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Abstract— Currently, most systems for human-robot teaching
allow only one mode of teacher-student interaction (e.g., teach-
ing by demonstration or feedback), and teaching episodes have
to be carefully set-up by an expert. To understand how we might
integrate multiple, interleaved forms of human instruction into
a robot learner, we performed a behavioral study in which
44 untrained humans were allowed to freely mix interaction
modes to teach a simulated robot (secretly controlled by a
human) a complex task. Analysis of transcripts showed that
human teachers often give instructions that are nontrivial to
interpret and not easily translated into a form useable by
machine learning algorithms. In particular, humans often use
implicit instructions, fail to clearly indicate the boundaries of
procedures, and tightly interleave testing, feedback, and new
instruction. In this paper, we detail these teaching patterns
and discuss the challenges they pose to automatic teaching
interpretation as well as the machine-learning algorithms that
must ultimately process these instructions. We highlight the
challenges by demonstrating the difficulties of an initial auto-
matic teacher interpretation system.

I. INTRODUCTION

Human-instructable computing seeks to develop intelligent
devices that can be taught by natural human instruction.
By “natural,” we mean those patterns of communication
that humans use every day while teaching each other. For
example, while teaching another person, humans may pro-
vide (1) explicit definitions and examples of concepts, rules
and conditions, (2) describe and provide demonstrations of
procedures, and (3) provide various kinds of feedback based
on student behavior. We refer to these patterns of instruction
as natural instruction methods.

Translating these forms of instruction into inputs for ma-
chine learning algorithms (e.g., example-label pairs, execu-
tion traces, rewards for reinforcement learning) is nontrivial
because human teaching tends to be opportunistically pre-
sented and therefore not well-structured for a direct conver-
sion into a machine-understandable format. Human teachers
freely mix modes of interaction without explicitly stating
that they are doing so, and often instruction is implicit. For
instance, demonstrating a procedure that involves an object
may simultaneously illustrate a trace for the procedure and
provide an example of the object of interest. Thus, most prior
work on human-robot teaching has avoided the complications
of learning from interleaved instruction methods by focusing
on a single form of human instruction at a time.

We have built an exploratory teaching interface that can
accomodate different types of human teachers, regardless of
whether they use a single mode or multiple modes of natural
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instruction. Thus, our teaching interface particularly targets
non-expert teachers, that is, teachers without prior knowledge
about how to structure their teaching for a machine. We
conducted behavioral studies to observe how non-expert
users teach using our interface, that is, we take as “natural”
what the participants actually do, and part of our goal is to
identify the interface use patterns they produce.

Our primary focus is on understanding what it would take
to automatically map interleaved natural human instructions
(such as the teacher instruction transcripts generated from
our behavioral studies) to state-of-the-art machine learn-
ing algorithms that expect human input, such as concept
[1], procedure [2], or reinforcement [3] learners, each of
which may be a component of a full end-to-end human-
instructable machine. To do so, we performed a behavioral
experiment similar to that of [4], in which human teachers
provide instructions to a simulated robot student that is
secretly controlled by a human. Teachers interacted with
the student through a GUI that provides the ability to
freely mix natural instruction methods. A careful analysis
of the transcripts reveals that while many of these teaching
patterns are straightforward to map into machine learning
targets, humans frequently use a number of other teaching
patterns that are difficult to interpret; we characterize these
as implicit teaching methods. We also found that we could
group teachers according to three different organizational
styles based on the frequency and manner of interleaving
teaching methods. We conclude by illustrating the challenges
involved in interpreting teacher instructions and varying
teaching styles by describing an initial automatic teacher
instruction recognition system.

II. PRIOR WORK

Many prior efforts have described robots that learn from
human teachers [5], [6]. However, most of these works used
only one mode of teacher-student interaction (e.g. teaching
by demonstration). Roughly speaking, the methods that have
been explored include teaching by demonstration, teaching
concepts by example, and teaching through reinforcement.

In teaching by demonstration, a teacher has the same
control interface to a dynamical system as the student does,
and is able to provide traces of proper behavior. Prior work
in learning from demonstration includes using traces in a
batch setting to bootstrap robot behaviors [7], [8] and in
apprenticeship learning over the agent’s lifetime [9].

Teaching concepts by example follows a standard
supervised-learning protocol where the teacher is responsible
for providing labeled examples. However, the teacher may
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also provide explanations or hints as to why a specific exam-
ple was classified a certain way. An example of a system
that uses both inputs in an inductive logic programming
framework is WILL [1]. Other systems for more traditional
classification problems, such as training support vector ma-
chines [10] and email classification [11] have used this
paradigm, with the latter focussing explicitly on natural ways
that humans provide reasons for categorization decisions.
Similar techniques can be helpful in learning conditional
dynamics (e.g. you cannot walk through walls) [12].

In teaching through reinforcement, the teacher is able to
give a feedback signal indicating a degree of happiness (or
unhappiness) with the agent’s behavior, either at specific
timesteps or when an episode has ended. This form of
feedback has been shown to be moderately successful in
complex tasks such as a simulated cooking scenario [13] and
tactical battles in a real-time strategy game [14]. However,
recent work [3], [15] indicates that many “natural” ways of
incorporating numeric or ordinal feedback from humans into
a reinforcement learning problem can be perilous, as humans
often provide incompatible feedback or do not follow “stan-
dard” definitions of reward and value. As such, this channel
is usually best suited for fine-grained refinements.

In addition to incorporating and analyzing the usage of
each of these modes of interaction, we also consider the
organizational style of the teacher (how structured their
lessons are) in an attempt to provide better context for
interpretating instructions. This form of analysis has not
been widely studied in the literature, though other works [4]
have noticed that many teachers often overlap lessons and
commands.

III. EXPERIMENTS

Our goal is to better understand how non-expert human
teachers combine natural instruction methods to teach a robot
when the teaching interface provides multiple instruction
modes that can be freely intermixed. We used an experi-
ment protocol in which novice human participants taught a
series of inter-dependent concepts and tasks to a simulated
electronic student in a Wizard of Oz (WoZ) paradigm,
specifically we asked 44 students from the University of
Arizona to teach a task to an “electronic student” that was
secretly controlled by a human who simulated robot learning.
The teaching interface was designed so that we did not
depend on parsing and interpreting natural language input
but instead used standard GUI elements to enforce simplified
input for potential use with machine learning algorithms.

Wizard of OZ Experimental Setup: Each teaching session
consisted of a participant taking on the role of the Teacher
while a researcher played the Student. The Teacher was led to
believe that he/she was interacting with an electronic student.
The Teacher was first trained (by a second Experimenter) on
the use of the interface and then presented with a teaching
task that outlined the knowledge the Student should attain by
the end of the teaching session. The teaching sessions lasted
from 25 to 35 minutes. The same two researchers took on

the role of the Student and the Experimenter, respectively,
across all experiments.

The task took place in an Intelligence, Surveillance and
Reconnaissance (ISR) domain in which the Student controls
a simulated unmanned aerial vehicle (UAV) and is taught
to carry out missions. The simulated environment includes
a terrain map with objects that can be scanned using two
sensors: a high-resolution camera (providing detailed object
information, such as whether a boat has a cargo hold), and
a radiation sensor (which detects the radiation level of an
object in range). The Student can only perceive the world
through the sensors and the Teacher must teach the Student
how to use the UAV sensors in the appropriate circumstances.

Teacher Interface: Our interface provides the Teacher three
tools to teach the Student: the Instruction Command Interface
(ICI), which sends commands to the Student; a Timeline
Display that shows a list of all prior Teacher instructions;
and a Map Display that includes the UAV sensor state and
range, and the UAV flight path (Fig. 1). Action commands
(from the ICI) allow the Teacher to control the UAV with
controls such as track object, fly to location, descend, etc.
Four modes of instruction are supported:

(1) Teaching by demonstration: The Teacher can label a
sequence of actions as an example of a procedure. This
can be done either by labeling the beginning and end
of the procedure while providing a demonstration, or
after the fact by selecting already executed actions from
the Timeline Display. The Teacher can provide multiple
examples of a single procedure and each instance can be
labeled as a “good” or “bad” example. We refer to the
ICI tools available for this functionality as the procedure
demonstration facility.

(2) Teaching concepts by examples: The Teacher can
define concepts (such as “cargo boat”) by selecting an
object on the map interface and giving it a label. Instances
of labeling can be designated as a positive or negative
example of correct label attribution. We refer to this ICI
tool as the object labeling facility.

(3) Teaching by reinforcement: The Teacher can give
feedback to the Student, in the form of 1-3 “happy faces”
or 1-3 “frowny faces”, issued at any time, and can also
send a “You achieved goal <goal name>” message.

(4) Testing the Student: The Teacher can use simple
commands that ask the Student to provide a label for an
object or execute a previously defined procedure. In this
way, the Teacher can test whether the Student has learned
the labels or procedures correctly.
Teaching Task: In each of the Teaching sessions, there

were two kinds of objects: cargo boats and fishing boats. The
Teacher was asked to teach the Student how to distinguish
them, to use the radiation sensor only on cargo boats, and to
generate a report of the readings. Although this task is very
simple, it requires teaching multiple concepts and procedures
that depend on one another.

Teacher-Student Interaction Data: During the teaching
session, we captured the entire state of the system and
recorded all changes over time, which were used to generate
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a series of Teacher-Student transcripts for human analysis.
Participants were also given a post-experiment questionnaire.

IV. ANALYSIS OF TEACHING PATTERNS

The goal of our exploratory experiments is to discover if
human instructions with a flexible interface such as the ICI
could be easily translated into inputs for machine learning
systems, and if not, identify the kinds of teaching patterns a
system would need to accommodate. We found that there are
indeed several teaching patterns that may be challenging for
automated systems, but which we found were quite common
and natural for untrained human teachers using our system.

A. Multiple uses of the procedure demonstration facility
As described above, use of the object labeling facility

involves simply clicking on an object in the map and entering
a text label, while procedure labeling is a more complex
operation involving selecting and labeling a sequence of
actions. In our post-study questionnaire, 41% of teachers
identified the object labeling facility as “easy to use”, while
only 16% identified the procedure demonstration facility this
way. Twenty-three percent reported procedure definitions as
difficult to teach. Despite the perceived difficulty, a total
of 80% of the teachers used the procedure demonstration
facility at some point. However an estimated 41% used
the procedure demonstration facility in ways that were not
originally intended in our design. In particular:

1) Implicit Object Labeling: Of the 41% of teachers who
used the procedure demonstration facility in an unexpected
way, 25% appear to have used it as a means to label objects.
These teachers maneuvered the UAV up to an object and
then appeared to use the name of the object as the name of
a procedure. We called this general pattern implicit labeling.

To illustrate the challenge of identifying implicit labeling,
we first show an example of explicit labeling. In the follow-
ing transcript excerpt1, the Teacher selects a boat from the
map interface and then enters the object label:
12: 12:32 T: Object @lat. = 39.04, long. = -122.89

is a good example of object label ’Cargo Boat’
(Object name = Boat11)

This command is unambiguous and directly interpretable as
labeling the object.

In contrast, in implicit labeling the teacher first provides
the label as the name of a new procedure, starts the proce-
dure, positions the UAV near an object, and then instructs
the student to track the object. This is demonstrated in the
following transcript excerpt; here the teacher introduces the
concepts ‘Cargo Boat’ and ‘Fishing Boat’:
39: 43:29 T: Start good example of procedure ’Cargo Boat’
40: 43:38 T: Fly plane to object/location @ lat= 39.10,

lon= -122.82 (Object name = Boat10)
41: 44:13 T: Use camera to track object/location @ lat

39.10, lon -122.82 (Object name = Boat10)
43: 44:52 T: End example of procedure ’Cargo Boat’

(...change in location...)
53: 48:23 T: Start good example of procedure ’Fishing Boat’

1Transcript excerpts are formatted as follows: Line number,
timestamp, source (T indicates Teacher’s command and SR indi-
cates Student’s response) and content.

54: 48:30 T: Fly plane to object/location @ lat= 39.09,
lon= -122.86 (Object name = Boat12)

55: 49:08 T: Use camera to track object/location @ lat.
39.04, lon. -122.80 (Object name = Boat12)

58: 51:58 T: End example of procedure ’Fishing Boat’

Fig. 1. Map Display: A display of the progression of teacher commands
(lines 39-43) defining a good example of procedure Cargo Boat from the
earlier transcript excerpt.

A direct interpretation of these actions as defining a
procedure appears to miss that the teacher is labeling the
boats. There are two main sources of evidence for this: (1)
the teacher gave a procedure name that only consisted of a
noun phrase (e.g., ‘Cargo Boat’) rather than a verb phrase (as
was typical of other procedure definitions); and (2) in each
of these cases, the teacher instructed the student to move
the UAV very close to the object (e.g., directly above the
boat) and also asked them to track the object (Figure 1). This
situation presents a challenge for an automated interface to
infer that the teacher is indeed labeling.

2) Implicit procedure definition: In addition to the un-
expected use of procedure demonstration for implicit object
labeling, we also observed many cases (for all but 2 teachers)
in which procedures appeared to be taught but the procedure
facility was not used. In these cases, we observed teachers
directing the Student to perform sequences of steps repeat-
edly, such as using the sensors to gather information and
then generating a report. It appears that the teachers assumed
the Student was “paying attention” to these sequences and
would be able to infer the boundaries between the implicit
procedure definitions.

3) Ill-defined procedure boundaries: We also found that
human teachers frequently gave procedure definitions with
imprecise boundaries. For example, in the following tran-
script excerpt the teacher provides action commands fly
to, camera on and camera track on lines 50, 63, and 66
respectively, well outside the explicitly defined boundaries
of procedure Fly to cargo boat, although these appear to be
key parts of the intended procedure:
50: 29:542 T: Fly plane to lat = 39.04, lon = -122.80

(...UAV heading towards destination...)
63: 29:603 T: Turn on high resolution camera
66: 29:609 T: Use camera to track object @ lat = 39.04,

lon = -122.80 (Object name = Boat12)
(...UAV nearing destination...)

72: 29:807 T: Start bad example of proc. ’Fly to cargo boat’
73: 29:815 T: Unpause the plane
77: 29:821 T: Pause the plane
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(...UAV reached destination...)
79: 29:831 T: End example of procedure ’Fly to cargo boat’

At a first glance, the Teacher’s instructions in lines 73
and 77 appear to be meaningless. However, the name of the
procedure (“Fly to cargo boat”), in addition to the command
at line 50, helps to clarify the situation: the UAV is directed
to fly toward a “fishing boat” and sensors are turned on. The
Teacher then lets the UAV continue until it is just above
the object, at which point the Teacher pauses the plane to
teach that the object directly below is not a cargo boat (the
procedure is a bad example, indicated in line 72).

This example illustrates that we cannot always rely on the
human to provide correct lesson boundaries to the Student. In
the example above, for instance, the Teacher omitted several
commands, including “Fly to”, from the procedure definition.
Moreover, it may be that the procedure demonstration facility
in this example is being used for an implicit object labeling.

Overall, these varied uses of the procedure demonstration
facility reveal that the mapping from natural human teaching
to machine learning inputs requires some sophistication. An
automated mapping facility would need to identify likely
procedure boundaries, even in cases where the teacher has
provided some boundaries, and then deliver them to the
appropriate learning mechanism.

B. Frequent use of testing followed by feedback
An important facet of teacher-student interaction is the

testing of student performance. The majority of the teachers
(87%) made use of the ICI testing tools at some point during
their teaching sessions. We also found there were important
differences between teaching and testing over time. To see
this, we split each teaching session into 3 equal time phases
and analyzed how the usage of teaching and testing tools
differed (Figure 2). We found that teaching tools were mostly
used in the first phase (82%, 11%, 7%) while the use of the
testing tool was more evenly distributed (41%, 32%, 14%)
across teachers.

Fig. 2. Percentage of Teachers that used the Teaching and Testing tools
at least once in each phase

Another class of patterns we observed pertains to the fre-
quency of testing paired with teaching. Half of our teachers
preferred to test the Student right after each lesson, probably
to ensure that each concept has been learned before providing
a new one. Eleven students preferred to loosely interleave

teaching and testing, introducing several new concepts to the
Student before going back to test any of them. Finally, 6 of
the teachers decided to test the Student only at the end of
the teaching session, while 5 others never tested the student.

Testing and Feedback. One of the most frequent patterns
we observed was the ‘teach-test-feedback’ loop. The follow-
ing is an example transcript excerpt of this pattern:
35: 24 T: Start good example of procedure ’cargo boat’
...
159: 31:38 T: End example of procedure ’cargo boat’
160: 31:48 T: Perform procedure ’cargo boat’ near

lat. 39.10, long. -122.82
...
164: 32:48 SR:Radiation sensor reading: high
165: 32:56 T: You achieved goal ’find cargo boat’
166: 32:59 T: 1 happy face

Here, the Teacher immediately follows the demonstration
of a new procedure concept (lines 35-159, details omitted
for space) by prompting the Student to perform the newly-
defined procedure in a new scenario location. Between lines
160-164, the Student flies to the desired location and starts
performing the action specified by the Teacher as part of
procedure cargo boat, including taking the radiation sensor
reading of the boat object in the new location (line 164). Fi-
nally, the Teacher responds to the Student’s test performance
by providing positive feedback (lines 165-166).

We found that most of the teachers who tested the stu-
dent (85%) provided some feedback to either express their
satisfaction/frustration, or used the goal labeling facility to
indicate a goal has been reached. Those who used feedback
did so consistently throughout the session. Fifty-eight percent
of teachers used feedback exclusively after testing. The
teachers who did not use feedback in conjunction with testing
tended to leave their approval/disapproval implicit, instead
either choosing to move on to the next step in the lesson,
or, if the student made a mistake, providing a new example
of the same concept. A robust automated interface should
keep track of lesson topic advancement as possible implicit
feedback about performance.

C. Frequent use of consistent naming conventions
It is not surprising, but still worth mentioning, that human

teachers consistently used meaningful naming conventions
when providing labels for object or procedures. Objects
were generally given names derived from the vocabulary
of the task domain, such as ‘cargo boat’ or ‘fishing boat’,
and procedure names included verb phrases, such as ‘fly to
boat’, ‘track boat’, or ‘scan boat’. Even very simple natural
language processing may provide additional means for ex-
tracting teacher intent. For example, identifying verb phrases
versus noun phrases could help identify when the procedure
definition facility might be used for object labeling.

D. Different “types” of teachers
Finally, our transcript analysis also revealed three distinct

styles of teaching based on the organization of lessons: (1)
Structured teachers (16% of participants) were consistent and
methodical in the execution of their instruction commands.
They consistently used the interface’s object labeling facility
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to teach object concepts and the procedure demonstration
facility to define procedures (no implicit object labeling or
implicit procedure definitions). These teachers always tested
concepts from previous lessons and did not attempt to test
Student’s comprehension of concepts not yet taught. Fur-
thermore, all procedures defined by structured teachers were
well-formed, (no missing commands). (2) Semi-Structured
teachers (50%) began with a less structured teaching style
but became progressively more structured as the teaching
session continued. They made use of the GUI features almost
as intended, sometimes with early exploration of usage.
(3) Free style teachers (34%) were the most difficult to
follow, mainly because these teachers made use of GUI
features in novel ways, such as using procedures for implicit
labeling and sometimes using testing tools before teaching,
perhaps because of high expectations of the Student’s initial
capabilities.

The distribution of styles shows that semi-structured and
free-form teaching styles were far more common than the
structured approach. This may be a function of teacher
experience and training. However, to the extent that we want
to accommodate non-expert users, an interface will need to
handle potentially unstructured teaching.

V. AUTOMATICALLY DECODING TEACHER INTENTIONS

In the previous section, we identified a variety of patterns
which are likely to present considerable difficulty to a
system in “decoding” a teacher’s intended meaning for an
instruction. In this section, we describe a baseline system
that attempts to convert as much of a transcript as possible
into segmented teacher intentions. This includes identifying
which instructions appear to be about “setting up a lesson”
(e.g., maneuvering the UAV to a particular location) as
opposed to actual object or procedure lessons, and when
a procedure is really an implicit definition. This initial
approach is intentionally simple, in order to draw attention
to areas where simple techniques are likely to fail.

A. Human Transcript Annotation
In the first phase of our approach we identified a set

of labels that can be applied to each line of a transcript
to indicate how the teacher intended each instruction to be
used by a learning system. For instance, given the teacher
command sequence:

Direct the UAV to a location
’Start procedure X’
Perform a few actions...
’End procedure X’

the lines before the procedure should be labeled as “Setting
Up”, and the lines between the procedure boundaries should
be labeled as belonging to a single procedure.

Two human annotators (two of the authors) labeled each of
the 44 transcripts. The left column of Figure 3 contains the
set of labels used. Because of the exploratory nature of this
study, the labelers conferred and iterated multiple times over
all the transcripts in order to refine the label interpretations
and create a consistent set of labels. The labelers generally

agreed on most of the initail interpretations and only a few
iterations were needed to reach concensus. Most transcripts
were analyzed several times by both labelers. We decided
a traditional “null hypothesis significance testing” paradigm
was not appropriate at this stage of the research, as it would
lead to an overly narrow analysis. We therefore did not
perform a statistical analysis of inter-coder reliability.

B. Automatic Transcript Annotation
Once the transcripts were annotated, we constructed a

simple script that attempted to use the heuristics the human
annotators used while performing the annotation. The center
column of Figure 3 provides a quick description of these
heuristics. Processing is done in a single-pass, and some rules
involve operations on multiple lines simultaneously. We did
not use any sophisticated statistical techniques for inference
in structured data.

All 44 transcripts were annotated using the script and
the resulting labels were compared with the human la-
bels. We found that for the most part, transcripts could
be automatically annotated based on the small set of rules
and heuristics. The right column of Figure 3 shows which
commands could be automatically translated to agree with
the human labels: instructions labeled with a checkmark were
annotated with 100% accuracy. Instructions labeled with an
’X’ or the check with a star were not labeled accurately:
in these cases, the script could not handle implicit object
and procedure definitions, and “Setting Up” commands were
identified correctly only when the script correctly identify the
teaching that followed.

Fig. 3. Automatic Transcript Annotation (* means only when teaching
command has been correctly identified)

C. Teacher-Style Identification
The teacher type (structured, semi-structured, or free-

style) determines the way participants used the system and
hence, the overall characteristics of the transcript. Using
the heuristics specified in Figure 3, the script was able
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to correctly identify all of the teachers who followed the
structured teaching style. However, classifying teachers into
semi-structured vs. freestyle remains an open problem.

VI. DISCUSSION AND CONCLUSIONS

The teaching interface we built for this study is an
exploratory system, designed to accommodate interleaving
of multiple modes of instruction during teaching. Our goal
was to use this system as a testbed to observe the types of
teaching behavior that are elicited when given the oppor-
tunity to utilize multiple instruction modes. To the best of
our knowledge, our system is one of the first of its kind
but there is much room for improvement. While we have
attempted to simplify the interface and reduce the number
of teaching tools available, the complexity of the system can
initially overwhelm a non-expert user. Although our teacher
participants were given a 30 minute tutorial on the system
usage, the complexity can be distracting and may have had
an effect on the productivity and structure of teaching. One
of the teaching tools, the procedure definition facility, was
particularly difficult for our participants to use and elicited
unexpected behavior such as implicit object labeling. How-
ever, we do believe that the interesting teaching behaviors we
have observed cannot all be ascribed to interface flaws; rather
they highlight issues that should be considered in building a
successful human instructable electronic student.

Our analysis has shown that teachers often give instruc-
tions that require considerable interpretation and are not
amenable to straightforward, direct identification. Humans
make extensive use of implicit instructions, often fail to
clearly indicate the beginnings and ends of lessons, appear
to rely on meaningful linguistic names for objects and pro-
cedure labels, and frequently interleave testing and feedback,
followed by new examples (and often do not give direct
feedback after tests).

We found that a relatively simple set of rules can ac-
commodate important aspects of human instruction but is
only succesful at completely tracking teacher intention if
the teacher follows a structured teaching style. Such a
style makes teacher intent tracking “easy” because there
is (1) a near 1-1 mapping between teacher instruction and
intention, (2) most information relevant to intent is in local
time context (based on very recent Student actions) and (3)
no environmental context disambiguation is necessary. This
style of teaching, however, was the least common among our
teacher participants; in most cases, one or more of the three
criteria for easy interpretation were violated. A successful
instructable robot will need to deal with the more subtle
forms of teaching we found frequently in our transcripts.

A critical next step is to improve recognition of implicit
instructions used in semi-structured and freestyle teaching.
This in turn will allow us to better detect the different
organizational styles of humans. More specifically, the au-

tomatic identification of implicit object labeling and implicit
procedures as well as teacher-specified procedure boundaries
needs to be improved and tested. These behaviors make the
teacher intent tracking problem challenging and in order to
address them, an instructable robot student system would
need to include some nontrivial mechanisms to: (1) track
environmental changes in the teaching session, (2) identify
what context (local or global) is relevant to teacher’s instruc-
tion (restricted language comprehension capability may be
necessary), and (3) handle interleaving teacher instructions.
Not only will this help robots learn from natural instructions,
it will also be useful for helping the robot actively guide the
interaction through robot-human feedback.
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