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1.1 Introduction

This paper is about gualification of reasoning due to ambiguity, lack of evidence,
poor quality data, and the many other factors that are usually associated with
uncertainty. A broad distinction is often made between unqualified, categorical, or
definite reasoning; and qualified, or uncertain reasoning. We start this paper from
the position that all reasoning is subject to qualifications, though they may seem
insignificant. Indeed, we are concerned with how people come to view qualifications
as insignificant — how people can act as if certain under uncertainty. This paper
discusses ways to represent and reason about qualifications. Our goal is to provide
these abilities for expert systems and other artificial intelligence (AI) programs, so

that they can reason intelligently under uncertainty, **

In overview, we will discuss the sources of uncertainty in reasoning, and the re-
sponses to uncertainty that, in people, we call intelligent. Then we survey current
Al approaches to uncertainty. We find that few of our criteria for intelligent rea-
soning under uncertainty are manifested by Al programs. We assess the reasons for
these deficits, and discuss three Al programs that, collectively, lay the groundwork
for a new technology for reasoning under uncertainty. In the course of the paper,
we find that reasoning under uncertainty is clogely related to two other persistent
problems for expert systems. One is the problem of controlling the behavior of
large, knowledge-based systems; the other is the issue of explanation. The control
problem, as we see it, is how to select a course of action that is responsive to one’s

uncertainty. Should the program pursue one hypothesis at a time, or all together,

** Our use of the word “qualification” is not incongruent with that of McCarthy (1980). His
“qualification problem” refers to the need to act despite the fact that the conditions for
action can not be stated completely. McCarthy asks, as we do, how we decide that we know
enough to act.



or postpone this decision and search, instead, for more discriminating evidence?
Which of several evidence-gathering plans is best? To answer these questions prop-
erly, we need to know the qualifications on reasoning — the reasons for uncertainty.
Since these qualifications are the impetus for control decisions, they are also the

basis for explanations of reasoning.

Our emphasis is on representing knowledge about uncertainty to facilitate rea-
soning under uncertainty. This is a common perspective in Al, where representing
knowledge adequately is understood to be a prerequisite for intelligent reasoning.
Thus, the current reliance on inadequate numeric representations is puzsling. One
explanation is that probability and uncertainty are so closely associated that the one
is mistaken for the other. The situation is analogous to mistaking a reproduction of
a painting for the painting itself. A reproduction allows us to make some inferences
about the painting, maybe enough inferences to tempt us to say, incorrectly, that
we know what the painting looks like. And as the distinction between the original
and the reproduction fades, we loose sight of the fact that different kinds of repro-
ductions support different kinds of inferences about the original: any representation
supports some kinds of inferences at the expense of others. Probabilities support
inferences about the degree of uncertainty at the expense of inferences about the

reasons for uncertainty. This paper suggests reversing these priorities.

1.2 Sources of Uncertainty

Uncertainty is a state of mind that arises during reasoning. By asking what as-
pects of reasoning give rise to uncertainty, we focus on its causes and consequences,
not on the mental phenomenon itself. The sources of uncertainty are many but
they can be discussed under three headings (see Cohen and Gruber, 1984, for more
detail). First, uncertainty is introduced by evidence that is errorful, irrelevant, in-

sufficient, and so on. Second, reasoning about evidence depends on bheuristic knowl-
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edge, which can sometimes lead to a wrong conclusion. Third, the organization of

knowledge, and the methods by which it is accessed, can introduce uncertainty.

Uncertainty due to evidence is especially problematic for systems that rely on
sensory input. These include vision, robotic, and speech understanding systems.
Evidence is typically noisy, meaning that parts of the evidence have been deleted or
are obscured. The transducers that make evidence availableto the system that inter-
prets it can also introduce uncertainty. Most transducers have a limited bandwidth
— they reproduce only some evidence faithfully; for example, sound transducers
limit the frequencies they pass. Even if evidence is not noisy, and is not degraded by
its transducers, its relevance may be uncertain. Most of the sensory data available
to humans and other organisms is filtered by attentional processes. Al programs
require procedures to select evidence from masses of information; these procedures
introduce uncertainty. Finally, relevant, noise-free evidence may still be snadequate.
Many tasks are uncertain not because the quality of evidence is poor but because
there isn’t enough evidence to complete the task. Sometimes the needed evidence

is too expensive, sometimes it just isn’t available.

Uncertainty in evidence can be managed if one knows its source. For example,
high spatial frequency noise is common in vision systems, and the common remedy
is to run the noisy image through a bandpass filter that cuts off the high frequencies.
This eliminates the noise but introduces another kind of uncertainty: sharp intensity
gradients (edges) become blurred. The remedy here is often edge enhancement of
some kind. If the source of uncertainty is known, it can be managed. This argues
for explicit, informative knowledge about uncertainty; it argues against limiting our

»

knowledge of uncertainty to our degree of belief.

Once an expert system acquires evidence, the next step is to interpret it. Expert
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systems, more than other kinds of AI programs, rely on heuristic knowledge to in-
terpret evidence; knowledge acquired from experts who will not always vouch for its
accuracy. Expertise is experiential and pragmatic, and is sometimes unsupported
by theory. Most tools for building expert systems allow the expert to qualify his or
her knowledge with a degree of belief; but these rarely express qualifications satis-
factorily (e.g., Gadsden, 1984). One kind of qualification has to do with ezceptions.
Since expert heuristics are compilations of expert experience, some aspect of the
experience will be left out. A heuristic will *work” most of the time; uncertainty is
introduced because a situation could arise in which the heuristic won’t work. Doyle
(1983) has suggested making these exception cases explicit when they are known.
Then heuristics could be used with certainty in the standard cases and with cau-
tion at other times. Again, we see that uncertainty can be managed if its source is

known.

But one cannot know, ahead of time, ¢!l the situations in which an expert
heuristic should not be used. This source of uncertainty is unavoidable, but not
necessarily unmanageable. Heuristics have applicability conditions which, in rule-
based expert systems are the clauses in the condition-part of an inference rule. If
the condition-part is satisfied, the action-part is asserted. Yet most rule-based
systems do not execute all applicable rules, but select among them according to a
control strategy. If the control strategy exploits some uncertainty-reducing aspect
of a domain, such as redundancy, then the rules selected for execution are more apt
to be those that should be accepted. This technique for managing uncertainty is

discussed further in the section on control approaches, below.

Uncertainty is introduced in evidence and the knowledge that interprets evi-
dence, and also in the strategies that control the use of the knowledge. For ex-

ample, the question often arises, how long should one wait, or how much effort



should one expend, to find some evidence? Some strategies cut off the waiting or
search for evidence, thus introducing the uncertainty that a little more time or ef-
fort would have provided it. Many strategies are based on assumptions about the
organigation or extent of our knowledge. For example, the closed world assumption
supports the conclusion that a fact is false if an exhaustive search of a knowledge
base fails to turn it up (Reiter, 1980). The idea of a closed world is that we know
all relevant facts; this is usually false, 8o inferences based on the assumption are
uncertain. A similar assumption underlies lack-o -knowledge inferences, described
by Collins (1978). Asked, *Is the Mekong River very long?” I reason that if jt
were, I would know it, and since I don™, it isn’t. Similar knowledge is used to
assess subjective probabilities. One method, called availability, is used by humans
to estimate probability based on the ease of calling something to mind. Concepts
that are “available” in memory are judged relatively probable; unavailable concepts
are judged improbable (Tversky and Kahneman, 1982). We overestimate the prob-
ability of publicized events, such as winning lotteries; and students, for example,
underestimate the probability of dying of heart disease, since few instances come to
mind. Availability introduces uncertainty about the accuracy of our assessments of

probability.

These heuristic methods for controlling access to our knowledge, like other
heuristics, introduce uncertainty. But, as we noted above, if the source of uncer-
tainty is known, it can be managed. The source of uncertainty in the Mekong River
example is the assumption, “If the Mekong was long, I would know it.” If I mistrust
the assumption, then I can consult an authority - a person for whom the assumption
i8 true. The credibility of a lack-of-knowledge inference is directly proportional to
the amount one knows about the topic. Once one knows the source of uncertainty
- in this case an assumption — and the factors that affect credibility, then the un-

certainty is manageable. Assumptions Play a major role in managing uncertainty,
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since they are explicit records of uncertain “stepping stones” in lines of argument.
The assumption above is needed to answer the question, “Is the Mekong a long
river?” Doyle (1983b) has developed reason maintenance mechanisms for managing
the uncertainty represented by assumptions. This work, and the endorsement-based
methods described below, recognise the need for explicit knowledge about uncer-
tainty. For Doyle, assumptions are explicit records of the deliberate introduction
of uncertainty, and, as such, pinpoint the source of uncertainty and provide a basis

for its management.

1.3 Desiderata for Intelligent Reasoning About Uncertainty

This section asks what behaviors we should require of expert systems that rea-
son intelligently about uncertainty. The requirements are of two kinds: first, we
discuss what an expert system ought to do about uncertainty, then we focus on
the representation of knowledge required to reason as we desire. It is striking that
contemporary expert systems do very little about uncertainty besides measuring
it. Some expert systems assess degrees of belief for hypotheses, but they do not
use these numbers except to rank hypotheses and for some rudimentary control
decisions. What more should an expert system do? We focus on two behaviors:

planning (or control) and explanation.

Intelligent behavior under uncertainty requires a plan for the management of

the uncertainty. Here are some examples of plans:

1. Confronted with uncertainty about which of two diseases afflict a patient, try
to rule out the most serious one. Specifically, order relatively inexpensive,
noninvasive tests before more costly ones, and give the patient a therapeutic
trial of medication for the more serious disease. See the patient again after

the test results are known and after the therapeutié trial has an opportunity
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to alleviate symptoms.

2. Since I am uncertain whether my weekday bus runs on the weekend, I decide

to drive my car.

3. I am going to visit my parents, who say they have a birthday present for me.
They won’t tell me what it is, so just to be safe, I put the roof-rack on my

car.

The first case is taken from a series of interviews with a physician on the prob-
lem of diagnosing chest pain. Two causes of pain, angina and esophageal spasm,
can have identical manifestations, but one is more serious than the other. Thus,
physicians will try to rule out angina first, and may prescribe therapy for angina
on a trial basis. The angina/esophageal spasm differential is not usually resolved
by ruling in esophageal spasm, since it is difficult to get direct, physical evidence of
spasm. However, this plan is appropriate if less costly tests fail to resolve between
the disease hypotheses. In contrast, one can sometimes quickly rule out angina by
demonstrating that the pain is due to damage to the muscles of the chest. This
“rule-out by ruling-in® plan may not be appropriate, however, if the patient is at
risk for heart disease because of smoking, age, family history, and so on, since this

patient may have both heart disease and some other cause of chest pain.

Thus, intelligent reasoning under uncertainty involves selecting a plan appro-
priate to the nature of the uncertainty. The ®rule-out by ruling in” plan may be
appropriate in some cases but not to the angina/esophageal spasm differential if the
Patient is at risk for heart disease and if less difficult tests have not yet been tried.

If one knows enough about the nature of one’s uncertainty to intelligently select



a plan, then this knowledge can be used to explain one’s behavior:
- Why did you try to rule out angina before esophageal spasm?

- Because the consequences of my uncertainty about angina are more serious;
and because it is difficult to find direct evidence for or against esophageal
spasm; and because there is evidence that the patient is at risk for heart

disease, so ruling in esophageal spasm would not rule out heart disease.

Many plans for managing uncertainty are much simpler than this one. The
second example, above, is a case of sidestepping uncertainty. Instead of facing the
uncertainty of whether a bus is running, the question is made irrelevant by deciding
to drive a car. The third case is similar: it involves anticipating possible outcomes
and preparing for the most extreme. When uncertain about the size of a birthday
present, one prepares for the worst (best?) case by arranging transportation for the

biggest possible object.

One characteristic of these examples is that the probability of the various un-
certain outcomes is both insufficient to determine a response to the uncertainty,
and furthermore, it is largely irrelevant. In the medical example, provided there
is “enough” evidence for angina, the physician pursues the angina hypothesis not
because it is more likely than esophageal spasm but because it is more dangerous.
In the second case, if there is “not enough” evidence that the bus is running, the
commuter decides to drive. The extent of the uncertainty in these cases, and the

third case, is not the salient factor in deciding on a plan to manage the uncertainty.

Yet, the probability of outcomes plays a small role in these examples, and a

greater role in other cases, such as this one:



An airplane has crashed in dense jungle. Searchers superimpose a grid on a
map of the area and calculate, for each square in the grid, the probability that the
plane crashed in that square. They search the high-probability areas first.

Here, the appropriate plan for managing uncertainty depends on knowing the like-
lihood of outcomes. Thus, in addition to planning and explanation, we need the
ability to believe one proposition more than another. This, in turn, requires the

ability to update degrees of belief in light of evidence.

In summary, the behaviors that make for intelligent reasoning about uncertainty
are: the ability to plan a course of action appropriate to one’s uncertainty, the
ability to explain one’s actions, and the ability to determine degrees of belief in
alternatives given evidence. We now consider the conceptual tools required to build

expert systems with these abilities.

An expert system requires a representation of knowledge about its uncertainty
and methods for manipulating this knowledge to plan and explain actions, and to
modify its belief in propositions. A good representation supports all the concepts
one wishes to reason about, and all the methods one uses to reason about them.
A good representation makes important distinctions explicit. One should not have
to struggle to represent a situation — the representational techniques should make
the “translation” between a situation and ita representation easy. If these represen-
tational criteria are met, then we will be able to represent the knowledge required
to achieve the three performance criteria outlined above. Table 1 summariges the
performance and representational criteria. We now survey current Al approaches

to reasoning under uncertainty from the perspective of these criteria.
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TABLE 1.

Performance Criteria

Planning: Plan actions that are appropriate to uncertainty
Explanation: Explain plans for managing uncertainty
Measurement: Modify degree of belief in light of evidence

Representational criteria

Adequacy: Support all interesting concepts and methods for
reasoning about them
Explicitness: Make important distinctions explicit
Ease-of-use: Make the “translation® between situation and
representation easy

1.4 AT Approaches to Uncertainty

Many techniques for reasoning under uncertainty have been adopted or invented

for Al programs. We group them according to how they represent uncertainty, and,

thus, by the extent to which uncertainty is actively managed.

Parallel Certainty Inferences. The parallel certainty inference approach

divides reasoning under uncertainty into parallel streams: one is a stream of domain

inferences; the other, a stream of calculations of the credibilities of the domain

inferences (Cohen, 1983). This is shown in Figure 1. Along the top of the figure is

a chain of domain inferences — if a person is on fixed income then he or she has low

risk tolerance, and if a person has low risk tolerance, then he or she ought to buy
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l: PARALLEL CERTAINTY INFERENCE APPROACH.
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bonds. Along the bottom of the figure is a series of calculations of the credibilities
of the data and conclusions. The first inference rule (fixed income implies low
risk tolerance) is not entirely credible; its degree of belief is only 0.8. Moreover,
the finding that this client is on fixed income is not entirely credible; its degree of
belief is just 0.6. How credible is the conclusion of low risk tolerance, given the
credibilities of the inference rule and the data? A combining function calculates,

by multiplication, the degree of belief in tke conclusion to be 0.48.

Among the parallel certainty inference methods we find strict probabilistic meth-
ods (e.g., Pearl, 1982), subjective probability techniques that are more or less dis-
tantly related to Bayesian updating (Shortliffe and Buchanan, 1975; Duda, Hart,
and Nilsson, 1976), Dempster-Shafer calculi (Ginsberg, 1984; Strat, 1984; Gordon
and Shortliffe, 1984; Lowrance and Garvey, 1982), and fuzszy logic (e.g., Zaheh,
1975) Though the proponents of the individual methods argue about their relative
merits, for our purposes they may be grouped as the techniques that keep domain
inferences and credibility calculations in separate compartments, using numbers to

represent credibility.

The parallel certainty inference approach, though common, is unsatisfactory in
terms of our performance and representation criteria. The good news is that degrees
of belief are easily adjusted in light of evidence. But this advantage is not unqual-
ified, since, in practice, we cannot assume that the numbers evoked from experts

and propagated through chains of inferences are accurate. Nor can we guarantee
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that the combining functions used by the more subjective methods preserve the
meanings of the numbers they combine. The bad news is that this approach denies
to expert systems the ability to plan actions to manage their uncertainty; degrees
of belief serve no purpose other than to find the highest-ranking conclusion, and
sometimes to throw away conclusions with very low degrees of belief. The chains
of logical and numerical inferences in Figure 1 are parallel in the sense that degree
of belief has little or no effect on which domain inferences are made, when they are
made, how they are corroborated, and so on. Since degrees of belief have no role in
planning actions, they cannot be used to ezplain behavior. Furthermore, it is diffi-
cult to explain what a degree of belief means, since it is a poor represention of the
complex mental processes that evoke it. Degrees of belief fail the representational
adequacy criterion because they represent only the extent of one’s belief, not the
reagons for believing and disbelieving. They fail the criterion of making important
distinctions ezplicit, because the degree of belief is a summary the many factors
that contribute to uncertainty, including probability and utility. Finally, experts
and others generally dislike the process of trying to quantify all aspects of their

uncertainty, so degrees of belief fail the ease-of-use criterion.

Control Strategies. A second category of techniques, the control methods,

manage uncertainty actively by ordering problem golving actions or sequences of
actions. For example, I want to buy my wife a birthday present and a colorful

box in which to wrap it. Since I haven’t bought the present yet (and I'm not
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sure what I will buy), I am uncertain how big the box should be. The “obvious”
solution is to buy the box after the present. So obvious, in fact, that it obscures
an important conclusion: uncertainty is often due to the timsng of evidence, and it
can therefore be minimized by ordering one’s actions so that the timing of evidence
is most facilitative. This principle underlies least-commitment planning and related

techniques (Sacerdoti, 1977; Stefik, 1980).

Other control approaches exploit characteristics of a domain to order problem-
sol.ing actions. For example, when building a jigsaw puszsle, it is best to start
with “border” pieces, and then extend in from the border. This is because the
border pieces are easily recognized, and once placed, constrain the placement of the
other pieces. Redundancy is an important characteristic of some domains, and is
exploited by control approaches to problems such as speech understanding. This
problem is uncertain due to the noise and ambiguity inherent in the speech signal,
but because speech is redundant, it is possible to work on the relatively certain
parts of a speech signal first, then use them to constrain work on the uncertain
parts. This approach was used in the HEARSAY-II speech understanding system

(Erman, Hayes-Roth, Lesser, and Reddy, 1980).

Control approaches satisfy several of our performance and representation cri-
teria. First, systems like HEARSAY-II actively plan which of several uncertain
hypotheses to work on next. Unfortunately, they typically use numeric evalua-
tion functions to decide where to direct their attention. The terms of evalua-
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tion functions represent, as numbers, factors relevant to managing uncertainty. In
HEARSAY-II these include measures of the validity of data, the cost-effectiveness
of actions, the desirability of understanding a particular segment of the speech sig-
nal, and so on. These numbers are combined into summary measures that control
focus of attention. HEARSAY-II is thus able to select from among the many tasks
it might do those which reduce its uncertainty about the speech signal. Its repre-
gentation of knowledge about uncertainty supports productive reasoning methods -
(the representational adequacy criterion). But the factors that determine focus of
attention are summarized in a single measure of worth, violating the ezplicitness
criterion; and, since the requisite knowledge is not explicit, the ezplanation crite-
rion. Roughly, the system works but it doesn’t know why. HEARSAY-I is typical

of systems that use control strategies to manage uncertainty.

Endorsement-based Reasoning. We turn now to four efforts to reason sym-
bolically about uncertainty that, collectively, represent stages in the development
of endorsement-based reasoning. Endorsements are explicit records of reasons to
believe and disbelieve propositions. Endorsement-based reasoning satisfies most
of the criteria in Table 1. Since it relies on reasons for uncertainty, it can plan
and explain its plans to manage uncertainty. But since reasons for uncertainty are

not quantities, precise reasoning about degrees of belief is awkward. This trade-
off is acceptable if one’s emphasis is actively managing uncertainty instead of just

measuring it.
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Our first endorsement-based program, called SOLOMON for the wisdom we
wished it had, attached mnemonic endorsements to propositions in place of numeric
degrees of belief (Cohen and Grinberg, 1983; Cohen, 19847?). Each endorsement was
used to select a course of action appropriate to the kind of uncertainty it represented.

For example, we endorsed the rule
IF age > 65 THEN risk-tolerance = low

with the mnemonic overgeneralisation, meaning that, for some individual, the
conclusion could be false when the premise is true. Now, one can imagine adding
clauses to the premise to pinpoint more certainly the criteria for low risk tolerance.
The same effect can be had by finding another rule with a different premise but the
same conclusion. Thus, given a conclusion endorsed as an overgene}alisation,
SOLOMON searched for a corroborating conclusion, that is, a rule with the same

conclusion but a different premise. If this succeeded, SOLOMON endorsed the

conclusion as corroborated.

The theme of the SOLOMON program is familiar: a system must respond ap-
propriately to its uncertainty. Endorsements characterize uncertainty and are the

key to intelligent responses. But this early work considered relatively few endorse-
ments and responses to uncertainty. Nor did we modify the endorsements associated

with propositions in the light of evidence. This became the focus of our next study.
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Numeric approaches to uncertainty modify the degrees of belief in propositions
as evidence becomes available. The “running total® belief for a hypothesis is in-
creased or decreased in response to evidence pro or con. Endorsements do not
represent degrees of belief, but rather, reasons for belief. We explored how these
reasons are adjusted by evidence in the context of a plan recognition program called
HMMM (Cohen, 1984; Sullivan and Cohen, 1985). Imagine a simple device that

can execute one of two plans, each composed of 3 steps:

plan  steps
planl : abec
plan2 : bde

If the device takes step a, what plan does it have “in mind”? éince step a
is unique to plan 1, the device either has made a mistake, or it intends plan 1.
Assume the device now takes step b. This provides no evidence to discriminate
the interpretations of the first step: the device may be pursuing plan 1 or it may
have recovered from its mistake and started plan 2. If the next step is ¢, then
it looks as though plan 1 was intended all along; if it is d, then apparently plan
1 was started and abandoned for plan 2. The question we want to answer is,
if the endorsement of the plan 1 interpretation of a is may be a mistake, what
happens to this endorsement as more evidence — subsequent plan steps — becomes
available? Answering this question is analogous to finding a combining function for

numeric representations of uncertainty.
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We do not believe that all kinds of evidence should be combined with the same
combining function. That is one of our complaints against numeric approaches. We
devised several combining schemas for endorsements that captured the flux of our
reasons for uncertainty in the plan recognition problem. We noted above that the
evidence b cannot reduce our concern that a was a mistake, since b is ambiguous
with respect to plan 1 and plan 2. On the other hand, the input ¢ is unique to plan
1 and “finishes off” the plan, and seems to reduce the concern that a was a mistake.
This kind of reasoning is captured in the following combining schema, in which the
endorsements — the reasons to believe and disbelieve intepretations of plan steps

— are shown in uppercase.

IF step I IS-UNIQUE-TO plan N, and
step J IS-UNIQUE-TO plan N, and
step J FOLLOWS-IN-THE-PLAN step I, and
the plan N interpretation of step I

is endorsed by MAY-BE-A-MISTAKE
THEN erase the endorsement

By eliminating the second clause of this schema, the negative endorsement on
the plan 1 interpretation of a is erased as soon as the evidence b becomes available.
This seems premature, as we said, since b is ambiguous, but we give the example

to raise a point: Our goal in this work was not to provide a prescriptive theory of

how endorsements should combine, but rather, to give a framework for subjectively

combining endorsements.

Clearly, erasing endorsements is a degenerate form of combining them, and
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loses valuable information about the interrelationships between pieces of evidence.
A more realistic scheme would reduce the weight of the may be mistake en-
dorsement as subsequent, consistent evidence becomes available; alternatively, one
endorsement might be made dependent on another, as in Doyle’s (1983b) work on

reason maintenance.

Before implementing such a scheme, however, we were diverted by a difficult
question: Where do endorsements come from, and what do they mean? The
mnemonic value of endorsements like may be a mistake disguises the fact that
endorsements are arbitrary symbols, whose meaning comes from the rules by which
they are combined with other endorsements. We were concerned that, for complex
domains, dozens of endorsements and combining schemes would have to be ac-
quired. Although we had no objection in principle to acquiring this knowledge from
an expert (much as other domain knowledge is acquired), we wondered whether
the endorsements and combining achemﬁs of a domain could be derived from other
knowledge about the domain, such as inference rules. If 80, we would worry less

about whether we had the “right® endorsements and combining schemas.

We focused on the uncertainty inherent in a single problem-solving task, namely |
classification, to pinpoint the sources of uncertainty (and thus endorsements) of all
classification tasks. Classification is the problem solved by many or most expert
systems (Clancey, 1984): Given data, find the conclusion (or classification of the
data) that fits the data best. Uncertainty in classification tasks is due, primarily,
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to mismatch between evidence and its various classifications. Degree of belief in
a conclusion given evidence reﬂeéts the degree of fit between the evidence and the
classification. For example, if the flu is characterized by fatigue, nausea, and aching
limbs, then one’s certainty in a diagnosis of flu depends on the degree of fit between
symptoms and this characterisation. Does a midafternoon nap constitute evidence
for fatigue? Is skipping lunch evidence for nausea? Is a headache evidence for
aching limbs? To the extent that these fizdings correspond to the symptoms of
flu, the diagnosis of flu is credible. The chief source of uncertainty in classification
tasks is partial matching between the evidence one needs and the evidence one
has. Endorsements ought to describe these partial matches, and ideally should be

derived from knowledge about the classification task.

Consider the evidence for flu: is a midafternoon nap evidence of fatigue? Fatigue
is good cause for a nap, quite possibly the only cause. In contrast, there are many
reasons to skip lunch, of which nausea is only one. Given this, it seems reasonable to
suggest that the midafternoon nap is stronger evidence of fatigue than the skipped
lunch is of nausea. Finally, headache seems to be very weak evidence for aching
limbs because the head and the limbs are different parts of the body. Figure 2
shows how evidence and conclusions are associated for each of these cases. Figure
2a shows a causal relationship between fatigue and taking a nap; Figure 2b shows
that nausea is one of several phenomena associated causally with skipping lunch;

Figure 2c shows the head and limbs as siblings in a part-of hierarchy.
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FIGURE 2: DERIVING "PATH ENDORSEMENTS" FROM ASSOCIATIONS BETWEEN
EVIDENCE AND CONCLUSION.
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Path endorsements reflect the associations between pieces of domain knowledge,
such as those shown in Figure 2. The credibility of a conclusion such as “the
patient has aching limbs” depends on the associations that form a path between
the conclusion and the evidence. The sibling path between head and limbs is, in
general, not the basis for credible inferences: something that is true of an object
is not necessarily true of its siblings. A headache is not evidence that the rest of
the body aches. On the other hand, the siugle causal association between fatigue
and taking a nap is the basis for credible inferences; given that a person takes a
nap, it is credible to infer fatigue. But it is not credible to infer nausea given
that a person skips lunch, because of the many possible causes for skipping lunch.
Path endorsements describe typical patterns of associations between evidence and
conclusions. Inferences based on these associations are more or less credible, as
we discussed, so path endorsements are the basis for judging the credibility of
inferences. Note that path endorsements are derived from knowledge about how
objects in a domain are associated. They are not “made up” by knowledge engineers

to represent suspected sources of uncertainty.

We developed an expert system, called GRANT, based on path endorsements.
Its task is to match researchers with funding agencies that are likely to support
their work (Cohen, Davis, Day, Greenberg, Kjeldsen, Lander, and Loiselle, 1985).
This is a classification problem in which the evidence is a research proposal, and

the conclusions are the funding agencies that best fit the proposal. The chief source

21



of uncertainty is partial matches between the interests and requirements of funding
agencies and the interests and needs of researchers. To the extent that the match
between an agency and a researcher is good, the agency is likely to support the
researcher. Path endorsements are used to find matches between the respective
research interests of the parties. For example, an agency interested in neurological
diseases is unlikely to fund a researcher interested in osteopathic diseases, because
the path between neurology and osteopathy includes the sibling relationship between

the head and the limbs, shown in Figure 2c.

All endorsements in GRANT were derived after the knowledge for performance
of the matching task was in place. The endorsements literally “come from” the
associations that are needed to encode a large semantic network of research topics.
The network contains over 2000 concepts that describe the research interests of
about 250 funding agencies. The interests of researchers are described by the same
concepts, and GRANT finds agencies to fund researchers by following well-endorsed
asgociative pathways between concepts. So far, the path endorsements are discern-
ing enough that less that 1/3rd of the agencies found by GRANT are judged, by
our expert, unlikely to fund the researcher’s proposal. Moreover, GRANT finds

over 80% of the agencies judged acceptable by our expert.

Our fourth effort at reasoning with endorsements is currently in.progress. We
are developing an expert system for diagnosing the causes of chest pain. This prob-
lem was selected because it gives us an opportunity to study intelligent responses
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to uncertainty. Although we started to explore how endorsements could select re-
sponses in the SOLOMON project, the range of responses was small. The issue
lay dormant in the HMMM and GRANT projects. But in diagnosing chest pain, a
physician has access to a rich source of actions, and must select the appropriate ones
based on his or her uncertainty. Many factors influence this choice. For example,
the amount of time it takes to get evidence from tests must be weighed with the
time course and seriousness of the disease, to decide whether to prescribe therapy

or wait for evidence.

1.5 Conclusion

Our research in medical problem-solving is not at the stage that we have a
running program, but the architecture of the system is guided by principles that,
together, summarige the themes of this paper: Reasoning about uncertainty is
knowledge-intensive, so one’s representations of knowledge about uncertainty should
be informative and explicit, not summary in nature. From these representations,
plans to manage uncertainty can be formulated and explained. Uncertainty has
many sources; intelligent management of uncertainty responds to them differently.

But however responses are selected, uncertainty must be actively managed instead

of passively measured.
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