameters. In this section we analyze the results of apply-
ing the bootstrap resampling procedure over four datasets.
First, we describe the synthetic world, then we discuss and
evaluate our findings.

5.1 Synthetic Data

Real world data is expensive to collect and involves pri-
vacy issues. For this reason, we used synthetic data gener-
ated by a simulator designed by IET. The simulator gener-
ates data representing different numbers of agents, organi-
zations, groups, activities and other entities and attributes.
The representation can vary in accuracy, meaning that accu-
rate representation of the underlying simulator events may
be obscured by noise.

From the point of view of group detection, the artificial
world consists of individuals that belong to groups. Groups

~ C, Cisaconstant



A 4

* Btimes :

Events Bootstrap
samples

M list for
each group

94 P1,94 P1,9m

gM s

v
|l

Im

MI List for each
group after
Threshold

A list of Ml For
each pi and gj

Figure 4: The bootstrap procedure: take samples over events and for each run and for each group calculate
the mutual information between all individuals in the expanded graph and such group. At the end of the
procedure, for each member and each group there is a list of length B which stores the MI between a member

and a group in each run

can be threat groups (which perform threat events) or non-
threat-groups. Targets can be exploited (in threat and non-
threat way) using specific combinations of resources and ca-
pabilities. Each such combination is called a mode. Individ-
uals may have any number of capabilities or resources, be-
long to any number of groups, and participate in any number
of exploitations at the same time. Individuals are threat in-
dividuals or non-threat individuals. Every threat individual
belongs to at least one threat group. Non-threat individu-
als belong only to non-threat groups. Threat groups have
only threat individuals as members. Threat individuals can
belong to non-threat groups as well. A group will have at
least one member qualified for any capability required by
any of its modes. Non-threat groups carry out only non-
threat modes. Finally, individuals may be members of sev-
eral groups.

Because we are using a simulator capable of generating
data, we are able to create datasets with a variety of prop-
erties by adjusting the parameters of the simulation. Table
1 lists some of the parameters we selected for generating the
datasets we used in our evaluation. Each dataset employs
different values for each of these features. Of particular in-
terest are observability (how much of the artificial world
information is available as evidence), corruption (how much
of the evidence is changed before being reported) and clut-
ter (how much irrelevant information that is similar to the
information being sought is added to the evidence).

5.2 Results

Table 2 shows a detailed specification of each of the four
datasets we used,along with the result of the Group Finding
engine. In particular, we varied the level of clutter (cases
similar to a threat case), observability (how much of the real
worlds is observable to us) and connectivity (membership to

different group). In addition, Table 2 shows the number of
groups in each dataset as well as the average number of
members in each group.

At the end of each run, for all g; in G = {g1,92,...,9m}
and for each p; in P = {p1, p2, ..., pn }, we assigned a prob-
ability to ©(p;, g;) based on the probably of membership of
pi in g;. This probability represents our confidence that p;
is a member of g;. There are some members which appear
as members of a given group in each bootstrap run. These
members are those which are most likely members of that
group. However, there are some members which do not ap-
pear in the final members list in every bootstrap runs. Our
confidence in assigning a membership between these indi-
viduals and groups is lower. Table 2 illustrates the average
precision and recall for each group after applying a thresh-
old. In the bootstrap sampling procedure, we applied the
same threshold for each run of Group Finder and saved the
result. In addition, those individuals with low confidence
were dropped from the final list. Interestingly, bootstrap
resampling not only introduces the notion of a “boundary”
for Group Finder output, it also improved the accuracy in
both precision and recall.

5.3 Confidence Intervals

Figure 5 shows an example of bootstrap resampling for
one group. The plot in the top of the figure illustrates the
MI value for all 1200 individuals after running the Group
Finder.

Each dot in the graph represents an individual and circled
dots represent the true members of a group. As the figure
shows, most of the circled dots are located in the upper part
of the list. Note that due to the nature of the synthetic
data there many points which are very hard or impossible
to accurately identify. The plot in bottom of the illustrates



Number Number Number of Lowest Lowest Observability | Corruption
of entities | of Events | Distinct Signal to Signal to of Evidence
Threat clutter ratio | Noise Ratio
Patterns
10,000 100,000 20 0.3(-5 db) .008(-21 db) 50%-100% 0-25%

Table 1: Synthetic Data Characteristics

Dataset Characteristics Group Statistics Group Finder Result After
Result Bootstrap
Dataset | Clutter Observability | Connectivity| Groups | Avg. Members Avg. Avg. Avg. Avg.
in each group Precision | Recall Precision | Recall

3 High High Medium 14 53 0.81 0.87 .83 .90
8 Medium | High Medium 11 50 0.59 0.86 .63 .89
9 Medium | High Medium 16 64 0.70 0.72 .73 .74
10 Medium | High Medium 19 63 0.88 0.66 .88 .68

Table 2: : The result of bootstrap resampling effect for group detection problem in 4 different datasets
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Figure 5: Example of a confidence interval for
group detection. Top: plot of mutual information
among all individuals and a given group. Bottom:
mean versus. variance of mutual information for
each member after the bootstrap procedure. The
red (dark) line indicates the confidence interval for
group detection module.

the distribution of mean and variance for each individual
after bootstrap resampling.

For each group we ran the bootstrap test, determining the
mean and variance of MI for each individual in the group.
Figure 6 illustrates the distribution of mean and variance
for 3 different groups of different datasets. The three top
graphs show the list of MI output, ranked based on their
MI with that group. Those points which are circled actually
belong to the group. As the plots show, the MI model does
a good job of finding group members.

Note that there are more than 1000 points in the lower
left portion of the graph, a fact obscured by the resolution
of the graph. In these graphs we are interested in those
individuals which may receive a high score (according to the
MI module) but also a low confidence. Points in the gray
area satisfy this criteria. Thus, we drop these points from
the final MI module list. Again, note that this procedure is
independent of the accuracy of MI module — we may replace
this module with any other group detection technique and
apply the same bootstrap procedure to identify those points
with high mean but low variance.

For each point in the example we calculated the bound-
aries of variance for the confidence level of a = 95%. All
points with the variance outside this boundary have been
dropped from the final list. The cut-off number for the ex-
ample shown in Figure 5 was about 0.015. This cut in the
MI output list boosts the overall precision and recall of the
Group Finder module up to 5%. Increasing 5% in MI mod-
ule translates into about 100 members in large groups (i.e.
when group size is about 2000).

Figure 6 illustrates the same phenomenon for 5 other
groups based on different datasets. As the figure shows,
there are many groups for which bootstrap resampling in-
creases the accuracy of the MI module output. However,
for some of the groups, all of the discovered individuals al-
ready have a high confidence so bootstrap resampling does
not help much.

5.4 Complexity

The complexity of bootstrap sampling is relatively low.The
overall complexity depends on the complexity of the LD al-
gorithm. B is relatively a small number — usually about 200
samples are needed for finding a standard error, whereas on
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the order of 2000 are needed to derive intervals. Some recent
results suggest that you can do well with many fewer sam-
ples [?]. The main point is that you want to be confident
that the results would not differ in a meaningful way if you
were to repeat the bootstrap procedure. B is a constant and
overall complexity depends on the order of algorithm itself.

For instance, in our experiment, computing MI between
two individual is O(M % N) in which N is thenumber of
people connected to a given individual and M is the aver-
age number of relations a person is involved in. Since we
call the MI module B times, the final complexity will is
O(M % N % B). In practice, bootstrap tests must use a fi-
nite number of bootstrap samples. It has been shown that
the outcome of the bootstrap sampling depends on the se-
quence of random numbers used to generate the bootstrap
samples, and it necessarily results in some loss of power. [?]
presents a simple pretest procedure for choosing the num-
ber of bootstrap samples to minimize loss, depending on the
chosen a.

6. CONCLUSION

LD techniques attempt to develop inference algorithms
which estimate some hypotheses from an observed sample
data. These hypotheses could be in the form of group mem-
bership, association rules, underlying data structures, etc.
LD problems raise new issues, most important of which is
the need for the ability to assess confidence intervals for im-
plied hypotheses, something most previous methods have
lack. In this paper we sketched a general methodology
for LD techniques to measure such uncertainty. We intro-
duced bootstrap resampling as an alternative to measure
the standard error and to construct the confidence intervals
of such hypotheses. Bootstrap sampling makes no assump-
tion about the population (such as normality, equal variance
or the central limit theorem) other than the assumption of
random sampling. Since bootstrap resampling uses sam-
pling with replacement, it preserves the a priori probabili-
ties throughout the random selection process and is capable
of obtaining accurate measures of both the bias and variance
of the true error estimate. We believe this is a natural fit for
LD problems in which the distribution of data is unknown
and only relatively small samples of events are available.

The purpose of this paper was to identify the confidence
interval problem in LD and to examine the applicability of
the bootstrap for estimating confidence in LD hypotheses.
We demonstrated this approach in finding hidden groups in
large databases, focussing on the confidence of membership
of each individual to each group. Our preliminary results are
encouraging and indicate that bootstrap confidences are cor-
related with derived hypothesis in general and with Group
Finding group membership in particular. We found that
the majority of individuals that were labelled as a member
of a group with high confidence were indeed members of that
group. Group Finding exemplifies many LD approaches that
use mutual information to estimate the relation strength
among individuals.

6.1 Future Work

There are several directions for future work. We are in-
terested in further theoretical analysis of the bootstrap in
the context of LD problems. Also, our results are prelimi-
nary — much more experimentation is needed with different
features of the LD problem and with different group finding

methods. Another important direction is to find principled
methods for incorporating the clues provided by the boot-
strap confidence measures into LD techniques. For example,
we may use the bootstrap result for tuning the mutual in-
formation engine and to modify the search and expansion
strategy in the module.

Our final goal is twofold: first, to provide guarantees
about the boundaries of discovered knowledge and second,
to find better ways to guide the process of link analysis.
Although current group finding methods are reliable, the
empirical results in this paper indicate that there is definite
room for improvement and adjustment in their performance.
Bootstrap sampling as a nonparametric method is an excel-
lent candidate for testing hypotheses and minimizing the
arbitrary assumptions which are typically made during LD
processing.

7. RELATED WORK

Hypothesis testing has been an important issue in Al,
statistics, data mining, machine learning and social network
analysis. Different methods such as Monte Carlo simula-
tion, cross validation, bootstrap resampling, and hold-out
and Jack-Knife methods have been applied to measure the
confidence intervals of hypotheses.|?]

Monte Carlo methods are most often used in simulation
studies with computer-generated data to show how p-values
for astatistical test or estimation method functions when
no convenient real data exist. Monte Carlo methods are
used to make inferences about the population from which a
sample has been drawn. Bootstrapping is a special case of
Monte Carlo estimation [?]. Bootstrapping is used most of-
ten to approximate standard errors and associated p-values
on estimates of population parameters when the sampling
distribution of the target population is either indeterminate
or difficult to obtain empirically. Bootstrap sampling has
been used successfully in stratified data, finite populations,
missing data, classification, time series and spatial problems,
and linear, nonlinear, and smooth regression models.

[?] presents a wide range of empirical methods for Al
research. Cohen explains the blunt interrogation of statisti-
cal hypothesis testing through classical parametric methods
and computer-intensive (Monte Carlo) resampling methods.
He also presents flexible resampling techniques in an accu-
rate, accessible manner. Many other researches in the field
of data mining and machine learning also use appropriate
tools for their estimation. For instance, [?] showed that
cross validation might be a better choice in model selec-
tion and [?] examines several ways to measure the ROC
confidence intervals and [?] Applied the bootstrap method
for computing confidence measures on features of induced
Bayesian networks.

We introduced bootstrap sampling as an alternative to es-
timate confidence intervals in LD hypothesis. Since the field
of link discovery is relatively new there is still much research
exploring different aspects of the evaluation of discovered
knowledge. For instance, in the field of social networks, [?]
used the bootstrap to estimate the confidence in friendship
choices among Southern California middle school students.

8. ACKNOWLEDGMENTS

This work was partially supported by the Defense Ad-
vance Research ProjectsAgency under Air Force Research



Laboratory contract F30602-01-2-0583. Authors would like
to thank Hans Chalupsky, Andre Valente, Eric Melz for their
comments and support.

9.
1]

[2

3]

[4]

[5]

(6]

[7]

8]

[9]

REFERENCES

J. Adibi. Real world characteristics of link discovery
databases. In Workshop on Data Mining for Counter
Terrorism and Security with the Third SIAM
International Conference on Data Mining (SDM
2003), 2003.

J. Adibi, H. Chalupsky, V. A., and M. E. The kojak
group finder: Connecting the dots via integrated
knowledge-based and statistical reasoning. In
Submited to TAAT 2004. AAAI-TAAIT, 2004.

P. R. Cohen. Empirical Methods for Artificial
Intelligence. The MIT Press, Cambridge, 1995.

A. C. Davison and D. V. Hinkley. Bootstrap Methods
and their Application. Cambridge Univ. Press.,
Boston, 1997.

B. Efron. The Jackknife, the Bootstrap and other
resampling plans. Society for Industrial and Applied
mathematics, Philadelphia, 1982.

B. Efron and R. J. Tibshirani. An introduction to the
bootstrap. Chapman & Hall, New York, 1993.

N. Friedman, M. Goldszmidt, and A. Wyner. On the
application of the bootstrap for computing confidence
measures on features of induced bayesian networks. In
Seventh International Workshop on Artificial
Intelligence and Statistics, 1999.

B. R. Hoffman and T. W. Valente. Ethnicity and
friendship choices among southern california middle
school students. In Internationl Social Network
Conference Sunbelt XXIII, 2003.

R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In 14th
International Joint Conference on Artificial
Intelligence, pages 1137-1143. Morgan Kaufmann
Publishers, Inc., March 1995.

S. A. Macskassy, F. J. Provost, and M. L. Littman.
Confidence bands for roc curves. In CeDER Working
Paper, 2003.

E. W. Noreen. Computer intensive methods for testing
hypotheses: An introduction. John Wiley & Sons, New
York, 1989.



