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Abstract

We describe the roles of evaluation in empirical Al research—in an idealized cyclic
model—and in the context of three case studies. The case studies illustrate pit-
falls in evaluation and the contributions of evaluation at all stages of the research
cycle. We contrast evaluation methods with those of the hehavioral sciences and
conclude that AI mnst deline and refine its own methods. To this end we describe
several experiment “schemas” and many specific evaluation criteria; and we offer
recommendations that we hope will encourage the development and practice of
evaluation methods in Al
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1 Introduction

Evaluation means making observations of all aspects of one’s research, and perhaps
making some judgments of merit based on those observations, and reporting both to
the research community. In Al, evaluation should not be limited to observing and
judging only how our systems perform. It is a vital part of all the stages of research
that lead up to performance evaluation and that follow it. For example, the informa-
tion retrieval system we will discuss in Section 3.2 performed well in comparison with
traditional statistical systems; but after analyzing its behavior we could see plenty of
room for improvement—many simple modifications that we expected would improve
performance. This observation is not a performance measure, but tells us informally
about the current state of a program, whether its performance is likely to improve or
has reached a limit, how easy it is to modify, and so on. These observations are in some
respects more important than simple performance measures because they tell us how
research should proceed. Evaluations should provide ongoing guidance at all stages of
the research cycle.

So ideally, evaluation should be a mechanism by which AI progresses both within
and across individual research projects. It should be something we do as individu-
als to help our own research and, more importantly, on behalf of the field. We must
observe and report our research carefully because our colleagues cannot. In other em-
pirical fields, evaluation includes describing experiment designs, results and analyses.
But this is difficult in AI because experiments often involve uncontrolled interactions
of knowledge representations, inference methods, algorithms, and the user; and re-
searchers typically do not have access to run-time data and programs, at various stages
of development, from other laboratories.

Consequently, individual AI researchers have an unprecedented responsibility to
observe, assess, evaluate, and communicate their results. Many do. But if a researcher
doesn’t tell us, for example, that a program was tuned to perform well on a particular
data set, then we will never know. Tuning programs is not necessarily bad; in fact, it
is a good empirical way to discover the best possible performance of a program (see
Sec. 4.1). We are being pragmatic, not moralistic, when we use the terms “good” and
“bad”: It doesn’t help Al if, for sound experimental reasons, one tunes a system, but
then allows the research community to believe it will perform in general as well as it
performs in the best cases. The community also needs to know the number of cases
on which one’s system has run, how much help it got from the user, the size of the
system, how difficult it was to scale up, and so on. These general assessments, as well
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as the specific ones discussed in Section 2 and the Appendix, are owed by individual
researchers to the field.

Evaluation is not standard practice in part because we don’t have formal research
methods, standard experiment designs, and analytic tools. Where will they come from?
The fundamental challenge is that we must develop them ourselves. We must refine
existing, rudimentary evaluation practices and develop new ones. But they must be
appropriate to empirical AI; we are better off without them if they impede progress.}
We advocate evaluation not out of envy for “real science,” but because we believe
Al needs evaluation to move forward. Thus, as a field, we are not obliged to adopt
“scientific” evaluation criteria (see Sec. 4), but should design our own.

We approach the topic of evaluation from the perspective of Al researchers. Our
evaluation criteria and methods are designed for empirical Al research (see [4,26,19] for
complementary discussions). The purpose of empirical Al is to tell us about the behav-
ior of Al systems—the interactions of knowledge representations, inference methods,
algorithms and other components of systems that we could not anticipate from purely
theoretical AI. We differentiate empirical Al from applied Al: Though both involve
building systems, the goal of empirical Al is to develop and systematically experiment
with new methods; in contrast, applied Al relies on methods we already understand
and rarely contributes new ones (see [13,12,29] for discussions of evaluating applied
systems). |

This paper is offered as a first step in what we hope will become a discourse on
evaluation in empirical Al. Section 2 describes a multistage model of empirical Al
research and the roles of evaluation at each stage. Section 3 presents three case studies
of evaluation. Section 4 discusses the relationship between evaluation and progress in

empirical Al, contrasting it with other behavioral sciences. The Appendix presents five
classes of evaluation criteria—a checklist for researchers.

'One of us was trained in cognitive psychology but quit because its reductionist, rigorous, one-
hypothesis-at-a-time methodology seemed on balance to be counterproductive. Newell expresses this
view in a paper called “You can’t play 20 questions with nature and win” [25); and Neisser relates a
similar concern for the “ecological validity,” or validity outside the laboratory environment, of psychology
research in his book Cognition and Reality[23).



2 Evaluation of an empirical AI project

Empirical Al research can be viewed as a cyclic, multistage process.? The process is
cyclic because analysis of our programs invariably suggests new problems (as illustrated
by the arc from the last stage in Fig. 1 back to the first); and because evaluation at every
stage can cause the researcher to reformulate or refine results from previous stages. For
example, when designing a method for solving a problem (stage 1, Fig. 1), we often find
that the problem is ambiguous, overambitious, or underspecified and must be refined
(stage 1, Fig. 1).

The model of empirical Al research in Figure 1 is idealized because not all research
includes all these stages, and, more importantly, researchers don’t evaluate their work
at each stage. In this section we will discuss the advantages of evaluation at all stages
of one’s research, that is, we will show why it is worth following this idealized model.

Toward this goal, we also suggest specific evaluation criteria for each stage of the model
in Tables 1-5 of the Appendix.

Stage 1: Refining a topic' to a task Empirical Al begins when researchers find
particular topics fascinating. The first stage of the research cycle involves simultane-
ously refining the research topic to a task and identifying a view. A task is something
we will want a computer to do, and a view is a “pre-design,” a rough idea about how
to do it. This stage takes a lot of effort; researchers don’t simply say, “Ok, we are
fascinated by discovery, so let’s try mathematical discovery as a task and heuristic
search as a view” {20]. The process is iterative and directed by evaluations (as are
all other stages in Fig. 1): Is the task significant, tractable, and representative of the
phenomena we want to study? Is the view completely novel or adapted from a different
task? Is it appropriate to this task? Is our goal to explore the efficacy of an extant
view for a new task, or to explore a new view of an extant task? We call the latter
“reformulation”—looking at a well-known task in a new way. Reformulations can be
ma jor (e.g., view problem solving in terms of domain-specific knowledge instead of weak
methods) or more modest (e.g., view uncertainty as a problem to be solved instead of
a phenomenon to be measured).

Evaluations during this stage direct one’s own research, and also provide the Al
community with carefully justified tasks, views, and reformulations. The evaluation
criteria in Table 1 of the Appendix address two basic questions: can you justify the

research task to yourself and to the community, and do you understand what will be

2Buchanan [4] describes a similar model.
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Figure 1: Cycle of Empirical AI Research



required to solve it?

Stage 2: Design the method At the next stage, one’s view is refined to a method.
The word “method” implies a single algorithm, such as 4 [1] or candidate elimination
[21], or Waltz filtering [31]. But frequently, the method for a task combines several
algorithms and assorted knowledge structures. For example, the island driving method
in Hearsay-II required many knowledge sources, data-driven and opportunistic control,
and a novel communication structure {11]. Although this complexity strains the word
method, we will maintain it to remind us that we don’t jump immediately into building
programs, but first decide how we want to solve tasks.

Designing a method is an iterative process guided by evaluation: what is the scope
of the method, what are its underlying assumptions, does it rely on other methods, is it
an improvement over existing technologies? How efficient is the method? How brittle is
it? Are limitations inherent, or can the method be extended? Our field has few formal
criteria for evaluating methods, yet the method is often the general contribution to the
field. Table 2 in the Appendix presents criteria that assess how well you understand
your method—its advantages and limitations.

In many cases, the method cannot be evaluated until it is implemented in a pro-
gram. But let us first consider two cases in which programming is not necessary for
evaluation. First, some methods can be evaluated analytically without programming
(e.g., 4" search, candidate elimination). The purpose of these evaluations is to tell the
research community about the scope, efficiency, limitations, and other aspects of the
methods. Second, a method may already be so well understood that neither imple-
menting it nor evaluating it will tell us anything we do not already know. Now, in both
cases, exploratory programming may help us refine the method we want to solve the
task, but we distinguish this role of programming—refining a method—from program-
ming for the purpose of experimenting with and evaluating a method. Unfortunately,
exploratory programming drifts easily into building systems, and we begin to focus on
solving the task, and forget that, from the standpoint of empirical AI research, the
purpose of building systems is to tell us something about our methods that we don’t

already know and can’t learn by analysis. We build too many systems and evaluate
too few. ’

Stage 3: Design and build a program If the method requires programming not
merely to implement it, but to understand whether and why it works, then we move on
to the third stage in Figure 1. Here, the method becomes a design and then a program.
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Although in practice this stage may be indistinguishable from exploratory program-
ming in the previous stage, its purpose is different. Consequently, the evaluations we
do at this stage are different. Evaluation, at this stage, mostly involves checking that
your program implements as much of the method as you wished to test, and that its
demonstration of interesting behavior is transparent (these two checks are operational-
ized in the criteria in Table 3 in the Appendix). Unlike the earlier evaluations of tasks,
views, and methods, evaluation at this stage is primarily for the individual researcher,
not for the community at large. Its purpose is to direct the implementation of the
method in a program that can be evaluated.

Stage 4: Design experiments The fourth stage of the research cycle is to design
experiments with the newly-implemented system. These experiments help assess the
utility, generality and efficiency of the methods and their implementations. Criteria for
evaluating experiments (as opposed to their outcomes) focus on whether test cases will
be informative, that is, whether they span the range of abilities claimed for the method,
whether sufficient numbers of test cases will be run, and whether the performance
measures and standards are appropriate (the full set is presented in Table 4 in the
Appendix). In practice, stages 3 and 4 are interleaved: one doesn’t implement programs
before thinking about experiments. Section 3.1 illustrates the pitfalls of designing a
program without considering the experiments. The purpose of these evaluations is to

convince the individual researcher and the research community that expenments are
sound—that they demonstrate what they purport to.

Stage 5: Analyze experiment results The method has been implemented in a
fully-instrumented program, the experiments are well designed, and now we can ask
whether the system works and why it works. How does it compare to its performance
standard? Did it perform differently than expected? Is it efficient? What are its
performance limitations? What happens if we change the control strategy, or try a
new set of test cases, or remove some of its knowledge? What if we manipulate several
of these factors at once? After all, the point of building the program was to find out
how the complex interactions of components of our method affect performa.nce In many
different conditions. Many research computer programs disappear shortly after they are
written; their legacy is not their binary representation, but rather the new knowledge
they reveal. The results of experiments and generalizations based on those results are
the primary contribution of the research project to the community (the criteria for this

stage are summarized in Table 5 in the Appendix). So the purposes of evaluation at
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this stage are to convince the research community of the viabilitity, performance and
scope of one’s methods, and to suggest further research.

In sum, evaluations at each stage in Figure 1 tell us whether to proceed to the
next stage, repeat the current stage or return to a previous stage; and at most stages
they also provide the research community with information about what we are doing
and why. Evaluation informs our research by telling us, as soon as possible, that we
have refined a fascinating topic to an intractable task, that our ingenious view of the
task is too ambiguous to turn into a design, that our design doesn’t address the most
interesting aspects of the task, or that our implementation—though faithful to the
design—simply doesn’t work. If we complete one cycle of research, we need evaluation
criteria to direct the next one. And if we are able, in the course of several cycles,
to understand our task, then we need evaluation criteria to tell us how to refine the
original topic to another, related one.

3 Case studies

This section illustrates the research cycle and the role of evaluation in the context of
three case studies. Our first case study illustrates problems with evaluating knowledge-
based systems, specifically a portfolio management expert system called FOLIO 8].
When we developed FOLIO, we didn’t think through the details of the evaluations,
so when we finished we discovered we couldn’t do any convincing evaluations. The
second case study focuses on the relationship between evaluation and the evolution of
the GRANT system, specifically how our evaluations changed as we scaled up GRANT’s
knowledge base. Third, we examine the cyclic nature of the research model presented in
Section 2. We describe how the results of analyzing Dominic, a mechanical engineering
design system, led to more powerful versions of the system.

3.1 FoLio

As an exercise in evaluation, FOLIO was only marginally successful. In prospect,
we learned that unless one evaluates a research project at all stages, one may end up
with a system that cannot be evaluated. Ironically, FOLIO seemed promising because
we believed that portfolio performance was an objective evaluation criterion. What we
failed to consider was that the performance of the portfolio was not what we should
have been measuring—the appropriate criterion was whether the client’s goals had been

satisfied, and there was no objective measure of that criterion.
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Investors often engage investment advisors or portfolio managers to help them man-
age their capital. FOLIO was an expert system that advised clients on asset allocation
problems, in which clients’ investable capital is divided among several funds [8]. For
example, the assets of an elderly, retired individual might be allocated primarily to
bonds and, in a lesser part, to blue-chip stocks. The proportion of the client’s assets
in each fund depends on many factors, some of which are provided by the client (e.g.,
risk tolerance, age, health, desired standard of living) and some of which are inferred
(e.g., whether the client needs a hedge against inflation). To solve asset allocations
problems, FOLIO divides clients’ capital among several funds in such a way as to satisfy
their stated and inferred goals and needs, and maximize after-tax income.

FOLIO’s task was first to collect data from a client and infer how much the client
cared about each of fourteen goals, then to use the desirability of these goals to de-
termine the proportion of assets allocated to each of nine funds. We began to view
the problem in two distinct ways: inferring the client’s goals seemed like a standard
classification task [5], for which we might use conventional expert systems methods; but
constructing the portfolio to best achieve the client’s goals seemed like an optimization
problem. In fact, neither view is sufficient alone, so we adopted a hybrd view in which
goals are inferred from client data, and then are passed to an optimization program
that constructs the portfolio. We refined this view to a specific method: First, client
data drive a rule-based expert system to infer goals and needs. These are represented
on the right-hand sides of the rules as components of an objective function and lin-
ear constraints for a goal-programming algorithm [15]. Then the algorithm produces
a portfolio. In short, the expert system configures an optimization program, which
produces a portfolio.

We attempted to evaluate FOLIO’s performance by what we call the CC’ script: one
set of cases, C, is used to develop the program, typically to a high level of performance,
and another set, C’, is used to test whether that level can be achieved in novel cases.
The CC' script requires a measure and a standard, both of which proved problematic in
FOLIO. The obvious approach is to have the expert and FOLIO both produce portfolios
for the N cases in C’, then generate three measures:

hit rate: the number of identical portfolios divided by N

miss rate: the number of portfolios generated by the expert but not by FoLIo, divided
by N

false-positive rate: the number of portfolios generated by FOLIO but not by the expert,
divided by N.
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This approach, in which the expert’s solutions are the standard of comparison, works
well when problems have only one correct solution. But in asset allocation problems,
many portfolios may satisfy the client’s goals equally well. In fact, FOLIO and the
expert never produced identical portfolios. In such cases, measures that depend on
identity (e.g., hit rate) are inapplicable unless the expert can somehow be coerced into
generating all acceptable solutions to each problem. Even this will not work unless
there is some way to tell that all solutions have been generated (see Sec. 3.2 for a
variant on CC’ that addresses this problem). So to evaluate FOLIO, we could really
only ask the expert whether the system’s portfolios were acceptable. This is a much
weaker evaluation criterion than having the expert generate portfolios independently,
because the expert may allow himself to be convinced that FOLIO’s recommendations
are acceptable .(the variant on CC’ discussed in Sec. 3.2 also controls for this problem).

This raises the question of when expert judgments are appropriate standards of
comparison for expert systems. Portfolio managers are notoriously inconsistent, raising

- the possibility that one’s “expert” isn’t really, and perhaps shouldn’t be the standard
of comparison.® One approach here is to have several standards of comparison. For
example, the MYCIN system was evaluated against ten judges: five nationally-known
experts, and five with varying levels of medical training [30]. The nonexpert judges
were, in effect, a control condition to show that MYCIN is an ezpert system, that is, a
system that solves problems that only experts can solve correctly. We tried this kind of
group evaluation with other portfolio managers, but we could get no consensus about
FOLIO’s recommendations.

Before leaving FOLIO, let us consider what purposes its evaluation should have
served. The research community doesn’t care about the performance of yet another
expert system: the community needs to know why a system works or doesn’t, espe-
cially a system like FOLIO that merges Al and operations research (OR) techniques. Its
evaluation should have pointed out the advantages, disadvantages, and impediments in
developing hybrid AI/OR systems. These assessments are not performance evaluations
so much as comments on the viability of a new technology. We made some observations
of this kind, but never thought to report them, because at the time we thought evalu-
ation was limited to performance. For example, FOLIO’s goal-programming algorithm
often produced portfolios that, though optimal, were judged “extreme” bfy the expert.
Where the expert would have mixed half a dozen funds to achieve a “balanced” effect,
FOLIO would recommend, say, 60% extremely conservative bonds and 40% extremely

3This question should not imply a lack of confidence in FOLIO’s consulting expert, who has been

highly regarded by his colleagues and clients for many years.
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risky stocks. Extreme solutions are characteristic of many optimization techniques, and
may present impediments to hybrid AI/OR systems. We also observed that FOLIO’s
rule-based component was very hard to debug, because it was designed to configure
the objective function and linear constraints of the goal-programming algorithm, which
was itself a black box. Thus, given a bad portfolio, it was virtually impossible to tell
which rules ought to be changed. Quantitative performance evaluations are certainly
important, but in FOLIO they were difficult to obtain and believe. We failed to realize

that, ultimately, the more qualitative assessments are more informative and valuable
to the research community.

3.2 GRANT

GRANT finds sources of research funding given research proposals [6]. The principle
difference between GRANT and most other information retrieval (IR) programs is that its
retrieval algorithms finds funding agencies based on semantic matches between research
proposals and the agencies’ research interests. For example, if a research proposal
mentions hemoglobin, GRANT will find agencies that support research on blood,
even if they don’t specifically mention hemoglobin in their statements of interest. This
semantic match is judged potentially productive because hemoglobin is a component of
blood, and agencies that support research on substances or phenomena often support
research on their components.

GRANT performs a common IR task—a researcher describes his or her interests and
GRANT suggests potential sources of funding—but it is based on an unusual view. The
view is that funding agencies will be indexed by nodes in a large semantic network, so
that researchers don’t have to use the exact words an agency uses in its statement of
interest, but can use semantically-related words. The agency may say “blood” and the
researcher “hemoglobin,” but they will be matched up anyway. The problem with this
view is that chains of semantic relations can be found between any pair of nodes in
GRANT’s network, so it is possible to link a proposal that mentions blood with an agency
that mentions, say, air, because blood is part of the respiratory system, which processes
air. The view we finally adopted in GRANT is called constrained spreading activation:
a proposal activates nodes in a semantic network, and activation spreads through the
network only on particular paths, until it activates nodes associated with agencies. The
specific method uses an agenda of active nodes and rules to prune spreading activation.
For example, one rule says that you cannot spread activation first over a component- .
of relation (e.g., from hemoglobin to blood), then over a has-component relation
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(e.g., from blood to leucocyte), because if a researcher wants to study one specific
component of a substance (hemoglobin), he or she probably does not want to study
some other component of that substance (leucocytes).

We have evaluated GRANT extensively at all stages of its development, focusing
specifically on the constrained spreading activation method. Performance evaluations
were based on a variant of the CC’ script (see Sec. 3.1). Instead of having the expert
and GRANT solve a common set of problems, we had the expert judge the performance
of a “dumb” version of GRANT, then used these judgments to generate performance
measures for a “smart” version. The dumb version spreads activation to all nodes
that can be reached by following up to four relations from each of the original proposal
nodes. We call this the dumb set. The smart version constrains this activation, and so
finds a subset of the dumb set, called the smart set. The expert judged whether each
of the agencies in the dumb set were appropriate or inappropriate. Since the dumb set

is a superset of the smart set, the expert’s judgments were the basis of the following
measures on the smart set:

recall: number of agencies judged good by the expert and GRANT, divided by the
number of agencies judged good by the expert (also called hit rate).

fallout: number of agencies judged good by GRANT and bad by the expert, divided by
the number of agencies judged good by GRANT (also called false-positive rate).

These measures were adopted from the IR literature [28]. When possible, comparison
studies should use as measures the established performance norms of the domain.

The smart/dumb approach is a good control for a problem we mentioned earlier,
that when experts judge the performance of an expert system they may feel biased to
accept marginal answers. This is especially problematic when the expert can construct
a plausible explanation on behalf of the system; for example, in both FOLIO and GRANT
the expert could say “yes, I can see a reason for selecting this fund (or agency) and
since the system has a reason, I won’t criticize it.” In fact, the “reason” was usually
illusory, a reflection of the expert’s own post-hoc explanation and justification of poor
performance. In such cases, comparison studies of performance must have a control
condition—a set of test items that are expected to be wrong. In GRANT the control
condition was the dumb set minus the smart set. '

In the early days of the GRANT project, we were very encouraged by high perfor-
mance. In a network of about 2000 nodes and 50 agencies we had roughly an 80%
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recall and a 32% fallout rate. This is much better performance than ordinary keyword
search, which may have a fallout rate as high as 90%.4

More recently, the numbers are much less gratifying. When we increased the size
of the network to 4500 nodes and 700 agencies, the performance dropped to 67% recall
and 71% fallout. In {7] we reported on several experiments to discover why performance
dropped. Perhaps the most surprising result was that just three rules for constraining
spreading activation accounted for 85% of the agencies the expert said were good and
42% of the agencies he said were bad. Clearly, these rules need to be replaced by others
that apply in fewer cases but with more discriminatory power. When we tried this, in
a very brief experiment, we improved performance slightly.

The GRANT project shows that evaluation is more than just proving your system
works. Otherwise, we could have quit GRANT after we built our first, small, high-
perfonhance system. Why not quit there? Because we need to know whether our
methods are equally effective when our systems are scaled up, and whether limitations
on their performance are fundamental.

The first reason is important because almost all empirical Al systems are small. We
rarely acknowledge this, so we can be misled by apparently glorious, very small results.
For example, working in our lab last year a decision analyst and a plant pathologist set
out to compare decision analysis with a standard expert systems approach to diagnosing
root diseases. This brief empirical study lasted just four days. The first three were
spent interviewing the plant pathologist to structure the decision analysis and acquire
the required probabilities and utilities. We capitalized on this problem-structuring
phase on the fourth day and, in a couple of hours, built an expert system with slightly
greater functionality than the decision-analytic system. Later, the decision analyst
and the plant pathologist published their conclusion, that decision analysis is a viable
approach to building expert systems [14]. They acknowledged that the study was too
small to say anything conclusive. The dissenters in the lab argued that building decision
analyses is an impossibly slow process because the time required to get probabilities
from experts increases combinatorially. Who was right? We will never know, because
the expert sysiem that duplicated the decision analysis contained only nine rules. One

cannot draw any conclusions about the relative merits of two technologies when the

systems are so small.

*For example, the keyword system used by the Office of Research Affairs at the University of Mas-
sachusetts, for whom we built GRANT, finds roughly 200 agencies for each search, of which only 5 or
10 are worthwile. GRANT, in the early days, would find about 15 agencies of which at most 5 were not
worthwhile.
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Often, a technique that works on a small problem will not work on a larger one. Al
has a responsibility to at least consider the question of whether techniques will scale
up. It isn’t necessary to build a system that is 500% bigger, as we did in GRANT, if one
can address the question analytically. For example, we know from the mathematics of
decision theory that the number of probabilities required from an expert will increase
combinatorially unless the decision analyst structures the problem very carefully. Thus
we can say analytically that scaling up depends on the skill of the decision analyst. In
either case, empirically or analytically, we must address the question.

The second reason to continue a project after it has succeeded is to find and explain
the limitations of a method. Had we quit the GRANT project when it had an 80% recall
and a 32% fallout rate, we would never have known whether these rates are inherent,
or could be improved, and if the latter, at what cost. Whenever one invents a new
technique, such as constrained spreading activation, one must find its bounds. Where
does it break, and why? It is not sufficient to demonstrate that it works—that is only
half the story. Unfortunately, Al researchers rarely do the other half.

3.3 Dominic

Dominic is a long-term research project to investigate automated, domain-independent
mechanical engineering desigh. It is based on the view of design as iterative redesign
[10].* In iterative redesign, a rough initial design is gradually refined in a four-step
cycle. The first step is to suggest relatively small design changes that are intended to
improve one facet of performance; the second is to predict the effects of those changes
on overall performance; the third is to modify or replace the proposed changes; and
the fourth is to implement changes that are predicted to improve performance. This
iterative cycle produces hill-climbing search tailored to problems in which the exact
shape of the hill is unknown and the cost of taking a step may be high. The hill is
described by design variables and design goals. At each step, the value of a design
variable is changed to produce a favorable change in the performance on a particular
design goal. The levels of performance on individual design goals are combined into an
overall evaluation of the design, which is the height of the hill at that position.

Dominic’s iterative redesign method divides the design process into a series of small

decisions: which design goal to work on, which design variable to change for that goal,

®Jack Dixon, a professor of mechanical engineering at University of Massachusetts, is the principal
investigator. We participated in the development of Dominic-I and Domineering. Jack Dixon and Mark

Orelup have continued the project.
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which new value to pick for the design variable, whether to modify, accept or reject
the proposed change, and when to stop. To make these decisions, Dominic-I, the first
program to result from the project, relied on two kinds of knowledge [16]. The first,
called the dependency order list assigns precedence to design variables. The second,
called the dependency table, relates changes in design goal values to changes in design
variable values. Many cells in the dependency table are empty or approximate initially,
but Dominic can update them as it runs.

Dominic-I performed adequately in two domains compared with the designs of stu-
dents, experts, and problem-specific programs. It was always better than the students,
usually better than the experts and sometimes better than the problem-specific pro-
gram.

But Dominic-I’s principle contribution was less its performance than its utility as
an experimental environment for testing our ideas about control in iterative redesign.
In Dominic we followed closely the research cycle presented in Section 2. Thus, the
next phase of the project, given the working program, was to design, run, and analyze
the effects of control on performance. This involved instrumenting the program, and
adding explicit mechanisms to allow us to easily reconfigure the program with alternate
control strategies. We ran experiments on 125 different configurations and analyzed
their effects on Dominic-I's performance, which was evaluated on the quality of its
designs, the time required to find the best design, the number of implemented design
changes that decreased performance (instead of improving it as expected), and other
measures related to output results and search efficiency. The analyses of these results
suggested improvements in Dominic that led directly to two other programs in the
Dominic family: Domineering and Dominic-II.

Domineering was built to learn the best configuration of Dominic-I for particular
design domains [17]. In effect, Domineering is Dominic-I applied to itself. Dominic is
used to design the best configuration of Dominic. The alternate control strategies men-
tioned above provided the design variables, and the performance criteria provided the
goals. Domineering would configure Dominic-I, run it on a problem from the domain
in question, observe its behavior on the performance criteria, and redesign Dominic-
I’s configuration based on learned relations in the dependency table. Domineering
did produce configurations of Dominic-I that had better performance, but it required
tremendous amounts of processing. This precluded analyses as detailed as those un-
dertaken for Dominic-I. Even so, the program was clearly an evolutionary dead-end: it
couldn’t give us a better Dominic except by enormous effort. But because Domineering

demonstrated the efficacy of configuring Dominic for particular problems, it suggested
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a less radical approach with similar benefits.

Evaluations of Dominic-I and Domineering convinced us that Dominic’s configuration—
its control strategies—strongly affected its performance. In terms of the research model
discussed earlier (Fig. 1), we had completed the last stage and were poised to begin
the cycle anew. For Orelup and Dixon, who continued the project, Dominic-II {27]
became the focus of the new cycle through the model. Its task was more ambitious: it
monitored its own performance and dynamically modified its control strategy to main-
tain high levels of performance. The view of design as iterative redesign was refined
and elaborated; Orelup and Dixon identified six pathological behaviors that arose in
Dominic-I, and six control strategies to apply individually and in sequence to fix the
problems. To specify a method, these pathologies were operationally defined and two
algorithms were developed: The first detected the pathologies in Dominic-II’s design
behavior, and the second determined which of the six strategies to apply to correct the
problems. At this point, the Dominic-II project was at the end of the second stage
of the new cycle. Clearly, it engendered a set of hypotheses about the efficacy of dy-
namic control that could not be tested except by implementing them in a program.
Dominic-I was modified accordingly. Orelup and Dixon then tested the system on 27
cases in five domains (hydraulic cylinders, I-beams, post and beams, V-belts, and so-
lar heating systems). All the cases were presented to both Dominic-I and Dominic-II.
This comparative experiment design demonstrated that, in Dominic, dynamic control
significantly improves performance: In all design domains, Dominic-II generated more
designs, often of better quality and in fewer iterations, than Dominic-I.

The Dominic project illustrates the iterative nature of empirical Al research and
the importance of evaluation. Evaluations tell us that Dominic-II was a significant
improvement over Dominic-I; but more importantly, Dominic-II probably could not
have been designed without the information provided by evaluations of Dominic-I and
Domineering.

4 Discussion

We think of progress in AI, and thus the purpose of evaluation, in terms of conti-
nuity, replication, and generalization. Continuity within a laboratory, as we saw in the
Dominic project, means that evaluations of each research project motivate the next.
Continuity from one laboratory to another often begins by replicating results from the
original laboratory (i.e., solving the same problem or one with similar characteristics).
The pragmatic reason for this is probably that each empirical Al project has a large
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software base that, if not copied directly from another laboratory, must be reimple-

mented. Its fortuitous methodological consequence is that slightly different problems

are solved in slightly different ways, making replication and generalization possible.
Consider this hypothetical case of replication and generalization:

One laboratory builds a system to diagnose electrical faults, then an-
other builds a similar system for diagnosing chest pain. Evaluations of the
first system show that its control strategy, which depends on a causal model
of the behavior of electrical circuits, blows up when faults can have many
causes. The problem is addressed in the second system by providing proba-
bilistic rankings of, in this case, causes of chest pain. Eventually, a visiting
Bayesiaﬁ formulates the control strategy in terms of a decision analysis.

Although we can all think of examples of this kind of progress in empirical Al, we
shouldn’t delude ourselves that it emerges from a rigorous methodology as it does in
other sciences. Where other sciences have standard experimental methods and analytic
techniques, we have faith—often groundless and misleading—that building programs
will somehow be informative. Where other sciences expect specific aspects of research
to be presented (e.g., hypotheses, related research, experimental methods, analyses and
results), empirical Al has no comparable standards.

Empirical Al suffers by comparison with established sciences because its experi-
mental methods are tacit; because its general cycle of research, described above, is
misperceived as “just building programs” and thus is confused with applied Al; and
because the methods and statistical analysis techniques that have become associated
with “the scientific method” are largely inapplicable. Although empirical Al is a behav-
ioral science that, like psychology, economics, and sociology, is concerned with thought
and action in intelligent agents, the established experimental methods of these fields
are inappropriate. Unless we understand why this is, and its implications for replica-
tion and generalization, we run the risk of self-defeating “science envy”—the sense that
we are just a bunch of ingenious programmers, not real scientists—when we should be
refining and inventing methods that are appropriate to empirical Al

The following excerpt highlights differences between experimental methods in the
established behavioral sciences and empirical Al Fortuituously, the excerpted research

draws on several fields, including physiological, abnormal, and developmental psychology.®
Hereafter, we refer to the excerpt as the autism article.

®Qur own experimental methods are, of course, impeccable: We obtained the first sentences of this

selection by opening a random volume of the journal Cognitive Development to a random page.



18

We wanted to determine whether a specific relationship exists between
language ability and pattern of hemispheric specialization in autism.. . . Averaged
cortical evoked responses to speech and nonspeech stimuli were recorded
from the left and right hemispheres of autistic children and age-matched
normal children. The evoked-response protocol was designed to be similar
to that used by Molfese (1975) with normal infants. ...To assess whether
the autistic and normal groups differed in their mean amplitudes of the N1
and P2 components, a multivariate approach to repeated-measures analy-

sis of variance was used. ... The MANOVA ...yielded a significant overall
effect, F(4,29) = 3.57, p < .02.[9]

Although it is difficult to tell exactly what is going on here (since we extracted
very small parts of the article), one can see fragments of an established format for
journal articles, established experimental methods (the reference to Molfese’s proce-
dure) and established statistical analysis techniques (the MANOVA). The experiment
design incorporates the fundamental idea of a control condition (age-matched normal
children). More fundamental still, and implicit in the statistical analysis, is the idea
that hypotheses about causal relations (e.g., between language ability and pattern of
hemispheric specialization in autism) are accepted if evidence for them could not have
come about by chance; and that accepting them is actually ‘an inductive generalization
from a sample (e.g., autistic children) to the population from which the sample was
drawn. ,

All this methodology is in service of a larger goal, in this case to find out about
hemispheric specialization and the language abilities of autistic children. A closer look
shows that the purpose of the research is just to demonstrate that a relationship ezists
between hemispheric specialization and language in autistic kids. Whereas this article—
and much research in the behavioral sciences—is concerned with teasing apart the
components of behavior and their causal interrelationships, empirical Al is concerned
with putting all those components together in one box to produce behavior. This
fundamental contrast is echoed in completely different styles of experimental research.

In the behavioral sciences, the basic question is “Why do organisms (or organiza-
tions) perform this way?” It is answered by two very general methods. -Otne involves a
broad search for factors that influence behavior, and is facilitated by statistical “discov-
ery” techniques such as factor analysis, multidimensional scaling, and cluster analysis.
The more common approach is called statistical hypothesis testing. The idea is to
isolate a very small number of causal hypotheses in an experimental condition (typi-

cally less than three), and demonstrate performance differences between this condition
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and its corresponding control condition. Statistical hypothesis testing should not be
confused with simply collecting descriptive statistics. It is actually a form of induc-
tive inference. For example, the autism article set up a comparison between autistic
and age-matched normal children (the experimental and control groups, respectively),
measured differences in the mean amplitudes of N1 and P2 components (the dependent
variable), and found by a MANOVA procedure a significant difference at the p < .02
level. “Significant” means that the difference was extremely unlikely—a probability
of less than 2%—to have happened by chance. Since the result was obtained from a
statistical and presumably representative sample, one can then inductively generalize
the result to the population; in this case, to autistic children.

In empirical Al the basic question is “What knowledge, algorithms, representations,
.+, and control strategies do we need to make an organism (or organization) perform
this way?” The basic method, as we noted earlier, is an evolutionary cycle of tasks,
views, and implementations. We demonstrate empirically that interactions of particular
components will yield particular kinds of behavior. Our task is not to find out how
the average human organism (or organization) works; but rather, to build artificial
systems that work in particular ways. Because we are not trying to reduce complex
phenomena to their causal antecedents, we do not need to run large groups of sub jects
in experimental and control conditions, testing hypotheses that differences between the
conditions are due to chance.

This comparison is not intended to imply that all behavioral sciences besides em-
pirical Al are entirely reductionistic. An obvious counterexample is the work of Jean
Piaget, whose structuralist psychology (or, as he preferred, “genetic epistemology”) has
much in common with AI (e.g., {2] Ch. 7). Piaget’s early work with his own children
asks essentially the same question as we ask in empirical AL: “If I was designing an
organism to behave this way, what internal structures would it need, and how would
they develop?” Nor do we mean to imply that statistical discovery and hypothesis
testing have no place in, say, Piaget’s work or in empirical Al Indeed, thousands of
experiments have been run to find out how Piaget’s “design for a child” performs in
different conditions; and in empirical AI we would expect statistical hypothesis testing
to help us tease apart the complex and unanticipated interactions of components of
our systems. But we are saying that the experimental designs and analytfic techniques
that are associated with the behavioral sciences are fundamentally reductionistic, and
so are not much use unless one’s goal is to identify the components (and to a limited
extent, their interactions) of complex behavior.

But since Al systems are unique artifacts, and we rarely run statistical experiments
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on them, how general can our empirical conclusions be? When one tests hypotheses by
comparing, say, groups of undergraduates, one can be reasonably sure that the results
will hold for the population at large. Can we ever be convinced that the results of an
experiment on an individual Al system are general to other systems? The criterion for
accepting a result in statistical hypothesis testing is that it almost certainly did not
occur by chance. Do we have a criterion as convincing as this in AI?

To answer these questions, note that statistical experiments yield an inductive form
of generality; an effect demonstrated in 100 undergraduates occurs in all undergradu-
ates. Another kind of generality has been called ezplanation-based (22} or deductive [18].
We believe the sun will rise not because it always has, but because we can explain or
deduce that it will from an underlying theory. The most convincing generalizations in
Al are of this kind. For example, most Al researchers believe that data-interpretation
tasks such as vision and speech understanding require large amounts of world knowl-
edge. We believe this is a general result because it can be explained or deduced from
an underlying theory; in this case, search. Unconstrained data-driven interpretation
generates intractable search spaces, and any constraints on the process reflect world
knowledge, therefore world knowledge is required for interpretation tasks. Inductive
arguments are helpful, too. We have many examples of the importance of world knowl-
edge in vision, speech understanding, human perception, psycholinguistics, and so on.
But the point is that hypotheses in Al can be generalized deductively via underlying
theories. We do not require inductive or statistical generalization.

In sum, the purpose of evaluation is to promote continuity, replication, and gen-
eralization in empirical AI. We discussed how evaluation drives the five stages of the
basic research cycle, that is, how it produces continuity within a single research project.
Unfortunately, we have only tacit, informal evaluation methods to promote continuity,
replication, and generalization across research projects. It is essential to recognize and
standardize these methods, because those of the established behavioral sciences are not
appropriate.

4.1 Experiment Designs

In the previous sections we described the empirical Al research cycle and evaluation
criteria—the components of a skeleton of a methodology. Although the last three
stages of the cycle advocate the design and analysis of experiments, they don’t tell us
how to do them. Al is evolving stylized experiment “schemas” that, if they could be

standardized, could guide researchers’ experimental work and provide a shorthand for
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discussing results. We briefly describe five such schemas:

Comparison studies. The basic form of a comparison study is that we select one
or more measures of a program’s performance, then both the program and a
standard solve a set of problems, and finally the solutions are compared on the
measures. For example, we may compare the average number of subgoal violations
generated by one planning program on a set of problems (the measure) with the
same measure on another extant program (the standard). Typically, the programs
will implement different methods, or they could be different configurations of a

single program. The comparison of Dominic-I and Dominic-II (Sec. 3.3) illustrates
this kind of study.

Variations on the basic form depend on what you want to demonstrate. For ex-
ample, if you want to measure whether the program’s performance is consensual,
you may compare the program to a panel of human experts. You may also include
novices—an interesting control condition to ensure that successful performance
requires expertise.” Sometimes the performance of a program can be compared
with objective, recognized standards. Normative theories, such as probability
theory, provide one kind of standard; for example, some researchers argue that
because human experts are incapable of integrating probabilistic information con-
sistently, their performance should not set standards. Another kind of standard
is provided by real or simulated worlds; we might evaluate a complex planner by
seeing whether it generates plans that succeed in the world. All these examples
suggest that our measures and standards depend heavily on what we want to
demonstrate and, ultimately, on our research goals.

A related scheme, though not strictly a comparison study, has humans judging
or scoring the program’s performance. This happens when we need to measure
whether programs get the “right” solution, but the test problems have so many
acceptable solutions that a program and a standard cannot be expected to gener-

ate the same ones. FOLIO and GRANT (Sections 3.1 and 3.2, respectively) provide
examples of this kind of study.

Ablation and substitution studies. We can evaluate the contributiori of individual
components to the performance of complex systems by removing or replacing
those components. Removing components (called “ablation” [24]) is informative

in systems that can solve problems without them. For example, one configuration

"Shortliffe ran a panel of experts and novices in his studies of MYCIN {30].
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of Dominic-I had no dependency order list to tell it which design variables to
change first. It takes little insight to predict That this will have some effect;
the goal is to find out whether performance on all types of problems is equally
affected by the presence of the dependency order list, and if not, what interactions
between it and the problem type explain the variance.

Many Al systems are so brittle that they collapse when components are removed.
In these cases we might substitute “dumb” components for those we hope to show
are “smart”; for example, we might substitute an exhaustive control strategy
for a sophisticated opportunistic one. Dominic-I required a dependency table
to predict the effects of changing design variables, but in one experiment we
substituted coarser values to assess the effects of their accuracy.

Tuning studies. By tuning a system to perform as well as possible on a set of test
data, we can learn how much performance can be improved, how. difficult it is to
achieve, and whether the resulting system can still solve other test cases. From a
research perspective, it seems wasteful and potentially misleading to tune systems
Just to increase their performance, without addressing these questions.

Limitation studies. By testing a program at its known limits, we can better under-
stand its behavior in adverse conditions. We can push a program to its limits by
providing imperfect data (rearranged, noisy, incomplete, or incorrect), restricted
resources (computation time or available knowledge), and perverse test cases.

Inductive studies. One way to support claims of generality is to solve “new and
different” problems. If we claim that Dominic is general, then we may want
to run problems in many areas of mechanical design—pulley systems, I-beams,
extrusions, and so on. Even if we don’t claim a program is general, we must at
least test it on problems other than those we used to develop it.

4.2 Recommendations

We begin with a now-familiar theme: Al researchers must evaluate their work more
thoroughly and report both the results and how they were obtained. The latter will
add to a common stock of evaluation techniques and will eventually .ﬂes’h out the
methodological skeleton.

At the same time, Al journals and conferences must welcome papers that discuss, in
more detail and with more background than we can offer here, aspects of our evolving

methodology. In particular, we hope to see more systematic, exhaustive analyses of
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schemas for comparison studies and the other schemas discussed above, and others we
haven’t yet considered. We also need further discussion of what it means for results to
be general. This might build on the inductive/deductive distinction outlined earlier.
But in any case, our field must consider how to justify the claim that projects in
different labs, task domains, and programming environments demonstrate the same
thing. We also need to see critical assessments of the methodological role of programs.
Our impression is that researchers rarely glean enough from their programs to justify
the effort of building them. Even if they do, the effort cannot be justified unless results
are communicated to the research community. And the role of programs is just part
of a broader debate on the empirical Al research cycle, which requires considerable
elaboration beyond the sketch in Section 2. These are just a few of the methodological
issues that ought to be discussed in print.

Having raised the issue of what gets published, let us consider some uncommon but
important kinds of papers. Al systems take so long to build that we are surprised to
see so few reports of experiments with extant systems. A good model of this kind of
work is a book on experiments with MYCIN, edited by Buchanan and Shortliffe (3].
We also hope to see more papers on negative results—algorithms that don’t work in
particular cases, systems that perform less well as they become more knowledgeable,
cases where scaling up causes problems. When, at a recent conference, we discussed
the reasons that GRANT performed less well when it was scaled up, someone in the
audience remarked how refreshing it was to see some “dirty laundry”.® An odd phrase,
dirty laundry, suggesting that there is something nasty about negative results. When
did you last read an Al paper that said something didn’t work?

Researchers will not document the limitations of their methods unless reviewers,
program committees, and editors endorse papers on negative results, as we believe
they must. These groups are also responsible for scrutinizing positive results. One
recommendation is that if a paper doesn’t answer a satisfactory number of the ques-
tions in Tables 1-5 in the Appendix, or comparable questions that are better suited
to the subject. of the paper, then it should be rejected. We would hope that program
committees and editors would publish the criteria by which they evaluate papers, and
that they would be more informative than the half-dozen buzzwords one often sees—

original, thorough, thoughtful, well-written, and so on®. Another recommendation,

8The Third Annual IEEE Conference on Artificial Intelligence Applications. Orlando, FL. February,
1987

9Lately, the machine learning community has mentioned evaluation criteria explicitly in Calls for
Papers, and Langley has advocated evaluation in his editorials {19).
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more appropriate to journals than conferences, is that reviewers should provide de-
tailed feedback on why papers are rejected or conditionally accepted, so that authors
can run the recommended experiments and resubmit their papers. Thus, the primary
responsibilities of reviewers and editors are to encourage discussions of evaluation cri-
teria, publish them, insist the criteria are met, and provide guidance when they are
not.

Our final recommendation is that we should keep the purposes of evaluation firmly
in mind and not let it become an end in itself. In many disciplines you can’t publish
“just ideas.” But even when your idea is distilled to an experimental hypothesis, and
an enormous experiment is run, and profound results are obtained, your paper can still
be rejected for petty methodological infractions. This isn’t what we want for empirical
AL The purpose of evaluation is not to hold the field back, but to propel it forward.
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A. Appendix: Evaluation Criteria

The following tables summarize the evaluation criteria appropriate for each stage
in the empirical Al research cycle.

1. Is the task significant? Why?

(a) If the problem has been previously defined, how is your reformulation
an improvement?

2. Is your research likely to contribute meaningfully to the problem? Is the
task tractable?

3. As the task becomes more specifically defined for your research, is it still
representative of a class of tasks?

4. Have any interesting aspects been abstracted away or simplified?

(a) I the problem has been previously defined, have any aspects extant
in the earlier definition been abstracted out or simplified?

5. What are the subgoals of the research? What key research tasks will
be/have been addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to
the task? Is the task one in which a solution can be demonstrated?

Table 1: Criteria for evaluating research problems



1. How is the method an improvement over existing technologies?

[4]]

(a) Does it account for more situations? (input)
(b) Does it produce a wider variety of desired behaviors? (output)

(c) Is the method expected to be more efficient? (space, solution time,
development time, etc.)

(d) Does it hold more promise for further development? (for example, due
to the opening up of a new paradigm)

. Is there a recognized metric for evaluating the performance of your method?

(e.g., normative, cognitively valid, etc.)

Does it rely on other methods? (Does it require input in a particular form

or preprocessed? Does it require access to a certain type of knowledge base
or routines?)

What are the underlying assumptions? (known limitations, scope of ex-
pected input, scope of desired output, expected performance criteria, etc.)

. What is the scope of the method?

(2) How extendible is it? Will it easily scale up to a larger knowledge
base?

(b) Does it address exactly the task? portions of the task? a class of
tasks?

(c) Could it, or parts of it, be applied to other problems?

(d) Does it transfer to more complicated problems? (perhaps more knowl-
edge intensive or more/less constrained or with more complex inter-
actions)

When it cannot provide a good solution, does it do nothing or does it
provide bad solutions or does it provide the best solution given the available
resources’

How well is the method understood?
(a) Why does it work?
(b) Under what circumstances, won’t it work?

(c) Are the limitations of the method inherent or simply not yet ad-
dressed? <

(d) Have the design decisions been justified?

. What is the relationship between the problem and the method? Why does

it work for this task?

Table 2: Criteria for evaluating methods
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1. How demonstrative is the program?
(a) Can we evaluate its external behavior?
(b) How transparent is it? Can we evaluate its internal behavior?

(c) Can the class of capabilities necessary for the task be demonstrated
by a well-defined set of test cases?

(d) How many test cases does it demonstrate?
2. Is it specially tuned for a particular example?
3. How well does the program implement the method?
(a) Can you determine the program’s limitations?
(b) Have parts been left out or kludged? Why and to what effect?

(c) Has implementation forced a more detailed definition or even re-
evaluation of the method? How was that accomplished? )

4. Is the program’s performance predictable?

Table 3: Criteria for evaluating method implementation
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. How many examples can be demonstrated?

(a) Are they qualitatively different?

(b) Do these examples illustrate all the capabilities that are claimed? Do
they illustrate limitations?

(c) Is the number of examples sufficient to justify the inductive general-
izations?

Should program performance be compared to some standard? its tuned
performance? other programs? people (cognitive validity)? experts and
novices (expert performance)? normative behavior? outcomes? (either
from the real world or from simulations)

3. What are the criteria for good performance? Who defines the criteria?

4. If the program purports to be general (domain-independent),

(a) Can it be tested on several domains?

(b) Are the domains qualitatively different?
(c) Do they represent the class of domains?
(d) Should performance in the initial domain be compared to performance

in other domains? (Do you expect that the program is tuned to per-
form best in domain(s) used for debugging?)

(e) Is the set of domains sufficient to justify inductive generalization?

5. If a series of related programs is being evaluated,

(a) Can you determine how differences in the programs are manifested as
differences in behavior?

(b) If the method was implemented differently in each program in the
series, how were these differences related to the generalizations?

(c) Were difficulties encountered in implementing the method in other
programs?

Table 4: Criteria for evaluating experiment design
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. How did program performance compare to its selected standard? (e.g.,

other programs, people, normative behavior, etc.)

Is the program’s performance different from predictions of how the method
should perform?

How efficient is the program? time/space? knowledge requirements?
Did the program demonstrate good performance?
Did you learn what you wanted from the program and experiments?
Is it easy for the intended users to understand?
Can you define the program’s performance limitations?
Do you understand why the program works or doesn’t work?
) What is the impact of changing the program even slightly?
) Does it perform as expected on examples not used for debugging?
c¢) Can the effect of different control strategies be determined?
) How does the program respond if input is rearranged, more noisy, or
missing? ,
(e) What is the relationship between characteristics of the test problems

and performance (either external or internal if program traces are
available?)

(f) Can the understanding of this program be generalized to the method?
to characteristics of the method? to a larger class of tasks?

Table 5: Criteria for evaluating what the experiments told us

32



