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1. INTRODUCTION
When is an agent truly autonomous? Steels distinguishes

autonomous systems from automatic systems in the follow-
ing way:

AI systems built using the classical approach
are not autonomous, although they are automatic.
Knowledge has been extracted from experts and
put into the system explicitly [. . . ] The result-
ing systems can solve an infinite set of problems
[. . . ] but these systems can never step outside the
boundaries of what was foreseen by the designers
because they cannot change their own behavior
in a fundamental way. [7]

Related work by Luck & d’Inverno [3], Norman & Long [4]
and others forward the ideas of self-generation (of goals)
and motivation as a step towards autonomy by allowing an
agent to select the goals it will pursue dynamically, under
the control of its own motivational system. We contend that
true autonomy, in the sense described by Steels, can only
be achieved by a system that develops its own knowledge,
and creates its own goals and behaviors grounded in this
knowledge.
In this end, we have developed a theory of the develop-

ment of activity in intelligent, autonomous agents that com-
prises three complementary processes. In the first process,
an agent generates its own goals. Rather than choosing
among arbitrary or exogenously-given states of the world,
the agent generates goals of the form “engage in activity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

A” by a process we call planning to act. It then decides
among available goals by ranking them according to a mo-
tivational system that takes into account the needs of the
agent. In the second process, the agent uses a means-ends
analysis (MEA) planner to build plans to achieve its goals.
Plans that prove successful can be added to the agent’s li-
brary of activities and retrieved for later use or revision.
Finally, in the third process, our system learns from its ex-
perience to produce and refine operator models that inform
the motivational system and planner. Guided by the mo-
tivational system, our agents learn new activities and their
competence grows gradually to encompass all the activity
an environment affords. Our approach parallels Piaget’s de-
velopmental psychology of infants, in which executing and
extending schemas (i.e., executing plans and extending them
to achieve their preconditions) is rewarding (i.e., preferred
by the motivational system) [2].
Due to space constraints, we limit the discussion here to

goal generation and selection via the motivational system,
and a short discussion of some results working with the sys-
tem in simulated domains. More detail on the planner and
modeling systems can be found in [5] and full details of the
experimental results can be found in [6].

2. GOAL GENERATION AND SELECTION
The problem of how to generate goals for a classical plan-

ner to achieve is one that is traditionally not automated.
Planning goals are, in general, specified as desirable sensory
or perceptual states by some exogenous source, typically the
experimenter. An account of development, though, must ex-
plain how an agent produces its own goals.
For a reasonably complex agent, such as a Pioneer-2 mo-

bile robot, with 60 real-valued sensors, the space of possible
sensory states is huge, and large regions of that space are
unreachable or practically indistinguishable from each other.
The question of how to generate goals is under-constrained.
A simple observation on how human children spend their

time during development provides leverage on this problem.
Piaget noted that children seem to spend their time exercis-
ing schemas, or simple sensorimotor routines. The goals of
an agent, and those things that are rewarding to an agent,
seem to be activities, not sensory configurations. If we adopt
a scheme where the goals of an agent are activities, not
sensory states, we limit the goal space to a finite space of
achievable goals. We call this philosophy of goal generation
planning to act.
With the space of goals restricted to activities that the
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agent knows about, goal selection can be accomplished by
the use of a motivational system similar to those described
by Norman [4] and others. A motivational system defines
a preference relation ψ(ai, aj , st) that states a preference to
engage in activity ai over aj in state st.
Our motivational system comprises a set of separate mo-

tivational factors, which correspond to basic drives of an
agent, like hunger, fatigue, and curiosity. Each motivational
factor is represented numerically by a coefficient µf , which
is genetic, and an expected change E∆, which is learned.
The desirability of any activity an in state st is defined as

d(an, st) =
P

F∈F µF (st)E∆(an, st)

(1)

and the preference relation simply compares the desirability
of any two activities.

3. EVALUATION
There are two primary roles for the motivational system

to play in our system: it must exploit existing activities to
keep the agent functioning properly, and it must explore in
order to learn new activities that may provide better op-
portunities for exploitation in the future. These roles are
at odds, and managing this so-called exploitation versus ex-
ploration tradeoff is a well studied problem in reinforcement
learning [1].
Our system manages this tradeoff my allowing the im-

portance of different motivational factors to rise and fall,
at times allowing the curiosity factor to dominate, while at
other times, allowing vegetative needs to take control of the
robots actions through ψ. The agent discovers new activi-
ties by generating and executing plans based on incomplete
operator models.
To demonstrate that our motivational system manages

the tradeoff between exploitation and exploration success-
fully, we implemented two simulated domains. The first is
a simulated factory domain, in which a robot with a paint
gun must discover that it can achieve rewards that satisfy
its motivations by picking up unpainted blocks and painting
them. In order to achieve rewards, it must avoid overheat-
ing through periodic resting, and it must keep its paint gun
loaded with paint cartridges. The second domain is imple-
mented by randomly generating Markov decision processes
(MDPs). In this domain, rewards are randomly distributed
among the MDP, and it is the job of the agent to find the
rewarding activities and exploit them.
We ran trials with our system on the simulated painting

robot, a domain with 5 actions and a total 19 possible out-
comes of those 5 actions, on a smaller MDP with 5 actions,
10 states, and 22 outcomes, and a larger MDP with 10 ac-
tions, 20 states, and 44 outcomes. In the simulated robot
domain, the robot had discovered all 19 outcomes just 60
steps into the simulation. By the time the robot had taken
100 simulated actions, the effect of curiosity had faded to
the point where the robot settled into a policy of painting
blocks, refilling its paint gun, and resting.
Results similar to those found with the simulated robot

were generated in our trials with the randomly generated
MDPs. In the smaller process, the agent had discovered all
22 outcomes by step 100 into the simulation, and curiosity
had faded after 200. The agent settled into a sequence of two
plans, each of length 3, which maximized its rewards in the
randomly generated domain. In the larger MDP, the agent

discovered a rewarding activity almost immediately. While
this influenced its early behavior, the agent still managed
to discover 39 of the 44 outcomes in 140 steps. This, we
believe, is due to the agent attempting to build plans for
the rewarding activity with poor models. The agent builds
plans that are destined to fail, but in so doing, the agent
discovers new outcomes. In so doing, at around step 140,
the agent happened upon a second rewarding outcome that
formed a cycle with the first rewarding outcome. By 200
steps, the agent was already showing signs of settling in on
this rewarding policy where one rewarding activity led to a
second.

4. CONCLUSIONS
We have developed a theory of the development of activity

in autonomous agents. This theory is based on means-ends
analysis planning because of its developmental plausibility
and the declarative, compositional nature of its represen-
tations, which we believe will useful in the development of
related types of conceptual structure such as classes and
language.
The course of development in our system is determined by

automated goal generation and selection. Planning to act is
a process by which an agent plans to engage in activities,
rather than achieve world states. This allows the agent to
limit its attention to a small, fixed set of achievable goals
that it can evaluate according to its motivational system.
The motivational system we use is based on a combination
of motivational factors like hunger and curiosity, which are
modeled numerically, and change over time.
We have tested our system on simulated domains and

shown that it effectively manages the tradeoff between ex-
ploration and exploitation. In our current work, we have
transitioned this system to the Pioneer-2 mobile robot, where
we are optimistic that a rich set of activities will emerge as
the robot explores its environment.

5. REFERENCES
[1] R. Dearden, N. Friedman, and S. Russell. Bayesian

q-learning. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, Madison, WI, 1998.

[2] H. P. Ginsberg and S. Opper. Piaget’s Theory of Intellectual
Development. Prentice Hall, Englewood Cliffs, NJ, 1988. 3rd
Edition.

[3] M. Luck and M. d’Inverno. Motivated behavior for goal
adoption. In Zhang and Lukose, editors, Multi-Agent
Systems: Theories, Languages and Applications -
Proceedings of the Fourth Australian Workshop on
Distributed Artificial Intelligence, pages 58–73.
Springer-Verlag: Heidelberg, Germany, 1998.

[4] T. J. Norman and D. Long. Goal creation in motivated
agents. In M. Wooldridge and N. R. Jennings, editors,
Intelligent Agents: Theories, Architectures, and Languages
(LNAI Volume 890), pages 277–290. Springer-Verlag:
Heidelberg, Germany, 1995.

[5] M. Schmill, T. Oates, and P. R. Cohen. Learning planning
operators in real-world, partially observable environments.
In Proceedings Fifth International Conference on Artificial
Planning and Scheduling, pages 246–253. AAAI Press, 2000.

[6] M. D. Schmill and P. Cohen. A motivational system that
drives the development of activity. Technical Report TR
01-12, Computer Science Department, University of
Massachusetts, Amherst, MA, 2001.

[7] L. Steels. When are robots intelligent autonomous agents?

Journal of Robotics and Autonomous Systems, 15:3–9, 1995.

359


