
Searching for Structure in Multiple Streams of Data

Tim Oates
Computer Science Department, LGRC

University of Massachusetts
Box 34610

Amherst, MA 01003-4610
oates@cs.umass.edu

Paul R. Cohen
Computer Science Department, LGRC

University of Massachusetts
Box 34610

Amherst, MA 01003-4610
cohen@cs.umass.edu

Abstract

Finding structure in multiple streams of data
is an important problem. Consider the
streams of data owing from a robot's sen-
sors, the monitors in an intensive care unit,
or periodic measurements of various indica-
tors of the health of the economy. There
is clearly utility in determining how current
and past values in those streams are related
to future values. We formulate the prob-
lem of �nding structure in multiple streams
of categorical data as search over the space
of dependencies, unexpectedly frequent or
infrequent co-occurrences, between complex
patterns of values that can appear in the
streams. Based on that formulation, we de-
velop the Multi-Stream Dependency Detec-
tion (msdd) algorithm that performs an e�-
cient systematic search over the space of all
possible dependencies. Dependency strength
is evaluated with a statistical measure of non-
independence, and bounds that we derive for
the value of that measure allow the search
to be pruned. Due to the pruning, msdd
can �nd the k strongest dependencies in the
streams by examining only a fraction of the
search space.

1 Introduction

Automating the discovery of structure in multiple
streams of data is an important problem. Consider
the following examples: there seems to be a consen-
sus among the business and research communities that
existing commercial databases (many of which have a
temporal component) can be mined to discover struc-
ture that might confer a competitive business advan-
tage; an intelligent agent with the ability to discover
structure in the values owing from its sensors can

automatically acquire and update a model of its en-
vironment (Oates & Cohen 1996); an understanding
of how current and past states of a computer network
are related to future states may allow proactive net-
work management (Oates 1995). In this paper we cast
the problem of �nding structure in multiple streams of
categorical data in terms of search, and we present and
evaluate an e�cient algorithm, the Multi-Stream De-
pendency Detection (msdd) algorithm, based on that
formulation.

msdd �nds dependencies, unexpectedly frequent or in-
frequent co-occurrences, between patterns of values
that occur in multiple streams of categorical data. De-
pendencies can be expressed as rules of the following
form: \If an instance of pattern x begins in the streams
at time t, then an instance of pattern y will begin at
time t+ � with probability p." The value of p is deter-
mined empirically by counting co-occurrences of x and
y in the streams. A dependency is strong if p is very
di�erent from the probability of seeing a co-occurrence
of x and y under the assumption that x and y are in-
dependent, and it is weak if p is roughly the same as
that probability. Strong dependencies capture struc-
ture in the streams because they tell us that there is
a relationship between their constituent patterns, that
occurrences of those patterns are not independent.

msdd �nds the k strongest dependencies by perform-
ing a systematic search over the space of all possible
dependencies. Children of search nodes are expanded
in a manner that ensures that no node can ever be
generated more than once (Oates, Gregory, & Cohen
1994; Riddle, Segal, & Etzioni 1994; Rymon 1992;
Schlimmer 1993; Webb 1996). The structure of the
search facilitates formulation of both domain indepen-
dent (see Section 3) and domain dependent (Oates
& Cohen 1996) heuristics that greatly increase e�-
ciency. In particular, because msdd returns a list of
the k strongest dependencies, it is possible to use up-
per bounds on the values of a node's descendants to
prune the search. If none of the descendants of node N

can have a value higher than that of any of the current
k best nodes, then N can be pruned. We analytically
derive an upper bound on the value of a statistical
measure of dependency strength for the descendants
of a node. Pruning based on optimistic estimates of
the strength of unexplored dependencies allows msdd
to e�ciently �nd the k strongest dependencies in an
exponential space.

Our approach to rule induction from databases di�ers
from others in that it does not require the user to spec-
ify a set of target concepts to serve as rule right-hand-
sides. Most existing rule induction methods return
rules that use the values of one or more domain vari-
ables (e.g. attribute values), appropriately combined,
to characterize one of a small number of pre-speci�ed
target concepts (e.g. class labels). In contrast, msdd
explores the space of dependencies between pairs of
arbitrary patterns of values; both the left- and right-
hand-sides of rules can be complex expressions. msdd
�nds structure missed by other rule induction algo-
rithms that have less expressive representations or that
limit their search to rules involving a user-speci�ed set
of target concepts.

In Section 2 we formally de�ne the space of depen-
dencies, and thus the expressiveness of the rules found
by msdd. We also describe the systematic search per-
formed by msdd over that space. Section 3 speci�es
a statistical measure of dependency strength, derives
bounds for that measure, and shows how those bounds
can be combined with msdd's systematic search to im-
plement a version of the algorithm that e�ciently lo-
cates the k strongest dependencies in a set of streams.
Section 4 presents the results of using msdd to �nd
complex dependencies in the multivariate time series of
chest volume, heart rate and oxygen saturation taken
from a patient su�ering from sleep apnea, and among
variables in datasets taken from the UC Irvine ma-
chine learning repository. We review related work in
Section 5, and conclude and explore future directions
for this work in Section 6.

2 The MSDD Algorithm

One of the things that sets msdd apart from other
rule induction algorithms is the expressive power of
the rules (dependencies) that it �nds. This section
de�nes the space of dependencies that msdd explores,
describes how that space is systematically enumerated,
and presents pseudo-code for the most basic version of
the algorithm.

2.1 The Space of Possible Dependencies

msdd accepts as input a set of streams, time series
composed of categorical values. Streams are used to

de�ne the space of dependencies the algorithm will
search and to evaluate the strength of dependencies.
Individual streams could, for example, correspond to
the discretized daily closing prices of particular stocks
or to the discretized heart rate of a patient as recorded
over the last hour by a monitor in an intensive care
unit. The set of m input streams is denoted S =
fs1; : : : ; smg, where the i

th stream is composed of cate-
gorical values taken from the set Vi. We call these val-
ues tokens. All of the streams in S must have the same
length, and we assume that all of the tokens occurring
at a given position in the streams were recorded syn-
chronously. Consider the following streams:

S1: D B B A D C D A B C

S2: X Y Y Z Y X Z Z X Y

S3: 2 1 3 2 2 1 2 3 2 1

Stream s1 is composed of tokens drawn from
the set V1 = fA;B;C;Dg. Likewise, V2 =
fX;Y; Zg and V3 = f1; 2; 3g. All three streams
have length 10. In this case, S = f
(D B B A D C D A B C), (X Y Y Z Y X Z Z X Y),

(2 1 3 2 2 1 2 3 2 1)g.

Recall that msdd searches for dependencies expressed
as rules of the following form: \If an instance of pat-
tern x begins in the streams at time t, then an instance
of pattern y will begin at time t+� with probability p."

Such rules are denoted x
�
) y. We call x the precursor

and y the successor. p is computed by counting the
number of time steps on which an occurrence of the
precursor is followed � time steps later by an occur-
rence of the successor, and dividing by the total num-
ber of occurrences of the precursor. To keep the space
of patterns and the space of dependencies �nite, we
consider patterns that span no more than a constant
number of adjacent time steps. We allow precursors to
span at most wp time steps, and we allow successors
to span at most ws time steps. Both wp and ws are
parameters of the msdd algorithm.

We represent patterns of tokens (precursors and suc-
cessors) as sets of 3-tuples of the form � = (v; s; d).
Each 3-tuple speci�es a stream, s, a token value for
that stream, v, and a temporal o�set, d, relative to
an arbitrary time t. Because such patterns can specify
token values for multiple streams over multiple time
steps, we call them multitokens.1 Tuples that appear
in precursors are drawn from the set Tp = f(v; s; d)j1 �
s � m; v 2 Vs; 0 � d < wpg. Likewise, tuples that
appear in successors are drawn from the set Ts =
f(v; s; d)j1 � s � m; v 2 Vs; 0 � d < wsg. For exam-
ple, the multitoken x = f(B; 1; 0); (Y; 2; 1)g speci�es a
pattern that occurs twice in the streams above. For

1The de�nition of a multitoken given here is an exten-
sion of the one given in previous descriptions of the algo-
rithm (Oates, Gregory, & Cohen 1994).

t = 2 and t = 9, we see token B in stream one at time
t+0 and token Y in stream 2 at time t+1. Likewise, the
multitoken y = f(X; 2; 0); (2; 3; 0); (Y; 2;1); (1;3;1)g
occurs twice in the streams above, once at time t = 1
and again at time t = 9. The following streams are a
copy of the streams above, except we have removed all
tokens not involved in occurrences of x or y.

S1: B B .

S2: X Y X Y

S3: 2 1 2 1

Assuming m streams and that jVij = n for all i, the
number of possible precursor patterns is (n + 1)mwp .
Precursor patterns can specify values for a block of
tokensm streams tall and wp time steps wide. For each
of those mwp positions, the pattern either speci�es one
of n token values or leaves the value unspeci�ed (a total
of n+ 1 alternatives), resulting in (n+ 1)mwp possible
patterns. Similarly, the number of possible successor
patterns is (n+ 1)mws .

Dependency rules (x
�

) y) specify two multitokens (x
and y) and a lag (�). The lag, which is an input to the
algorithm and is therefore the same for all dependen-
cies, is used when counting co-occurrences of the two
multitokens; if an occurrence of x is seen in the streams
at time t, msdd checks for an occurrence of y at time
t+ �. Therefore, the number of possible dependencies
is given by (n+1)mwp � (n+1)mws = (n+1)m(wp+ws).
Even for relatively small sets of streams, the number
of dependencies is potentially enormous. For m = 10,
n = 5, wp = ws = 3, the space of dependencies con-

tains more than 1045 elements.

Although the input parameters wp, ws and � together
with the streams in S de�ne the space of precursors,
successors and dependencies that msdd will explore,
any given dependency can be expressed for a large
number of di�erent settings of those parameters. This
makes msdd's ability to �nd structure in streams ro-
bust with respect to variations in the settings of wp,
ws and �. Figure 1 shows how one particular relation-
ship between two multitokens can be captured by de-
pendency rules for three di�erent settings of wp, ws

and �. Unfortunately, it is also the case that any
given dependency can often be expressed in di�erent
ways within the con�nes of a single speci�cation of
values for wp, ws and �. For example, the patterns in
the left-most two blocks in Figure 1 could be shifted
right by one time step, resulting in a syntactically dis-
tinct yet semantically identical dependency. There-
fore, during the search we prune dependencies that
can be shifted in the manner just described, knowing
that an unshiftable systactic variant exists elsewhere
in the search space.

S1: . A B A B A B . . .
S2: X X X .
S3: . C . . Y C . . Y C . . Y .

Figure 1: Any given relationship between two mul-
titokens can be captured by dependencies for a wide
variety of settings of wp, ws and �. Therefore, msdd's
ability to �nd structure in streams is robust with re-
spect to variations in those parameters. The �gure
shows one such relationship as captured by dependen-
cies with the following values: wp = ws = 3, � = 3
(the left-most two blocks); wp = ws = 2, � = 3 (the
middle two blocks); and wp = 3, ws = 1, � = 4 (the
right-most two blocks).

2.2 Systematic Enumeration of Dependency
Space

msdd performs a general-to-speci�c search over the
space of possible dependencies, starting with a root
node that speci�es no token values for either the pre-
cursor or the successor (fg) fg). The children of a
node N are generated either by adding a single 3-tuple
�p 2 Tp to N 's precursor, or by adding a single 3-tuple
�s 2 Ts to N 's successor. However, no two tuples in
the precursor (or the successor) can specify a value for
the same stream on the same time step. That is, it
is invalid to say that at time t stream si will contain
both the value X and the value Y . For precursor x
and for all �i, �j 2 x, it is not the case that si = sj
and di = dj when i 6= j. Likewise for the successor.
Note that for any node x) y in the search tree at
depth D, it is the case that jxj+ jyj = D.

msdd's search space has the property that the value of
a node is independent of the path from the root to that
node. For example, there are two possible paths to the
dependency f(A; 1; 0)g) f(B; 5; 3)g (movement down
through the tree from one node to another is denoted
!): fg) fg ! f(A; 1; 0)g) fg ! f(A; 1; 0)g)
f(B; 5; 3)g and fg) fg ! fg) f(B; 5; 3)g !
f(A; 1; 0)g) f(B; 5; 3)g. However, the path taken
does not a�ect the frequency of co-occurrence of the
two multitokens in the streams, and therefore does not
a�ect the strength of the dependency. Multitokens and
dependencies express conjunctive concepts, and the or-
der in which individual terms are added is irrelevant
to the semantics of the �nal concept. Webb (Webb
1996) calls such search spaces unordered.

It is possible to enumerate all of the elements of an
unordered search space systematically so that each el-
ement of the space is generated exactly once. This
is accomplished by imposing an order on the search
operators used to generate the children of a node, and
applying only those operators at a node that are higher
in the ordering than all other operators already applied

along the path to the node. For search spaces consist-
ing of conjunctive concepts, operators add terms to an
existing concept. Consider the space of conjunctive
concepts de�ned over the literals fA;B;C;Dg. If we
order those literals such that A < B < C < D, then
the corresponding search space can be enumerated sys-
tematically as shown in Figure 2. For the purpose of
non-redundantly enumerating the space of concepts,
any total ordering will work. However, some total or-
ders may be better than others for other aspects of
the search, such as maximizing the bene�ts of prun-
ing. Note that the children of a node can be generated
by considering only the literals in that node's concept
and the ordered list of all literals; each node in the
space is generated exactly once, without maintaining
lists of open and closed nodes for the explicit purpose
of checking for redundant generation. The ability to
non-redundantly expand children by considering only
information local to parent nodes has implications for
the development of parallel and distributed systematic
search algorithms, a topic that we explore in Section
6.

{A,B,C,D}

{A,B,C} {A,B,D}

{A,B}

{A,C,D}

{A,C} {A,D}

{A}

{B,C}

{B,C,D}

{B,D} {C,D}

{B} {C} {D}

{}

Figure 2: Systematic enumeration of the space of all
semantically distinct conjunctive concepts composed
of literals from the set fA;B;C;Dg. Note that only
one syntactic variant of each semantically distinct con-
cept appears in the tree. For example, only one of
fA;Bg and fB;Ag appears.

msdd search operators either add a term from Tp to a
node's precursor or add a term from Ts to a node's suc-
cessor. To perform a systematic search over the space
of possible dependencies between multitokens, we im-
pose the following order on the terms in Tp and Ts: All
of the terms in Tp are lower than all of the terms in Ts.
For any �i; �j 2 Tp, �i is lower than �j if di < dj or if
di = dj and si < sj . That is, terms in Tp are ordered
�rst by their temporal o�set, and then by their stream
index. Likewise for terms in Ts. By ordering all of the
terms in Tp below all of the terms in Ts we force pre-
cursors to be constructed before successors. As long as
no terms have been added to a node's successor, terms
may be added to its precursor. However, as soon as
a single term is added to the successor, the precur-

sor must thereafter remain unchanged because all of
the search operators that would add new terms to the
precursor are lower than the operator that added the
term to the successor. This property of the search is
used in Section 3 to derive bounds on possible values
of a node's descendants.

A pseudo-code speci�cation of msdd is given below
in Algorithm 1. msdd requires six input parameters:
a set of streams, S, that is to be searched for struc-
ture; the maximum number of time steps that pre-
cursor and successor multitokens can span, wp and
ws respectively; the lag to be used when counting co-
occurrences of precursors and successors, �; an evalu-
ation function that determines the strength of a given
dependency, f ; and the number of dependency rules to
return, k. As it is presented, msdd would appear to be
a rather unremarkable algorithm that maintains and
eventually returns a list of the k strongest dependen-
cies encountered while systematically and exhaustively
exploring an exponential search space. However, in the
next section we develop domain independent search
heuristics that allow msdd to prune the search space
(i.e. we give a speci�cation for the suggestively named
remove-prunable routine that is called in step 3:c
of the algorithm), resulting in a highly e�cient search
for the k strongest dependencies in multiple streams
of categorical data.

Algorithm 1 msdd

msdd(S; wp; ws; �; f; k)
1. best = ()
2. open = (fg) fg)
3. while not empty(open) do

a. node = next-node(open)
b. children = systematic-expand(node; wp; ws)
c. children = remove-prunable(children)
d. add children to open
e. for child in children do

i. if length(best) < k or 9n 2 best s.t.
f(child;S; �) > f(n;S; �) then
add child to best

ii. if length(best) > k then
remove from best the node with
the lowest f value

4. return best

3 Search Heuristics

The result of msdd's search for structure is a list of
the k strongest dependencies found in the data, where
dependency strength is measured by the user-supplied
evaluation function f . The G statistic computed for
2x2 contingency tables is a statistical measure of non-
independence, and is therefore an ideal candidate for
f (Wickens 1989). Consider the contingency table be-

low that describes the frequency of co-occurrence of
precursor x and successor y:

y y

x n1 n2

x n3 n4

The cell counts are obtained by counting occurrences
of x and y in the streams; they indicate the number
of times that x was followed by y (n1), that x was
not followed by y (n2), that x did not precede y (n3),
and that neither x nor y occurred (n4). The �rst row
margin, r1 = n1 + n2, is the number of times that x
occurred, and the �rst column margin, c1 = n1+n3, is
the number of times that y occurred. The table total,

T =
P4

i=1 ni, is the total number of time steps over
which events were counted.

G is computed for the table above as follows:

G = 2

4X
i=1

nilog(ni=n̂i)

n̂i is the expected value of ni under the assumption of
independence, and is computed from the row margins
and the table totals. For example, n̂1 = p(x ^ y)T =
p(x)p(y)T = (r1=T)(c1=T)T = r1c1=T . Values of
G near zero indicate that x and y are independent,
whereas large values of G suggest non-independence.
G is very similar to cross-entropy computed for the two
discrete probability distributions (n1=T , n2=T , n3=T ,
n4=T) and (n̂1=T , n̂2=T , n̂3=T , n̂4=T). In fact, it
is easy to show that for the case just described, the
cross-entropy is given by G=2T . We prefer G to cross-
entropy because G scores can be referred to a �2 dis-
tribution with one degree of freedom to determine the
probability of making an error in rejecting the null hy-
pothesis of independence. That is, G can be used to
perform tests of statistical signi�cance on individual
dependencies.

Because msdd returns a list of the k strongest depen-
dencies, if we can derive an upper bound on the value
of the evaluation function f for all of the descendants
of a given node, then we can use that bound to prune
the search. Suppose the function fmax(N) returns
a value such that no descendant of N can have an f
value greater than fmax(N). If at some point during
the search we remove a node N from the open list for
expansion, and fmax(N) is less than the f value of all
k nodes in the current list of best nodes, then we can
prune N . There is no need to generate N 's children
because none of the descendants of N can have an f
value higher than any of the current best nodes; none
of N 's descendants can be one of the k best nodes that
will be returned by the search. (This type of pruning
actually takes place at the time that children are gen-
erated, in line 3:c of Algorithm 1, to keep the size of

the open list as small as possible.) The use of an opti-
mistic bounding function is similar to the idea behind

the ĥ function in A* search. That is, if a goal node
is found whose cost is less than underestimates of the
total cost-to-goal (g + ĥ) of all other nodes currently
under consideration, then that goal node must be op-
timal. Pruning based on optimistic estimates of the
value of the descendants of a node has been used in-
frequently in rule induction algorithms, with itrule

(Smyth & Goodman 1992) and opus (Webb 1996) be-
ing notable exceptions.

It is possible to derive a bound on the value of G for all
of the descendants of any given node in msdd's search
space, allowing msdd to perform optimistic pruning
as described above. Recall that the children of a node
are generated by adding a term either to the node's
precursor or to its successor, yielding a more speci�c
dependency. The result is that the more speci�c mul-
titoken (the child's precursor or successor) may not
match on some of the time steps on which the less
speci�c multitoken in the parent matches. Suppose
the child's precursor, x0, is more speci�c than the par-
ent's precursor, x, and consider time t on which an
occurrence of x is followed by an occurrence of the
successor. If x0 does not match at time t because it
is more speci�c than x, then what was an n1 entry in
the parent's contingency table becomes an n3 entry in
the child's. Following similar reasoning, it is easy to
see how n2 entries in the parent may become n4 en-
tries in the child (see Figure 3a). Likewise, when the
child's successor is more speci�c, n1 and n3 entries in
the parent may become n2 and n4 entries in the child,
respectively (see Figure 3b).

y y

x0 n1 ��1 n2 ��2

x0 n3 +�1 n4 +�2

y0 y0

x n1 ��1 n2 +�1

x n3 ��2 n4 +�2

(a) More speci�c precursor

(b) More speci�c successor

Figure 3: Given a parent dependency x) y and its
contingency table (n1; n2; n3; n4), the �gure shows how
the mass of the table may be redistributed for (a) a
child dependency x0) y with a more speci�c precur-
sor, and (b) a child dependency x) y0 with a more
speci�c successor.

The order imposed on msdd's search operators for

the purpose of implementing a systematic search al-
lows us to reason about how the mass of a node's
contingency table might be redistributed in descen-
dants of that node, and therefore to establish bounds
on G. Recall that dependencies are built by �rst
constructing their precursors, and then their succes-
sors. Given a node N with a non-empty successor
(case (b) of Figure 3) whose contingency table is given
by (n1; n2; n3; n4), any descendant, D, of N will have
the same precursor and a more speci�c successor. In
addition, D's contingency table will be of the form
(n1��1; n2+�1; n3��2; n4+�2). It can be shown
that G is maximized for that table in one of two cases:
�1 = n1 and �2 = 0, or �1 = 0 and �2 = n3. There-
fore, for nodes with non-empty successors:

Gmax(n1; n2; n3; n4) =

max

�
G(n1; n2; 0; n3+ n4)
G(0; n1+ n2; n3; n4)

�

Nodes with empty successors are more complicated be-
cause both the precursor and the successor of descen-
dant nodes can be more speci�c than the original node.
Entries in the contingency table can �rst migrate out
of row one (case (a) of Figure 3), and then migrate out
of column one (case (b) of Figure 3). It can be shown
in this case that (the proof is omitted due to lack of
space):

Gmax(n1; n2; n3; n4) =

max

0
BBBBBBBBBBBBBBBBBB@

(1)
if n1 � n2 + n3 + n4
G(n1; 0; 0; n2+ n3 + n4)

else

G(n1+n2+n3+n4
2

; 0; 0; n1+n2+n3+n4
2

)

(2)
if n1 � abs(n2 � n3)
G(0; n1+n2+n3

2
; n1+n2+n3

2
; n4)

else if n2 > n3
G(0; n2; n1 + n3; n4)

else
G(0; n1 + n2; n3; n4)

1
CCCCCCCCCCCCCCCCCCA

Therefore, we can compute an upper bound on the
value of G for all of the descendants of a node, whether
that node has an empty or a non-empty successor. In
the next section we describe the results of using G and
Gmax as outlined above to search for the strongest
dependencies in several datasets.

4 Empirical Results

To evaluate msdd's ability to �nd the k best rules in
exponential spaces of dependencies, we ran the algo-
rithm on several datasets. In all cases we used G as

the measure of dependency strength, Gmax as derived
in Section 3 to prune nodes that cannot lead to \best"
nodes, and breadth �rst search (i.e. the open list was
treated as a queue in steps 3:a and 3:d of Algorithm
1).

To demonstrate the exibility of the multitoken repre-
sentation, we �rst applied msdd to datasets taken from
the UC Irvine machine learning repository. Those
datasets are typically associated with algorithms that
learn classi�cation rules; rules that predict the value
of a single domain variable by forming combinations
of the values of the other n � 1 variables. However,
msdd can search for more complex structure in those
datasets, �nding rules that combine subsets of domain
variables on both sides of the rules. Running msdd

with wp = ws = 1 and � = 0 eliminates the temporal
component of dependencies, allowing the algorithm to
�nd structure in a set of temporally independent vec-
tors of categorical values (e.g. most of the datasets in
the UC Irvine repository).

The results of running msdd on the chess end-game
dataset are summarized in Table 1 and Figure 4.
The chess end-game dataset contained 500 instances
of king/knight vs. king/rook chess end-games, where
each instance contained 16 features that are typically
used to predict whether a game is safe or lost for black
(the king/knight pair). Table 1 presents the top k = 10
rules found by msdd. Note that only two of the top ten
rules are classi�cation rules that predict a single value,
the status of the game. Of the other eight rules, three
specify values for multiple features on their right-hand-
sides (including the two most highly ranked rules), and
four do not include game status in either their left-
or right-hand-sides (including the most highly ranked
rule). Consider the rule with the highest G score,
which says that when the distance from the black king
to the white rook is two squares, then the distance
from the black king to the black knight is one square
and the distance from the white rook to the black
knight is one square. This rule captures structure in
the domain. The program used to generate instances
for this dataset creates end-games in which the black
king and the white rook are on the same row or col-
umn, separated by the black knight which keeps the
king out of check. Therefore, if the king and rook
are two squares apart (bk-to-rk 2), the knight must
be in the intervening square, one square away from
the king (bk-to-kn 1) and one square away from the
rook (rk-to-kn 1).

The space of dependencies for the chess dataset with
wp = ws = 1 and � = 0 contains more than 1017

elements. The number of nodes expanded by msdd

to �nd the k = 10 strongest dependencies in that
space is summarized in Figure 4. The left-hand graph
shows the number of nodes on the open list at each

Rule Contingency G
Table

1. (bk-to-rk 2)) (bk-to-kn 1) (rk-to-kn 1) (154 0 0 364) 617.4911
2. (bk-to-kn 3)) (game lost) (bk-to-rk 3) (99 0 12 389) 421.57306
3. (bk-to-kn 3)) (game lost) (99 0 17 384) 400.94736
4. (bk-to-rk 3)) (game safe) (0 99 384 17) 400.94736
5. (bk-to-rk 2)) (game safe) (rk-to-kn 1) (149 5 53 293) 334.18567
6. (game safe) (bk-to-wk 3)) (bk-to-kn 3) (0 333 99 68) 271.89417
7. (rk-to-kn 1)) (bk-to-rk 3) (113 154 233 0) 253.67134
8. (rk-to-kn 1)) (bk-to-rk 2) (154 113 0 233) 253.67134
9. (game safe) (wk-to-kn 3)) (bk-to-kn 3) (0 319 99 82) 248.29706
10. (bk-square open)) (kn-square open) (279 0 104 117) 238.4587

Table 1: The top ten rules found by msdd in the chess end-game dataset.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12

O
pe

n
no

de
s

Search depth

0

50000

100000

150000

200000

250000

300000

0 2 4 6 8 10 12

N
od

es
 e

xp
lo

re
d

Search depth

Figure 4: The number of nodes on the open list (the left-most graph) and the number of nodes expanded (the
right-most graph) at each level of the search on the chess end-game dataset.

depth of the search, and the right-hand graph shows
the number of nodes explored at each depth of the
search. Clearly, msdd explored a tiny fraction of the
search space, yet is was able to �nd the ten best rules.
Note that many more nodes are explored at any given
depth than survive the pruning process to become
open nodes at the next level. Pruning on Gmax is
highly e�ective. The number of nodes on the open list
rises rapidly until depth four is reached, and there-
after declines sharply. Most of the ten best rules were
found by msdd at depth three, boosting the minimum
G value in the \best" list and therefore making prun-
ing more e�ective. The number of nodes explored at
each level shows similar behavior, growing less rapidly
and then sharply declining after depth four.

We applied msdd to a number of other datasets from
the machine learning repository, including the solar
ares, auto imports, promoter and voting datasets. In
more than one case, all of the most highly ranked rules
contained values for multiple attributes on both sides
of the rules. For example, the following is the most
highly ranked rule in the auto imports dataset (nu-
merical values were discretized into three bins: high,

med and low):

(curb-weight low) (engine-type

overhead-cam))
(wheel-base low) (num-of-cylinders

four) (engine-size low) (bore low)

In another experiment, msdd searched for the top 25
rules in 2000 time steps of the multivariate time series
of chest volume (cv), heart rate (hr) and oxygen sat-
uration (os) taken from a patient su�ering from sleep
apnea (Weigend & Gershenfeld 1993). msdd found
rules that used values in the streams over the last three
time steps (wp = 3) to predict values over the next two
time steps (ws = 2; � = 1). The continuous values in
each stream were discretized into ten equal bins. An
example of the rules returned by msdd is shown below:

(9 os 0) (9 os 1) (9 os 2)) (4 cv 1)

(6 hr 1)

This rule states that when oxygen saturation holds
steady at 9 for three consecutive time steps, then two
time steps later chest volume will be 4 and heart rate

will be 6.

msdd's ability to �nd strong dependencies between
arbitrary patterns of token values is valuable in the
automated discovery of structure in multivariate time
series. First, it is easy to construct streams for which
the dependencies x) y1, x) y2, : : : ; x) yk are all
weak, and yet the dependency x) y1; : : : ; yk has a
very high G value. Algorithms that search for rules
with restricted right-hand-sides may be unable to �nd
such structure. Second, the fact that msdd's rules
have unrestricted right-hand-sides means that human
users of the algorithm do not need to provide a set of
target concepts. msdd �nds structure in the data, re-
gardless of whether an accurate set of target concepts
exists.

5 Related Work

The research reported in this paper grew out of the
work of Howe and Cohen on �nding dependencies be-
tween events in execution traces (a single stream of
data) generated by the Phoenix planner (Howe & Co-
hen 1995). Dependencies between planner failures,
failure recovery actions, and subsequent failures were
combined with a weak model of the planner to auto-
mate analysis and debugging of recovery mechanisms.
msdd extends the dependency detection portion of
that work by considering a signi�cantly more expres-
sive space of dependencies and by providing e�cient
mechanisms for �nding the k strongest dependencies
within that space.

Several systematic search algorithms have appeared in
the literature (Oates, Gregory, & Cohen 1994; Riddle,
Segal, & Etzioni 1994; Rymon 1992; Schlimmer 1993;
Webb 1996), all of them variations on the basic idea of
imposing an order on search operators, and applying
only those operators at a node that are higher in the
order than all other operators that have been applied
on the path from the root to the node. Some of these
cut o� the search at an arbitrary depth to limit the size
of the search space (e.g. (Riddle, Segal, & Etzioni 1994;
Schlimmer 1993)). In contrast, msdd returns a list of
the k strongest dependencies that is equivalent to the
list that would be returned by an algorithm that ex-
haustively searched the space of all possible dependen-
cies. Our use of optimistic bounds on the value of the
node evaluation function for pruning systematic search
spaces is similar to the opus algorithm (Webb 1996),
which in turn is a generalization of the same idea as
applied to non-systematic search in the itrule induc-
tion algorithm (Smyth & Goodman 1992). msdd and
itrule return the k best rules, whereas opus returns
a single goal node or the single node with the highest
value.

Our approach to rule induction from databases di�ers

from others, including all of those cited above that per-
form systematic search, in that it does not require the
user to specify a set of target concepts to serve as rule
right-hand-sides. Most existing rule induction meth-
ods return rules that use the values of one or more
domain variables (e.g. attribute values), appropriately
combined, to characterize one of a small number of
pre-speci�ed target concepts (e.g. class labels). Of-
ten, such algorithms must be run multiple times to
learn rules for multiple concepts, once for each con-
cept (Schlimmer 1993; Webb 1996), losing the bene-
�t of pruning information generated during previous
runs. The itrule algorithm is somewhat more gen-
eral in that it simultaneously searches for rules whose
right-hand-sides can specify the value of any single do-
main variable, not just the one containing the class
label. In contrast, msdd explores the space of depen-
dencies between pairs of arbitrary patterns of values,
looking for structure in the data regardless of where
it exists. That is a considerable advantage when there
is no a priori knowledge concerning probable relation-
ships that exist in the streams, or when the \target
concepts" themselves involve complex combinations of
domain variables that may be di�cult for a human to
accurately express.

6 Conclusions and Future Directions

In this paper we formulated the process of �nding
structure in multiple streams of categorical data as
systematic search over a space of dependencies. The
msdd algorithm performs an e�cient search over such
spaces to �nd the k strongest dependencies. The
search is pruned by comparing an overestimate of the
value of descendants of a node to the values of the cur-
rent list of best nodes, pruning if the overestimate is
lower than all of those values. We developed an upper
bound on the value of G, a statisical measure of depen-
dency strength, for the descendants of a node. msdd
successfully found the strongest dependencies in sev-
eral of the datasets in the UC Irvine machine learning
repository. The set of rules discovered in the chess end-
game dataset were presented, along with an analysis
of the amount of search required. In addition, sample
rules were presented for the auto imports dataset and
a mutivariate medical time series.

We will extend this research in several directions, in-
cluding work on the basic msdd algorithm and appli-
cations. In terms of the algorithm, we are currently
implementing and testing a distributed version, called
d-msdd, which parallelizes the search for structure on
multiple machines distributed across a network (Oates,
Schmill, & Cohen 1996). The structure of the search
makes it possible to non-redundantly expand nodes
and to make pruning decisions based only on infor-
mation that is available within individual nodes (with

one minor caveat). Therefore, nodes on the open list
can be divided among di�erent processes running on
the same or di�erent machines, requiring a minimum
of communication to keep the load appropriately bal-
anced and to maintain a collective list of the k best
nodes found. We are also working on an incremen-
tal version (i-msdd) of the basic algorithm. Although
the algorithm as implemented is very e�cient, recently
published work of Webb (Webb 1996) describes an in-
teresting technique for dynamically restructuring sys-
tematic search spaces so that most of the space is
placed beneath nodes that have a high probability of
being pruned. We will investigate extending that tech-
nique to apply to the space of dependencies between
multitokens searched by msdd. In terms of applica-
tions, work is proceeding in two areas. First, we are
using msdd to �nd structure in the interactions of an
arti�cial agent with its environment for the purpose
of learning planning operators (Oates & Cohen 1996).
Precursor multitokens encode state/action pairs, and
successor multitokens encode state changes. Strong
dependencies capture state changes that the agent can
reliably bring about. Second, we are using msdd to
learn how current and past states of computer net-
works are related to future states for the purpose of
acquiring rules that will allow network managers to
predict and avoid problems in their networks before
they arise (Oates 1995).

Acknowledgements

This research was supported by ARPA/Rome Labo-
ratory under contract numbers F30602-91-C-0076 and
F30602-93-0100, and by a National Defense Science
and Engineering Graduate Fellowship. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes not withstanding
any copyright notation hereon. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing
the o�cial policies or endorsements either expressed or
implied, of the Advanced Research Projects Agency,
Rome Laboratory or the U.S. Government.

References

Howe, A. E., and Cohen, P. R. 1995. Understanding
planner behavior. Arti�cial Intelligence 76(1{2):125{
166.

Oates, T., and Cohen, P. R. 1996. Searching for
planning operators with context-dependent and prob-
abilistic e�ects. To appear in Proceedings of the Thir-
teenth National Conference on Arti�cial Intelligence.

Oates, T.; Gregory, D. E.; and Cohen, P. R. 1994. De-
tecting complex dependencies in categorical data. In
Preliminary Papers of the Fifth International Work-

shop on Arti�cial Intelligence and Statistics, 417{423.
Does not contain work on incremental algorithm re-
ported in book version.

Oates, T.; Schmill, M. D.; and Cohen, P. R. 1996.
Parallel and distributed search for structure in mul-
tivariate time series. Technical Report 96-23, Univer-
sity of Massachusetts at Amherst, Computer Science
Department.

Oates, T. 1995. Fault identi�cation in computer net-
works: A review and a new approach. Technical Re-
port 95-113, University of Massachusetts at Amherst,
Computer Science Department.

Riddle, P.; Segal, R.; and Etzioni, O. 1994. Repre-
sentation design and brute-force induction in a boeing
manufacturing domain. Applied Arti�cial Intelligence
8:125{147.

Rymon, R. 1992. Search through systematic set enu-
meration. In Proceedings of the Third International

Conference on Principles of Knowledge Representa-

tion and Reasoning.

Schlimmer, J. C. 1993. E�ciently inducing deter-
minations: A complete and systematic search algo-
rithm that uses optimal pruning. In Proceedings of the
Tenth International Conference on Machine Learn-

ing, 284{290.

Smyth, P., and Goodman, R. M. 1992. An in-
formation theoretic approach to rule induction from
databases. IEEE Transactions on Knowledge and

Data Engineering 4(4):301{316.

Webb, G. I. 1996. OPUS: An e�cient admissible
algorithm for unordered search. Journal of Arti�cial
Intelligence Research 3:45{83.

Weigend, A., and Gershenfeld, N. 1993. Time Series
Prediction: Forecasting the Future and Understand-

ing the Past. Addison-Wesley.

Wickens, T. D. 1989. Multiway Contingency Tables

Analysis for the Social Sciences. Lawrence Erlbaum
Associates.

