Addressing Real-Time Constraints in

the Design of Autonomous Agents
Adele E. Howe, David M. Hart, Paul R. Cohen

COINS Technical Report 90-06

Experimental Knowledge Systems Laboratory
Department of Computer and Information Science

University of Massachusetts
Ambherst, MA 01003

Abstract

The Phoenix project is an experiment in the design of autonomous agents for a complex environment.
The project consists of a simulator of the environment, a basic agent architecture, and specific imple-
mentation of agents based on real-time techniques; the first two parts have been constructed, the third
is on-going. The facets of Phoenix that facilitate real-time research are: a simulator parameterized for
varying environmental conditions and instrumented to record behaviors, an agent architecture designed
to support adaptable planning and scheduling, and methods for reasoning about real-time constraints.
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1 Introduction

Planning research in Artificial Intelligence is experiencing a renaissance. In the
past, Al planners generated plans but did not execute them, whereas now, we focus on
both planning and execution, and we design methods to interleave them in a timely
way. In the past, we assumed that planners could know the state of the world and the
effects of all actions, whereas now, we recognize that the world is too big and noisy
to apprehend completely and accurately, and although the effects of actions can be
estimated, they are uncertain. In the past, we assumed that a planner was the only
agent in an unchanging world, whereas now, we recognize that several agents may act
simultaneously, competitively, or cooperatively, and the world itself changes according
to its dynamics. In sum, we are developing planning methods for environments that
are very much like our own physical world.

The most salient characteristics of these environments, the ones that most urgently
require us to rethink planning, are time and uncertainty. Time and uncertainty are in-
teracting phenomena because we are often uncertain about the future—that is, about
how the environment will change over time—and because we often introduce uncer-
tainty when, under time pressure, we accept approximations and estimates. Time
pressure arises in environments that change continuously in ways beyond the control
of the agents, producing unanticipated problems at unanticipated rates. Real-time
planning, in these environments, requires keeping up with the changing conditions.
Realistically, this means that the time required to decide what to do must be less than
the time taken by the environment to effect changes that render the intended action
inappropriate or unexecutable. We think of real-time planning as managing scarce
temporal and physical resources. These resources constrain the time and information
available to support decision making.

The goal of the Phoenix project is to understand the design of intelligent agents
that interact in an environment in which the success of agents depends on their ability

to cope with uncertainty in a timely way. Our general research goal is to design, explain
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and predict behavior of intelligent agents in complex environments, environments in
which time pressure is one of many contributors to complexity in the environment. A
recent paper|2] describes the Phoenix project with respect to this general goal and as
such, provides more detail on the methodology underlying the project and the agent
architecture. In contrast, this paper focuses on the real time characteristics of the
environment and emphasizes how our research addresses those characteristics.

The Phoenix project has two principal componénts: a simulator and an agent ar-
chitecture. The simulator provides the environment in which to test our agent designs.
The agent architecture embodies our ideas on agent design and provides a structure for
embedding methods of planning and problem solving. This paper will describe the de-
sign and the present level of implementation for both of the components (in Sections 2
and 3, respectively), explaining those design decisions justified by real-time consider-
ations. Section 4 will describe specific methods being added to the agent architecture

to address real-time control in the agent architecture.

2 The Environment

The simulator provides the environment for our autonomous agents!. This section
describes a real-time application domain, our implementation of that domain in the

Phoenix simulator, and the facets of the simulator that facilitate experimentation.

2.1 The Phoenix Domain

The Phoenix task is to control simulated forest fires by deploying simulated bull-
dozers, crews, airplanes, and other objects. Forest fires spread in irregular shapes, at

variable rates, determined by ground cover, elevation, moisture content, wind speed

1For some researchers, the use of a simulated environment, rather than a real environment, is fun-
damentally flawed. Yet, the Phoenix simulator includes characteristics that make “real” environments
demanding, while also facilitating experimentation, both toward understanding the limitations and ca-
pabilities of techniques and comparing related techniques. We discuss the merits of simulators in more

detail in [2].



and direction, and natural boundaries. For example, fires spread more quickly in brush
than in mature forest, are pushed in the direction of the wind and uphill, burn dry fuel
more readily, and so on. These conditions also determine the probability that the fire
will jump boundaries.

Fires are fought by removing one or more of the things that keep them burning:
fuel, heat, and air. Cutting fireline removes fuel. Dropping water and flame retardant
removes heat and air, respectively. In major forest fires, controlled backfires are set to

burn areas in the path of wildfires and thus deny them fuel.
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Figure 1: View of Yellowstone from Phoenix Simulator

The Phoenix simulator’s environment is Yellowstone National Park, for which we
have constructed a representation from Defense Mapping Agency data. Figure 1 shows

a view of an area of the park? The grey region at the bottom of the screen is the

2The system usually executes with a color display, but for purposes of reproduction, this figure was
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northern tip of Yellowstone Lake. The thick grey line that ends in the lake is the
Yellowstone River. The Grand Loop Road follows the river to the lake, where it splits.
The Smokey the Bear symbol in the bottom left corner marks the location of the
fireboss, the agent that directs and coordinates all others. Two bulldozers are shown
cutting fireline around a fire in this figure. Two other bulldozers are parked near the
fireboss, along with a plane and a fuel carrier.

Phoenix is a realistic simulator of forest fires and forest fire fighting. It is impor-
tant to distinguish realism and accuracy. Realism is necessary for our research goals;
accuracy is not. Here are some examples of the distinction: In our realistic simulation,
processes become uncontrollable after a period of time; in an accurate simulation, the
period of time is the same as it is in the real world. In our realistic simulation, agents
have limited fields of view; in an accurate simulation, agents’ fields of view are the
same as they are in the real world. In our realistic simulation, the probabilities of envi-
ronmental events such as wind shifts are summarized by statistical distributions; in an
accurate simulation, the distributions are compiled from real-world data. When pos-
sible, we use accurate data; for example, in Phoenix we use Defense Mapping Agency
data of elevation, ground cover, and other geographic features, and the fire dynamics
and basic equipment characteristics are derived from U.S. Forest Service manuals(§].
We used actual data, when available, with simplified data, when necessary, to build a
realistic environment for our agents, an environment in which processes get out of hand,

resources are limited, time passes, and information is sometimes noisy and limited.

2.2 Implementation

The Phoenix simulator is based on a discrete event simulator (DES) that creates the
illusion of a continuous world, where natural processes and agents are acting in parallel,
on serial hardware®. In the simulation, fires burn continuously over time, affected by

changing environmental conditions such as wind and humidity. As the fire spreads,

captured from a black and white display.
3Phoenix is implemented on a Texas Instruments Explorer II Lisp Machine.
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agents act in concert to control it. Some of these actions are physical, as in digging
fireline and cutting trees. In parallel with these physical actions, agents are perceiving,
moving, reacting to perceived stimuli, and thinking ahead about what action(s) to
execute next.

To simulate the parallelism in the environment, agent and environment activities
are segregated into separate tasks. These tasks are then executed in small, discrete
time quanta, ensuring that no one task gets too far out of synch of the others. By
default, the synchronization quantum is set to five minutes of simulation time. So the
mazimum time separation between environmental processes is five minutes; however,
most processes will be more closely matched. Changing the synchronization quan-
tum affects the efficiency of the simulator and the realism of the state of the world.
Decreasing the quantum allows the processes to be more tightly synchronized and so
better integrated temporally, but exacts an efficiency cost in terms of cpu utilization
and task swapping. Increasing the quantum improves the cpu utilization and so makes
the simulator run faster, but increases the time disparity between tasks, magnifying
coordination problems such as communication and information about the state of the
environment.

To control the synchronization of the processes, the DES manages two types of time:
cpu time and simulation time. CPU time is the amount of real world processing time
consumed by the processes. Simulation time is the amount of environment time that
passes while acting or thinking, the “time of day” in the simulated environment. Types
of tasks differ in how they are “charged for” cpu time and simulation time. Sensory tasks
run for very short intervals of simulation time, after which they are rescheduled; this
gives them a high sampling rate compared to the rate at which the world is changing.
Effector tasks may use very little simulation time, or the full synchronization quantum.
Fire tasks always run for the full synchronization quantum. All are allotted as much
cpu time as they need by the task coordinator; there is no constant proportionality
between the simulation time and the cpu time they require. In contrast, to exert real-

time pressure on the Phoenix planner, every cpu second of cognitive activity is followed
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Figure 2: How simulation time corresponds to real time for two types of processes

by K simulation-time minutes of activity in the Phoenix environment (currently K =
5, but it can be adjusted); we refer to this constant K as the real-time control knob.
Imagine it is now 12:00:00 in the simulated world, and an agent is about to begin
planning. After one cpu second, simulation time for the agent is 12:05:00. The fire is
thus “owed” five minutes of simulation time. It may take 7 cpu seconds to calculate
the effects of five minutes of fire. Moreover, simulation time is still 12:05:00, because
the agent and the fire are simulated parallel processes. So after eight cpu seconds (one
for the planner and seven for the fire), we have simulated five minutes of planning and
five minutes of fire, and both processes are paused at 12:05:00. Figure 2 shows the
relationship of the agent and fire processes to real and simulation times. Cognitive
tasks are allotted a full synchronization quantum each time they run. At times there
are not enough cognitive activities to fill a quantum (as in the second time the agent
process runs in Figure 2), in which case the task ends and waits to be rescheduled.
Some cognitive activities take longer than a full quantum, in which case their internal

state is saved between quantum steps.
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2.3 How the simulator facilitates research in real-time tech-
niques

By controlling the domain features and the allocation of time through the simulator,
we can vary the effect of the environment on the agent interacting in it. The domain
features change environmental conditions and can be set as parameters of the simulator.
The most obvious examples are weather conditions, e.g., wind speed, wind direction
and lightning strikes. These parameters may be programmed to change at designated
times as part of a scenario, thus defining baselines for comparison purposes.

To ensure that we will always be able to assess performance under time pressure,
irrespective of the speed of problem solving algorithms and their supporting code, the
Phoenix simulator allows us to control the allocation of time to the agent’s thinking
with the real-time control knob. This knob parameterizes the amount of cpu-time
allotted to cognitive activities in relation to elapsed simulation time - the real-world
time of the simulation. For example, the knob can be set to allow the cognitive activities
of each agent one second of cpu-time (measuring actual cpu usage) for every minute
of simulated time in the world. If our problem solver is successful at that level of
temporal resources, we can increase the pressure by resetting the knob to two minutes
of simulation time for every cpu-second, so that two minutes elapse in the world for
every cpu-second the agent thinks. This effectively halves the time allowed for problem
solving, testing the robustness of the planner under temporal constraints. We can
define real-time planning in terms of the real-time knob. We would not be satisfied if
the performance of a real-time planner was extremely sensitive to the setting of the
real-time knob. For example, if the world is “speeded up” to 10 minutes per cpu second,
an agent should still be able to cope. Real-time planning must be robust against small
changes in the ratio of thinking time to world time.

Evaluating behavior under changing environmental conditions requires control over
those condit.ions and observable behavior. The simulation parameters offer the control
over the environment. System instrumentation provides the metrics for behavioral

evaluation.
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Real-time performance can be instrumented on three levels?: low level, middle level,
and high level. Low level metrics are largely hardware dependent estimates of how the
software system is utilizing the hardware. With low level metering turned on, the
system collects disk accesses and run times. For selected tasks (e.g., the fire simulation
and each of the agents), metering collects data on number of times each function is
called, its average run time, and cumulative run time.

Middle level metrics are mostly specific to the a.éent architecture; they are metrics
that evaluate how the software structure is performing in the environment. Conse-
quently, metering at this level depends on the design of the agents.. For example, a
blackboard solution may call for metering of hypotheses maintained, whereas this met-
ric may be meaningless to another type of solution. Middle level metrics that are not
specific to a particular architecture assess the interaction between the agent and the
environment (e.g., communication overhead, response times to environmental changes,
rate of action failure, and number of errors generated) and the ability of scheduling
algorithms to fulfill deadlines. Some examples of metrics for scheduling are the number
of tasks that miss deadlines [11], the success ratio of percentage of tasks that meet
deadlines weighted by their importance [11] and the average time delay between when
a task is eligible and when it is executed [10]. We are in the process of defining and
implementing this level of metrics.

High level metrics are domain specific. These metrics record the features of the
environment that are affected by the agents: the destruction produced by uncontrolled
fires and the resources consumed by the agents. Fire destruction is measured by amount
and type of forest, houses, and agents burned. Resource allocation is measured by
amount and type of agents employed to fight the fire, gasoline consumed, fireline cut,

distance traveled, and time required to contain the fire.

4The three level characterization was suggested by Nort Fowler in personal communication.
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3 Design of Autonomous Agents

A uniform agent architecture is shared by all agents. This architecture is the struc-
ture of the agent, the “hardware” that dictates the fundamental faculties and limitations
of the agent. The structure endows and bounds acuity, speed of response, and breadth
of action; it constrains what an agent can do, but not what it does. Specific methods
control what the agent does. These methods determine what to do and how to do
it. This dichotomy between structure and control is reflected in this section and the
one following it, agent architecture and techniques for real-time problem solving. This
section describes the structure, a general agent architecture that provides the basic ca-
pabilities needed to respond to the demands of the environment. The following section
describes techniques that control the structure and so determine what the agent does

in response to real-time pressures.

3.1 Phoenix Agent Architecture

The agent architecture has four components® (see Figure 3). Sensors perceive the
world. Each agent has a set of sensors, such as fire-location (are any cells within my
radius-of-view on fire?) and road-edge (in what direction does the road continue?).
Effectors perform physical acts such as moving or digging fireline. Reflexes are simple
stimulus-response actions, triggered when the agent is required to act faster than the
time-scale for the cognitive component. An example is the reflex of a bulldozer to
stop if it is moving into the fire. The cognitive component performs mental tasks
such as planning, monitoring actions, evaluating perceptions, and communicating with
other agents. Each agent has these four components; however, each component can be

endowed with a range of capabilities from limited (or none) to sophisticated.

Sensors get input from the world (fire simulation and map structures).. Their output
goes to state memory in the cognitive component, and also to the reflexive component

(triggering instant responses in the form of short programs to the effectors). For exam-

5The agent architecture is described in more detail in [2].
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Figure 3: Basic Agent Architecture

ple, a bulldozer sensor that detects fire within its radius-of-view updates state memory
automatically. If the detected fire is in the path of the bulldozer, the emergency-stop
reflex is also triggered. Effectors are programmed by the cognitive component and by
reflexes. Their output performs actions in the world. In the preceding example, the
emergency-stop reflex would program the movement-effector of the bulldozer to stop.
If the fire were not too close, the cognitive component might then step in and program
the movement effector to start moving parallel to the fire. If the cognitive component
also programmed the blade effector to put the blade in the down position, the bulldozer
would not only maintain a safe distance from the fire, but it would also build fireline
as it moved. Sensors and effectors are first-class objects whose interactions with other
components and the world are implemented in Lisp code. Reflexes, as mentioned, are
triggered by sensory input, which causes them to program effectors to react to the
triggering sensation. They are implemented in production-rule fashion, with triggering
sensations as their antecedent clauses and effector programs as their consequents. Be-
cause they respond directly to the environment and so must keep up with it, sensors,

effectors, and reflexes operate at the same time scale as the simulation environment
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and are synchronized as closely as possible within the discrcte event simulator.

The cognitive component receives input from sensors and sends programs to the
effectors to interact with the world. It is responsible for data integration, agent co-
ordination, and resource management, in other words, most problem solving activity.
This component operates in larger time slices than the others, thus reducing the over-
head of context switching, but increasing the possibility of reasoning with outdated
information. ‘ .

The Phoenix cognitive component directs its own actions by adding prospective
actions onto the timeline, a structure for reasoning about the computational demands
on the agent, then selecting and executing these actions one at a time. Actions may be
added in response to a change in environmental conditions (e.g., a new fire) or as part
of the computation of other actions (e.g., through plan expansion). Every action that
the cognitive component accomplishes is represented on the timeline with its temporal
relations to other actions and resource requirements (e.g., processing ime and necessary
data). The cognitive scheduler decides which action to execute next from the timeline
and how much time is available for its execution.

Actions may perform calculations, search for plans to address particular environ-
mental conditions, expand plans into action sequences, assign variable values, process
sensory information, initiate communication with other agents, or issue commands to
sensors and effectors. These actions are represented in skeletal form in the plan library.
Actions are described by what environmental conditions they are appropriate for, what
they do, how they do it (the Lisp code for their execution, called the execution meth-
ods), and what resources and data, environmental and computational, they require. A
plan is a special type of an action. It includes a network of actions related by their
data references and temporal constraints.

Planning is accomplished by adding an action to the timeline to search for a plan
to address some conditions. When the search action is executed, it selects an action or
plan appropriate for the conditions and places it on the timeline. If this new action is

a plan, then when it is executed it expands into a plan by putting its sub-actions onto
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the timeline with their temporal inter-relationships. If it is an action, it instantiates
the requisite variables, selects an execution method (there may be several with differing
resource requirements and expected quality of solution), and executes that method. We
call this style of planning skeletal refinement with lazy expansion. Plans are represented
as shells that describe what types of actions should be executed to achieve the plan
but do not include the exact action or its variable values until it is executed. Delaying
expansion allows the expanded plan to address more closely the actual state of the
environment during execution.

This planning style is common to all agents in the Phoenix planner, though it is
flexible enough so that agents with a variety of cognitive capabilities are possible. I'or
example, the fireboss has far more sophisticated methods for gathering and integrating
information than the bulldozer does. It can direct the actions of the bulldozers, while
the bulldozers can only make requests of the fireboss. However, the fireboss, unlike the
bulldozers, does not know how to get out of the way of the fire because it does not
work close to the fire.

Creating a different type of agent requires defining a cognitive component. One can
define a set of programmable sensors and effectors (of arbitrary complexity) or use ones
that are already defined, and add a set of reflexes to handle situations that require in-
stant response by the agent. To create sensors and effectors, the simulator must be told
rates of action under varying environmental conditions, range of perceptions, and other
physical capabilities. Creating reflexes involves describing the triggers, the expected
output from sensors, and the response, the programming for the effectors. The default
cognitive component consists of plans, which are networks of actions available to the
agent and tailored to situations in the environment, and methods which describe how
to execute the actions. Creating a new cognitive component with the same structure

as that described here involves defining a new plan library.
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3.2 Structure for Real-Time Control in the Agent Architec-
ture

A number of design decisions in the Phoenix agent architecture have been made
specifically to facilitate real-time control. One important decision is to incorporate
both reflexive and cognitive abilities in agents, enabling agents to respond reflexively
to events that occur quickly, while responding more deliberately to resource manage-
ment and coordination problems on a longer time scale. The combination of a reflexive
and cognitive component accounts for time scale mismatches inherent in an environ-
ment that requires micro actions and contemplative processing. Micro actions, such
as following a road and keeping out of the immediate range of the fire, involve quick
reflexes and little integration of data. Contemplative processing, such as route plan-
ning, involves long search times and integration of disparate data such as available
roads, terrain conditions, and fire reports. An example of the interaction of the two
styles of processing is given in Section 4.1. This horizontal decomposition ensures that
the agent can perform reflex actions to keep it from danger and maintain the status
quo, while also performing more contemplative actions. This strategy for responding
to disparate demands of the environment is advocated by Brooks [1] and Kaelbling [6];
although in both cases, they chose more levels of decomposition for their domains. Our
agent architecture, in effect, combines two different planning components: one highly
reactive, triggered by specific environmental stimuli and operating at a very small time
scale, and the other slower and more contemplative, integrating large amounts of data
and concerned with resource management and coordination.

Aﬁother design feature that facilitates real-time control is the timeline and its single
representation for all actions. Because prospective actions share a uniform represen-
tation on the timeline, all problem solving actions have access to the same memory
structures and can be monitored and allocated resources using the same mechanisms.
All problem solving tasks are subject to the same constraints with respect to resource
allocation: how much time is required, what information gathering resources are re-

quired, and what data are necessary. This framework allows new cognitive capabilities
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to be integrated easily by defining their requirements within the action description
language and relying on the timeline and its supportive scheduling mechanisms to tem-
porally arbitrate their allocation.

Structuring plans as skeletons to be filled out at run-time also facilitates real-time
control. Plans are only partially elaborated before the agent starts to execute the plan.
This deferred commitment exploits recent information about the state of the world
to guide action selection and instantiation. Completely deferred commitment, such
as in reactive planning (4], is probably not tenable when agents or actions must be
coordinated or scarce resources managed(5]. The integration of planning and acting
in Phoenix is designed to be responsive to a complex dynamic world by postponing
decisions on exactly what action to take, while also grounding potential actions in a
framework (skeletal plans coordinated on the timeline) that accounts for data, temporal

and resource interactions.

4 Integration of Techniques for Real-Time Problem
Solving

The simulator exerts variable real-time pressure on agents. How do Phoenix agents
respond to real-time pressure? The agent design includes several approaches to manag-
ing cognitive resources. One involves tailoring decision components to the appropriate
time scale as in the distinction between the reflexes and the cognitive component.
Another is through control of processing requirements. This approach enhances the
flexibility of actions and the sophistication of control decisions. Providing alternative
execution methods for timeline entries ensures a range of choices that vary in their time-
liness. Different scheduling strategies for managing the actions on the timeline provide
greater responsiveness to real-time constraints. Another approach is an expectation-
based monitoring technique that reduces the overhead of monitoring while providing
early warning of plan failure. Earlier warning of plan failure affords the planner more

time to adjust and more flexibility in possible responses. These approaches are dis-
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cussed below.

4.1 Control in the agent architecture

The reflexes and the cognitive component are both responsible for directing the
agent’s actions. Reflexes take immediate simple actions based on local sensory data
and operate at a small time quantum. The cognitive component directs all the eflectors
over extended periods of time and so operates within longer time slices. As a conse-
quence, the “ultimate” authority in the architecture is the cognilive component. The
reflexes direct temporary changes in the settings of sensors and effectors to allow the
agent to respond to short time scale demands from the environment, but the cognitive
component, at its time scale, may modify the sensors and effectors settings made by
the reflexes. Additionally, the cognitive component can program the reflexes, turning
them on or off or changing their sensitivity.

Fighting the fire requires the integration of both reflexes and the cognitive compo-
nent. For example, direct attack of the fire involves a bulldozer building fireline cl;)se
to the edge of the fire; this plan for containing the fire sacrifices minimal forest area,
but necessitates careful attention to the changing fire conditions. A static reflex to
avoid fire would preclude working close to the fire. So the cognitive component and
the reflexes are coordinated to handle this situation. The cognitive component sets the
blade and movement effectors to start the bulldozer building fireline parallel to the fire
and the fire edge sensor to attend to the changing edge of the fire. Additionally, it
sets the triggering threshold of the avoid fire reflex to be a much shorter distance than
normal and turns on a reflex to make minor corrections to the movement effector in
response to the changing edge of the fire. It then attends to other cognitive tasks. As
the bulldozer builds line, a reflex changes the bulldozer’s direction of movement to hug
the border of the fire at a respectable distance. If the fire sensor detects that the edge
of the fire has gotten too close, the avoid fire reflex will be immediately triggered, will
cause the bulldozer to back away from the fire, and will signal the cognitive compo-

nent of the change. When the cognitive component is next active (see the discussion
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of discrete event simulator in Section 2.2 for a description of process activity), it will
decide what to do under the changed conditions and may reset the movement effector
to continue building fireline or rethink the original plan. This integration assigns the
task of immediate self-preservation to the reflexes and that of integrating disparate

constraints and ensuring coherent action to the cognitive component.

4.2 Control of processing requirements

Processing requirements can be controlled in two ways: by controlling how much
time is used by individual actions and by controlling the overall distribution of time
across all actions. Approximate processing (7] and anytime algorithms (3] are meth-
ods for controlling how much time is used by individual actions. In these methods,
processing time is traded against quality or correctness of solution to satisfy temporal
constraints. In Phoenix, algorithms with different processing characteristics, such as
those offered by approximate processing and anytime algorithms, are included as al-
ternative execution methods. Execution methods, as introduced in Section 3, are lisp
code that performs the cognitive actions. Each cognitive action may be executed by
one of several execution methods, with differing time requirements and so differing so-
lution expectations. These processing characteristics are represented for each execution
method. The Phoenix planner delays the choice of an action’s execution method until
the cognitive scheduler selects the action for execution, thereby allowing the scheduler
to select a method suited to existing time constraints. By postponing the ultimate
commitment of cognitive resources until a choice must be made, those resources can be
allocated judiciously.

Alternative execution methods are particularly useful in actions that incur poten-
tially high computation costs with predictable results, such as path planning. Phoenix
uses an A* algorithm to calculate paths for bulldozers. It searches the two-dimensional
map representation of the world for the shortest travel time path between two points. It
expands the current best path incrementally, searching each unobstructed neighboring

cell for the best next step. The algorithm is parameterized to work at multiple levels of
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resolution, so that search steps could range from 128 meters up to 8 kilometers. A fine
resolution search step, 128 meters, yields the shortest path, requiring the least travel
time for the bulldozer. However, this resolution requires the most computation (i.e.,
cognitive resources). The largest search step, 8 kilometers, typically yields a longer
path, which requires more travel time, but can be calculated quickly, consuming less
computation time. At times it even fails to find a solution, since-there are bottlenecks in
the map that don’t appear at coarse resolution search steps. Each of Lhese resolutions
constitutes a different execution method for calculating a path, alternative methods
which trade-off cognitive-time for quality of solution. Which of these methods to use
requires evaluating the trade-off with respect to judiciously allocating processing time
to candidate actions.

The cognitive scheduler controls the overall distribution of cognitive processing time
across all actions. At each time step, it selects the next action from the timeline
to execute, chooses an execution method for the action, and executes it. Thus, the
scheduler is key to controlling the responsiveness of the cognitive component to real-
time constraints. The current version of the scheduler for Phoenix is rudimentary and
considers only a short horizon for scheduling decisions. It selects the next action for
execution based on timeline ordering, action priority and the amount of time an action
has been waiting for execution.

Our more sophisticated scheduler (currently being designed) will manage the re-
source reqqirements, time and other resources under contention, by constructing an
allocation schedule for the timeline. Because the timeline is constructed by lazy expan-
sion, the scheduler also will delay commitment on time allocation by setting specific
deadlines and allocations for near term actions and less specific ones for actions further
in the future. This strategy favors incremental modifications to the schedule in response
to critical conditions. Critical conditions are changes to the world that invalidate the
derived schedule, such as an action violating a deadline or unexpectedly contending for
resources. The incremental scheduling actions will be similar to those proposed by [9],

such as right shifting the schedule, re-ordering actions within a critical window, and
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swapping resource allocations between actions.

4.3 Using envelopes to monitor progress

Just as we can explicitly represent the movements of an agent through its physical
environment, so can we represent its movement through spaces bounded by failure or
other important events. These spaces are called envelopes. Typically, one dimension
6f an envelope is time, and the others are measures of progress. For example, imagine
you have one hour to reach a point five miles away, and your maximum speed is 5 mph.
If your speed drops below its maximum, for even a moment, you fail: As long as you
maintain your maximum speed, you are within your envelope. The instant your speed
drops below 5 mph, you lose or violate your envelope. This envelope is narrow, because
it will not accommodate a range of behavior: any deviation from 5 mph is intolerable.
Most problems have wider envelopes. Indeed, real time systems should be designed to
ensure that narrow envelopes are the exception, not the rule.

The following problem illustrates a wider envelope. A bulldozer has one hour to
travel five miles, as before, but its maximum speed is 10 mph. It starts slowly (perhaps
the terrain is worse than expected). After 40 minutes it has traveled just two miles. It
can still achieve its goal, but only by traveling at nearly maximum speed. Clearly, if the
agent waits 40 minutes to assess its progress, it has waited too long, because an heroic
effort will be required to achieve its goal. In Phoenix, agents check their envelopes at
regular intervals, hoping to catch problems before they get out of hand. One near-term
research goal is to develop a theory of envelopes that will tell us when and how often
they should be checked. _

Agents check fatlure envelopes, which tell them whether they will absolutely fail to
achieve their goals, and warning envelopes, which tell them that they are in jeopardy of
failure, or succeeding beyond expectations. Typically, there is just one failure envelope
but many possible warning envelopes. To continue the previous example, the bulldozer
would violate a warning envelope if its average speed drops below 5 mph, because this

is the speed it must maintain to achieve its goal. Violating this envelope says, “You can
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still achieve your goal, but only by doing better than you have up to this point.” These
concepts are illustrated in Figure 4. The failure envelope is a line from “30 minutes” to
“five miles,” since the bulldozer can achieve its goal as long as il has at least 30 minutes
to travel five miles. The average speed warning envelope is a linc from the origin to the
goal, but the bulldozer violated that envelope immediately by traveling at an average
speed of 3 mph. In fact, it moved perilously close to its failure envelope. The box in
the upper right of Figure 4, defined by the current actual progress, illustrates that the
agent can construct another envelope from any point in its progress. In this example,
the new failure envelope is extremely narrow: the bulldozer must cover the remaining

3 miles in 20 minutes, maintaining a 9 mph average speed that is close to its top speed.

v 5
/
/
4
) 3
i miles
2

0 10 20 30 40 50 60 elapsed minutes

Figure 4: Depicting actual and projected progress with respect to envelopes

Plan Envelopes and Agent Envelopes. We distinguish between the envelopes of
individual agents and those of multi-agent plans. In Phoenix, plan envelopes are main-
tained by the fireboss agent, who coordinates subordinate agents such as bulldozers®.

Because the environment changes, global plans may be put in jeopardy even if agents are

SThe hierarchical organization of coordination and communication among Phoenix agents is described

in {2].
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making progress that, from their local perspective, is well within their envelopes. Fig-
ures 5a and 5b illustrate plan envelopes as they are currently implemented in Phoenix.
Figure 5a shows the current state of the fire, its projected boundaries after one and
two hours, and the firelines that three bulldozers are expected to cut. By projecting
where the fire will be, then adding some slack time, the fireboss anticipates that the
last of these lines will be cut an hour before the fire reaches it. It creates two envelopes
based on this anticipation: a failure envelope that will be violated if the slack time
falls under an hour, and a warning envelope violated if the slack time rises above three
hours. Thus, if the fire grows faster than projected, or if the bulldozers fail to build line
as quickly as expected, the plan will fail. On the other hand, if the slack time increases
above three hours, the fireboss will be warned that there is too much slack time, which
indicates that the fireline is being built further from the fire than is necessary. Thus, the
envelope is parameterized to ezpect between one and three hours of slack time at any
point during plan execution. Should the slack time increase dramatically, the warning
envelope will be violated, suggesting that the fireboss consider resource conservation
measures such as redirecting the bulldozers to build line closer to the fire or sending
some back to base; should it decrease below one hour, the failure envelope will be
violated, triggering reassessment of the current plan with the possibility of replanning.

this figure will be split into two parts and reworked slightly... I've hardwired refer-

ences to Figures 5a and 5b for now...

In Figure 5b, we see the actual progress of the fire. After one hour it has grown less
than expected and falls short of the one hour projection line. The amount of slack time
grows correspondingly, since the fire will take longer to reach the fireline if it continues
to grow at this slower rate. The change in slack time is graphed at the bottom of
Figure 5b, which shows the plan to be maintaining its expected progress. During the
next hour, however, the fire grows more rapidly than expected - so rapidly, in fact, that
the failure envelope is violated. Sometime during this interval the fireboss will check
the plan envelopes and discover the violation. A typical response to this violation is to

send one or more additional bulldozers to increase the rate at which the fireline is dug.
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projected growth:
after one hour...

current fire after two hours
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firelines to cut

Figure 5: A growing fire with projections of fire spread and fireline used to create plan

envelopes
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Actual growth after one hour... after two hours

fireline:
undug ===

envelope

0 1 2

elapsed hours

Figure 6: A plan envelope for maintaining slack time
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Local plans for single-agent activities are carried out by field agents under the
direction of the fireboss. These plans are monitored by the field agents using agent
envelopes. In the example above, bulldozers are instructed by the fireboss to proceed
to points on the projected fireline and dig assigned segments. Each is given an expected
finish time for its segment, and creates an envelope to monitor its progress with respect
to this finish time. If it cannot maintain its envelope, it reports a violation to the
fireboss. The fireboss assesses the ramifications of this failure for the overall plan
(by consulting the plan envelope, among other things), and takes corrective action
if necessary. None of the bulldozers reports an envelope violation in the preceding
example; from each bulldozer’s local perspective, progress is satisfactory. In the absence
of failure reports, the fireboss assumes the fireline will be finished in the projected time
frame. The plan fails due to a change in the environment that violates the global

expectations of the fireboss about the growth of the fire.

The Utility of Envelopes. A planner can represent the progress of its plan by
transitions within the plan’s envelopes. Progress, failures and potential failures are
clearly seen from one’s position with respect to envelopes, whereas this information is
not always apparent from one’s position in the environment.

Envelopes function as early warning devices in two ways. First, explicit warning
envelopes alert the planner to developing problems. Second, failure envelopes can tell
an agent it has failed long before its allocated time has elapsed. In Figure 4, for
example, the agent knows it has failed as soon as it crosses the envelope. A third
kind of early warning has yet to be implemented: Just as a planner can project the
course of events in its environment, so it can project its progress within its envelope
and, particularly, when an envelope might be violated. A simple projection method is
extrapolation. For example, if we checked the envelope in Figure 5b, after 75 minutes
we would see a “downward” trend. By linear extrapolation we could estimate when the
envelope would be violated. Of course, the downward trend may reverse or level out,

but sometimes it will be worthwhile to have the projected time of envelope violation
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despite its uncertainty.

Envelopes integrate agents at different levels of a command hierarchy: A fireboss
agent formulates a goal and corresponding envelope parameters, and gives them to
a subordinate agent with the following instructions: “JIere is the goal I want you
to achieve. I don’t care how you do it, and I don’t want to hear from you unless
you achieve the goal or violate your envelope.” The subordinate agent then works
independently, not monitored by the fireboss. In the case of a bulldozer, it figures
out where to go, how to avoid obstacles, and how to keep clear of the fire, until its
goal is achieved or its envelope violated. Meanwhile, the fireboss is free to think about
other agents, other goals, or to replan if necessary. Envelopes grant subordinate agents
a kind of autonomy, and grant superordinate agents the opportunity to ignore their
subordinates until envelopes are violated.

We have yet to develop cognitive scheduling mechanisms to take full advantage of
envelopes. The design of these mechanisms is motivated by the following questions:
How often should envelopes be checked? Should we adopt a fixed interval or a dynamic
one, and if the latter, what execution methods will determine when to check next?
When should agents project envelope violations and how should they use the projec-
tions? Given that checking a plan envelope, or projecting progress with respect to it,
may involve collecting and integrating information from the environment and all the
participating agents, the cognitive overhead of these activities can be considerable and

must be carefully scheduled.

4.4 Conclusion

To date, most of the work in the Phoenix project has been devoted to the design
and implementation of the simulator and the agent architecture. Qur research currently
focuses on defining methods for controlling the architecture and expanding the plan
library for specific agents.

The methods described in Section 4 are the building blocks of an integrated ap-

proach to addressing the real-time demands of the Phoenix environment. Execution
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methods will be selected and allocated processing time based on estimates of other
processing requirements by the cognitive scheduler. The cognitive scheduler will use
envelopes to monitor the processing requirements of the potential actions and the ex-
ecution of pending actions. For example, ideally the fireboss should give a bulldozer
some instructions and an envelope, and then forget about the agent until the envelope
is violated or the agent succeeds. Imagine that the fireboss gave its agent a warning
envelope, and eventually the agent reports that it is violated. The fireboss can now
assess the agent’s progress within its envelope. By projection it can determine when
the agent is likely to achieve its goal. How far is the agent from its goal? If it is nearby,
the delay might be acceptable. But if the agent still has a long way to go, then it will
violate its failure envelope relatively soon. By determining that the agent’s current
action is probably doomed to failure, the fireboss can start formulating an alternative
goal immediately, and can know when it should redirect the agent, assuming progress
doesn’t improve. Currently, envelopes provide the data necessary for this kind of rea-
soning, but our cognitive scheduling algorithms are not sophisticated enough to use
it. As both envelopes and the cognitive scheduler are developed, the two will become
integrated toward more informed scheduling, and an agent better able to respond to

the real-time pressures of the fire fighting domain.
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