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Abstract— Performance of a cognitive personal assistant, 
RADAR, consisting of multiple machine learning components, 
natural language processing, and optimization was examined with a 
test explicitly developed to measure the impact of integrated machine 
learning when used by a human user in a real world setting. Three 
conditions (conventional tools, Radar without learning, and Radar 
with learning) were evaluated in a large-scale, between-subjects 
study. The study revealed that integrated machine learning does 
produce a positive impact on overall performance. This paper also 
discusses how specific machine learning components contributed to 
human-system performance. 
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I. INTRODUCTION 

The RADAR (Reflective Agents with Distributed Adaptive 
Reasoning) project within the DARPA PAL (Personalized 
Assistant that Learns) program is centered on research and 
development towards a personal cognitive assistant. The 
underlying scientific advances within the project are 
predominantly within the realm of integrated machine 
learning (ML). These ML approaches are varied and the 
resulting technologies are diverse. As such, the integration 
result of this research effort, a system called Radar, is a 
multi-task machine learning system.  

Annual evaluation on the integrated system is a major theme 
for the RADAR project, and the PAL program as a whole. 
Furthermore, there is an explicit directive to keep the test 
consistent throughout the program. As such, considerable 
effort was devoted towards designing, implementing, and 
executing the evaluation. This paper summarizes efforts to 
validate the hypothesized beneficial impact of the integrated 
machine learning present in Radar. 

It is also important to note that the RADAR project differs 
from the bulk of its predecessors in that humans are in the 
loop for both the learning and evaluation steps. Radar was 
trained by junior members of the team who were largely 
unfamiliar with the underlying ML methods. Generic human 
subjects were then recruited to use Radar while handling a 

simulated crisis in a conference planning domain. This 
allowed concrete measurement of human-ML system 
performance. It is important to consider personal assistance 
systems in the context of human use due to their inherent 
purpose. 

There have been past attempts at creating digital assistants 
to aid users in the performance of complex activities. Possibly 
the most memorable and infamous example of these is the 
animated paperclip accompanying Microsoft Word. Agents 
such as these are usually most valuable to a novice, as 
opposed to an experienced user.  

On the opposite end of the spectrum of assistants, we can 
find those that are human. While human assistants are 
malleable, intuitive, accommodating, and are able to expand 
their knowledge, they lack certain characteristics present in an 
ideal digital assistant. Humans assistants lack perfect recall, 
incur latencies on time critical tasks, cannot rapidly compute 
optimizations and execute other taxing algorithms, are more 
susceptible to periodic performance losses due to turnover and 
constrained availability, and cannot operate continuously. 
Furthermore, human assistants do not scale well – providing 
an assistant to every human in an organization is cost 
prohibitive on several metrics. 

Radar is an attempt to achieve the best of both worlds by 
focusing on a cognitive digital assistant. The presence of 
learning is the main distinction when using the prefix 
“cognitive.” The knowledge it obtains can be used to 
automate and prep tasks, thus providing the assistance of a 
human without the limitations of a human and making digital 
assistance more adaptable and suitable for the user.  

A. The Radar System 

Radar is specifically designed to assist with a suite of 
white-collar tasks. In most cases, the specific technologies are 
designed to be domain agnostic (e.g., email categorizing, 
resource scrounging, etc). However, for the purposes of the 
evaluation, the base data present in Radar and used for 
learning is centric to the domain of conference planning. As 
such, certain components appear to be domain-specific but 
their underlying technologies are more extensible (e.g., 
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conference-related email categories, room finding, etc). 
While evaluation testing was performed on several Radar 

1.x versions, they generally contained the same machine 
learning components (Table 1). The major variations were due 
to engineering and user interaction improvements in a number 
of components and the removal of the Briefing Assistant for 
engineering reasons. Again, the individual ML technologies 
will not be described in detail here – the focus here is to show 
that such integrated systems can provide real benefit and 
evaluation can be accomplished in a manner robust to 
unforeseen synergies and use.  

An important distinction is whether a ML component 
“learns in the wild” or requires special interaction to gain 
knowledge. Learning in the wild (LITW) is a primary mission 
of the RADAR project and is specific to learning that occurs 
through the course of daily use. Brute force spoon-feeding and 
code-driven knowledge representation is not LITW. To count 
as LITW, learning must occur through regular user interaction 
and user interfaces present in Radar. 

An example of brute force encoding would be asking 
someone to copy the campus building specifications into 
Radar all at once. However, learning is LITW if Radar 
decides knowing the capacity of a certain room is really 
important, Radar asks the user for the capacity, and the user 
looks it up and enters the specific value. 

Table 1 details which components in Radar 1.1 were LITW 
and what their specific assistance entails. Note that this list is 
continuously growing and more components are expected in 
the next major release of Radar. Likewise, the next release is 
expected to include tighter integration between ML 
components. Additional detail on Radar components and 
capabilities is deferred to other papers. 

B. Test Conditions and Hypotheses 

In order to show the specific influence of learning on overall 
performance, there were two Radar conditions – one with 
learning (+L) and one without (-L). In the context of the 
evaluation test, learning was only LITW. Learning acquired 
through knowledge engineering by a programmer or through 
brute force encoding would be available in both the +L and -L 
Radar conditions.  

To the user, Radar was essentially a system layered into 
Outlook. The components in Table 1 are either behind the 
scenes (e.g., Scone, AnnoDB) or visible as modified Outlook 

views (e.g., Email Classifier, VIO) or separate windows (e.g., 
STP). In many ways, the user interaction development aspect 
of Radar lagged behind the learning components. This was 
largely due to limitations in Outlook and user interaction will 
be improved in the next version of Radar.  

A third condition where subjects utilize conventional off the 
shelf tools (COTS) allowed estimates to be made on the 
overall benefit of integration, optimization, engineered 
knowledge, and improvements in user interaction as compared 
to the current state of the art. For this application, this toolset 
consisted of an unaltered version of Outlook, the schedule in 
an Excel spreadsheet instead of the STP, a web portal to the 
room reservation system, and the conference website which 
could be manually updated.  

The primary mission of the evaluation test was to examine 
two top-level hypotheses. These were: 

 
1. Radar with learning (+L) will do better than Radar 

without learning (-L) 
2. Radar will do better than conventional tools (COTS) 
 
The comparison in Hypothesis 1 is commonly called the 

Learning Delta. Additional hypotheses, detail on methods, and 
findings can be found in [1]. 

C. Related Work  

As previously mentioned, this was a multi-task ML system 
and therefore required a complex scenario for rigorous 
evaluation. Unfortunately, research utilizing human subjects 
to evaluate multi-task cognitive digital assistants with 
demanding tasks of this nature is limited, and so few 
comparison cases are available. 

Furthermore, evaluations of ML systems are largely based 
on simulation (e.g., [2, 3]), comparison to traditional methods 
(e.g., [4]), subject judgments on system performance  (e.g., 
[5]), or have sparse details on human subject evaluation (e.g., 
[6]). It is quite possible that this is generally the result of the 
kind of system that is built – something that is not meant to be 
an assistant but, rather, is designed to perform a task that has 
specific rules. An assistance system, when designed and 
evaluated, should be tested with humans in the loop (e.g., [7]).  

As far as the rest of literature is concerned, there is 
relatively little literature on evaluation results of cognitive 
digital assistants and their focus tends to be specific to a 

Table 1. Radar components 

LITW Component Capability 
X CMRadar-Rooms (Room Finder) Resource scrounging by learning room reservation owner behaviors 
X Email Classifier Task-oriented label assignment to email messages based on prior activity 
X Space-Time Planner (STP) Elicitation of facts about the world in order to do better optimizations 
X Virtual Information Officer (VIO) Classification and extraction to assist information updates on websites 
X Workflow by Example (WbE) Batch website updates from training on input files 
 Annotations Database (AnnoDB) Email parsing and related natural language processing 
 Scone Knowledge representation support for the AnnoDB 

X Briefing Assistant (BA) Summarization of activity based on prior activity (Note: not deployed) 



narrow range of learning (e.g., [8, 9]). This may be because 
most of assistants of this nature are design exercises, lack 
resources for comprehensive evaluation, not evaluated with 
humans in the loop, and/or proprietary and unpublished. 

II. METHOD AND MATERIALS 

A key requirement for the annual evaluation test was 
repeatability and a consistent level of difficulty so that 
performance improvements can be measured across years. At 
a fundamental level, this is nearly impossible to achieve in a 
complex test of this nature. As such, the goal was to start with 
a test scenario that was challenging enough to accommodate 
synergistic learning effects, component advances, and new 
research directions for the out-years. A common condition, 
working the problem with conventional off the shelf tools 
(COTS) is run for each test, thus permitting benchmarking of 
small changes to the protocol and each test’s stimulus package 
(e.g., specific crisis, additional tasks, etc). Furthermore, the 
stimulus package for the test is bound by parameters that are 
broad enough to prevent training to the test, but narrow 
enough to ensure that the stimulus package will measure the 
ML technologies present in the version of Radar being tested.  

As mentioned, this is a system consisting of Radar and a 
human. At a high level this means that human subjects may 
need, or be required, to perform specific tasks manually. The 
utilization of a COTS condition where there are no Radar 
tools makes the ability for full manual execution a 
requirement. This nuance also allows for tasks and stimuli that 
are currently difficult for strictly software tools to complete 
autonomously – mixed effort towards task completion is 
perfectly acceptable and expected. Removal of manual control 
can occur if Radar technology replaces the manual inputs. For 
example, a user interface that allows subjects to manually 
scrounge for resources can be removed if a Radar component 
can be used to perform this task. 

A. Storyline and Simulated World 

The general scenario for the evaluation was that the subject 
was filling in for a conference planner who was indisposed, to 
resolve a crisis in the current conference plan. This crisis was 
major enough to require a major shuffling of the conference 
schedule and room assignments that, in turn, triggered 
secondary tasks. These included supporting plans (e.g., 
shifting catering, AV equipment delivery, adjusting room 
configuration, etc), reporting (e.g., make changes to the 
website, issue a daily briefing, etc), and customer handling 
(e.g., “here is the campus map”). Noise stimuli were also 
present in the form of unrelated email, unusable rooms, 
unrelated web pages, and other clutter content. 

The materials included an email corpus and simulated world 
content. The need for repeatability over time led to the 
requirement for a simulated world. This consisted of facts 

about the world (e.g., characteristics of a particular room) and 
conference (e.g., characteristics of each event). 

The simulated world and the initial conference were 
designed to provide clear boundaries on the types of tasks 
subjects would need to complete, yet also permit large-scale 
information gathering, precise measurement of learned facts, 
and the opportunity to induce a substantial crisis workload. 
The conference itself was a 4-day, multi-track technical 
conference complete with social events, an exhibit hall, poster 
sessions, tutorials, workshops, plenary talks, and a keynote 
address. The conference was populated with over 130 
talks/posters, each with a designated speaker and title. All 
characters were provided with email addresses and phone 
numbers. Many were also given fax numbers, website 
addresses, and organizations. 

The physical space was a modification and extension of the 
local university campus. In addition to modifying the student 
union, two academic buildings and a hotel were created and 
populated. These latter three buildings were instantiated to 
protect against campus entry knowledge in the subject pool. 
This information was presented to the subject in the form of 
revised university web pages easily accessible from the 
subject’s home page. 

Other static web content included a conference planning 
manual (complete with documentation of standard task 
constraints), a read-only file with the original schedule, and 
manuals for the tools used by the subjects.  

Subjects were also given access to a working, realistic 
“university approved” vendor portal where goods and services 
could be ordered for the conference. These included 
audio-visual equipment, catering, security, floral 
arrangements, and general equipment rentals. Email receipts, 
complete with computed prices and hyperlinks to 
modification/cancellation pages, were delivered to the 
subject’s mail client in real time. All vendor interactions were 
via web forms since automatic or Wizard of Oz handling of 
subject e-mails can lead to problems with stimulus 
consistency and realism. This had face validity since many 
real-life counterparts are web-based, including the subject 
signup website used during recruitment. 

The corpus initialization for each experiment included:  
• The predecessor’s conference plan in the file format of 

the condition toolset 
• Other world state information – e.g., room reservation 

schedule, web pages detailing room characteristics, etc. 
(Figure 1, top and middle) 

• The vendor portal, loaded with the initial orders (Figure 1, 
bottom) 

• Stored e-mail from the original conference planner, 
including noise messages and initial vendor orders 

• Injected e-mail, including details of the crisis, new tasks, 
and noise (e.g., Table 2) 



Cost is a major barrier for experimental research and a large 
portion is attributable to stimuli and artifact development. We 
have made the commitment to provide much of the stimuli 
and supporting content described here to external parties for 
re-use. This occurs through the Airspace website [10]. 

B. Email Corpus 

The email corpus was constructed but occasionally utilized 
anonymized real content where appropriate (e.g., noise 
messages). There were initial attempts to acquire an existing 
email corpus centric to a conference planning activity but this 
posed significant challenges in the realm of Institutional 
Review Board (IRB) approval due to the need to anonymize 
all content – including subtle cues that would reveal identities. 
Prior attempts within the project to perform such a step 
produced haphazard results where entity anonymization was 
not sufficient. 

Even a real conference planning email corpus free of IRB 
constraints would not be entirely adequate. A real corpus 
would still require considerable alignment with a simulated 
world (e.g., websites, rooms, etc.) and would not necessarily 
match the ML technologies present in the system. For 
example, the corpus for the real conference may completely 
lack website update tasks and focus heavily on what local 
tours to include in the registration packet. 

This early investigation led to the determination that the 
corpus should be fabricated with an eye towards realism and 
the ML being tested. A team of undergraduate English majors 
was employed to create a detailed backstory corpus, 
independent messages detailing one or more tasks, and noise 
messages. The students were given a series of story arcs, 
guidelines, and a handful of characters with some specific 
assigned personalities (e.g., formal, annoying, etc). This effort 
included a directive to the email authors to let natural errors 
occur in their writing (e.g., signal message in Table 2). Some 
characters were assigned personality types that would also 
lead to different writing styles and email body structure (e.g., 
terse, bad spelling, etc). Other directives included the 
utilization of event, paper, and room descriptor variations (e.g., 
“Dowd in Stever”). Resulting content was screened for fit to 

the specifications, alignment with world facts, and template 
syntax adherence. 

All email corpus content was in a structure which supported 
date shifting and variable substitution (e.g., Table 2, sender of 
the noise message). Date anchors and variables were stored in 
a separate file. These allowed for easy modification of key 

Table 2. Sample messages 

Signal Message Noise Message 
From: jpsontag@ardra.org 
To: bor@cs.cmu.edu 
Subject: Lucia di Lamermoor 
 
I hate to be a pest, but I finally got 
tickets to the opera, Lucia di 
Lamermoor for my wife on our 
aniversary. It is wednesday night. I 
want the whole day to ourselves, so I 
can avoid crashing out plans, that 
would be great! Let me know. The 
other days are fine. Thank! J.P. 

From: var="kimMail" 
To: bor@cs.cmu.edu 
Subject: Hey Uncle Blake! 
 
I have a favor to ask you--Mom and Dad's anniversary is coming up, and I wanted to 
do something special for them, especially since they've been so supportive of the 
whole wedding concept.  I was thinking about getting them tickets to go see "The 
Phantom of the Opera" when the Broadway Series came to Pittsburgh.  I know that 
sometimes you can get cheaper tickets through work, so I was wondering if that was 
possible for this show.  Please let me know asap so that I can make arrangements!  
Thanks, you're the best! 
  Kim 

 

 

 
Figure 1. Static web and vendor portal examples 



values by the external program evaluators and time shifting of 
the corpus for experiment execution. 

C. Objective Performance Measurement 

As experiment-friendly conference planning performance 
measures are not readily available, a new method was utilized. 
It was extremely important that this measurement be tied to 
objective conference planning performance rather than a 
technology-specific algorithm (e.g., F1 for classification). 
This technology agnostic approach also permits accurate 
measurement of component synergies and human use 
strategies. 

Creation of this measurement was largely achieved through 
an evaluation score designed and developed by the external 
program evaluators (authors JF, MP, and PC). This complex 
score function summarized overall performance into a single 
objective score (“Final_Score” range from 0.000 to 1.000). 
Performance was in terms of points collected by satisfying 
certain conditions coupled with penalties for specific costs. 
These included quality of conference schedule (e.g., 
constraints met, special requests handled, etc), adequate 
briefing to conference chair, accurate adjustment of the 
website (e.g., contact information changes, updating the 
schedule on the website, etc), and costs incurred while 
developing schedule. Such costs included both the budget and 
how often subjects asked fictional characters to give up their 
room reservations. Additional detail on scoring is deferred to 
other documents. At the top level, the score coefficients were 
2/3rd for the schedule (including penalties for costs incurred), 
1/6th for website updating, and 1/6th for briefing quality. 

In addition to this measure, subjects also completed a 
post-test survey designed to measure perception of system 

benefit, assistance, and other related metrics. Details on the 
survey design and results are reported elsewhere [11]. 

D. Procedure 

Each subject was run through approximately 3 hours of 
testing (1 for subject training and 2 for time on task). Each 
cohort of subjects for a particular session was run on a single 
condition (COTS, Radar -L, or Radar +L). When possible, 
cohorts were balanced over the week and time of day to 
prevent session start time bias. Follow-up analyses on this 
issue revealed no apparent bias. The nominal cohort size was 
15 but was often lower due to dropouts, no-shows, and other 
subject losses (e.g., catastrophic software crash). Cohorts 
were run as needed to achieve approximately 30 subjects per 
condition. 

Motivation was handled through supplemental payments for 
milestone completion (e.g., the conference plan at the end of 
the session satisfies the constraints provided). Subjects were 
given general milestone descriptions but not explicit targets. 
These milestones roughly corresponded to the top-level 
coefficients in the score function. 

III. RESULTS 

A. Data Source for this Example 

There were several test windows during the run-up to the 
data shown here. This corresponds to COTS and Radar 1.1 
tested with a stimulus package of 107 messages, 42 of which 
were noise.  

The crisis for this package was a loss of the bulk of the 
conference rooms for 1.5 days (out of 4 total). A variety of 
other small perturbations rounded out the task set. These 

 
Figure 2. Radar 1.1 results on Crisis 1 (Score 2.0) 

Table 3. RADAR 1.1 means and t-test comparisons 

Condition Mean Comparison p-value 
COTS 0.452 Overall Delta (With Learning > COTS) <0.0001 
No Learning (-L) 0.492 Learning Delta (With Learning > No Learning) <0.0001 
With Learning (+L) 0.605 Nonlearning Delta (No Learning > COTS) <0.041 



included changes to room details, speaker availability, session 
preferences, and website details. This stimulus package (aka 
Crisis 1) was designed by the external evaluators. As of this 
paper, the external evaluators have designed three different 
crisis packages.  

The subject pool used for analysis, after exclusions and 
dropouts, was 29, 34, and 32 (COTS, Radar -L, and Radar +L). 
As such, this test accumulated 64 cumulative hours worth of 
time on task by subjects with a multi-ML system. 

Scheduling and scoring for the conditions shown here was 
not in parallel. COTS data was collected in the fall of 2005 
and the Radar data was collected in the spring of 2006. The 
data described here were scored with version 2.0 of the 
external evaluator’s scoring algorithms (aka Score 2.0). 

B. Final_Score Results 

Figure 2 shows between subject performance across the 
three conditions. The Learning Delta (the difference due to the 
inclusion of machine learning) is 0.113, which is 
approximately 74% of the Overall Delta (improvement over 
COTS). This suggests that machine learning was the prime 
contributor to the performance gains. In this graph, all 
condition differences are significant and in the expected 
direction for the initial hypotheses (Table 3).  

The need for an integrated evaluation with humans in the 
loop becomes especially apparent when examining the 
makeup of the Deltas (Figure 3). Subjects noticeably altered 
their strategies and use of assistance technology based on the 
presence/absence of specific features. For example, COTS 
subjects clearly focused on updating individual website 
corrections (e.g., “my name is spelled wrong”) over other 
activities – probably due to familiarity with website form 
manipulations. Likewise, subjects in the Radar conditions 
took full advantage of autonomous components to relieve time 
pressure (i.e., schedule optimizer in both -L and +L, batch 
website updating in +L, etc).  

Gains due to publishing the schedule to the website can be 
tied explicitly back to WbE, but is not the only place where 
WbE can contribute/detract from overall performance (Table 
4). Note that while the Email Classifier contributes to many 
factors of the score function, its role is to surface the task and 
not to assist with the completion of the task itself. As such, the 
negative Learning Delta for the briefing component (Figure 3) 
is not solely due to a deficiency of the Email Classifier. In fact, 
this difference is due to human decision making related to task 
allocation – almost twice as many subjects in the nonlearning 
condition as in the learning condition compiled a briefing 
(56% vs. 28%). Task identification is not the same as task 
prioritization, hence the importance of an overall task 
performance measurement. 

IV. DISCUSSION 

The results clearly show that Hypothesis 1 (ML helps) holds 
true. Likewise, Hypothesis 2 (Radar is better than COTS) is 
also true. Furthermore, it is clear that component value was 
highly dependent on how subjects allocated effort – some 
technologies were underutilized based on strategic decisions.  

The initial concern at the start of this endeavor was that the 
methods and materials would not be adequately sensitive to 
measure mixtures of ML technologies that were still being 
formulated. This concern is still valid in that there are new 
ML components being developed for the next version of 

 

Figure 3 Score component impacts on the overall score (Score 2.0) 

Table 4. Learning contributors to score component 

Score Component Learning Contributors 
Scheduling STP, CMRadar-Rooms, Email 

Classifier 
Publishing Schedule 
to Web 

WbE 

Other Web Changes VIO, WbE, Email Classifier 
Briefing Email Classifier 



Radar. The decision to measure at the top human-Radar 
system level was an attempt to be robust to unknown ML 
technologies. While this limits the ability to directly account 
for specific component benefit, this approach clearly captures 
high-level benefits and use patterns for human in the loop 
multi-task ML. 

While not shown here, there have been other human subjects 
tests with other versions of the system and the protocol. These 
have shown changes in performance due to variations in ML, 
HCI, engineering, crisis difficulty, and human training. As 
such, the test method and materials have also been shown to 
be suitable for measuring shifts in performance due to a 
variety of system and scenario effects. 

ACKNOWLEDGMENTS 

Othar Hansson and Mike Pool joined Google and Convera 
(respectively) after contributing to this work. 

This material is based upon work supported by the Defense 
Advanced Research Projects Agency (DARPA) under 
Contract No. NBCHD030010.  Any opinions, findings and 
conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the 
views of the DARPA or the Department of Interior-National 
Business Center (DOI-NBC). 

REFERENCES 

[1] Steinfeld, A., Bennett, R., Cunningham, K., Lahut, 
M., Quinones, P.-A., Wexler, D., Siewiorek, D., 
Cohen, P., Fitzgerald, J., Hansson, O., Hayes, J., 
Pool, M., and Drummond, M., The RADAR Test 
Methodology: Evaluating a Multi-Task Machine 
Learning System with Humans in the Loop. 2006, 
Carnegie Mellon University, School of Computer 
Science: Pittsburgh, PA. 
http://reports-archive.adm.cs.cmu.edu/anon/2006/abs
tracts/06-125.html  

[2] Clymer, J. R. Simulation of a vehicle traffic control 
network using a fuzzy classifier system. In Proc. of 
the IEEE Simulation Symposium. 2002.  

[3] Clymer, J. R. and Harrsion, V. Simulation of air 
traffic control at a VFR airport using OpEMCSS. In 
Proc. IEEE Digital Avionics Systems Conference. 
2002.  

[4] Zhang, L., Samaras, D., Tomasi, D., Volkow, N., and 
Goldstein, R. Machine learning for clinical diagnosis 
from functional magnetic resonance imaging. In Proc. 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). 2005.  

[5] Hu, Y., Li, H., Cao, Y., Meyerzon, D., and Zheng, Q. 
Automatic extraction of titles from general 
documents using machine learning. In Proc. of 
ACM/IEEE-CS Joint Conference on Digital Libraries 
(JCDL). 2005.  

[6] Allen, J., Chambers, N., Ferguson, G., Galescu, L., 
Jung, H., Swift, M., and Taysom, W. PLOW: A 
Collaborative Task Learning Agent. In Proc. 

Conference on Artificial Intelligence (AAAI). 2007. 
Vancouver, Canada.  

[7] Schrag, R., Pool, M., Chaudhri, V., Kahlert, R., 
Powers, J., Cohen, P., Fitzgerald, J., and Mishra, S. 
Experimental evaluation of subject matter 
expert-oriented knowledge base authoring tools. In 
Proc. NIST Performance Metrics for Intelligent 
Systems Workshop. 2002. 
http://www.iet.com/Projects/RKF/PerMIS02.doc  

[8] Shen, J., Li, L., Dietterich, T. G., and Herlocker, J. L. 
A hybrid learning system for recognizing user tasks 
from desktop activities and email messages. In Proc. 
International Conference on Intelligent User 
Interfaces (IUI). 2006.  

[9] Yoo, J., Gervasio, M., and Langley, P. An adaptive 
stock tracker for personalized trading advice. In Proc. 
International Conference on Intelligent User 
Interfaces (IUI). 2003.  

[10] Airspace: Tools for evaluating complex systems, 
machine language, and complex tasks. 
http://www.cs.cmu.edu/~airspace  

[11] Steinfeld, A., Quinones, P.-A., Zimmerman, J., 
Bennett, S. R., and Siewiorek, D. Survey measures 
for evaluation of cognitive assistants. In Proc. NIST 
Performance Metrics for Intelligent Systems 
Workshop (PerMIS). 2007.  

 
 
 


