
Recognizing Behaviors and the Internal State of the
Participants

Wesley Kerr
Department of Computer Science

University of Arizona
Tucson, AZ 85721–0077

Email: wkerr@cs.arizona.edu

Paul Cohen
Department of Computer Science

University of Arizona
Tucson, AZ 85721–0077

Email: cohen@cs.arizona.edu

Abstract—Psychological research has demonstrated that sub-
jects shown animations consisting of nothing more than simple
geometric shapes perceive the shapes as being alive, having goals
and intentions, and even engaging in social activities such as
chasing and evading one another. While the subjects could not
directly perceive affective state, motor commands, or the beliefs
and intentions of the actors in the animations, they still used
intentional language to describe the moving shapes. We present
representations and algorithms that enable an artificial agent
to correctly recognize other agents’ activities by observing their
behavior. In addition, we demonstrate that if the artificial agent
learns about the activities through participation, where it has
access to its own internal affective state, motor commands, etc.,
it can then infer the unobservable internal state of other agents.

I. INTRODUCTION

Previous research demonstrated that subjects shown anima-
tions consisting of nothing more than simple geometric shapes
perceive the shapes as alive, having goals and intentions, and
even interacting in social relationships such as chasing and
evading [1], [2]. For example, subjects in the classic Heider
and Simmel study consistently labeled the larger triangle in
Figure 1 as a bully who was constantly chasing the smaller
triangle and circle [1].

Fig. 1. Single frame from an animations similar to the original Heider and
Simmel animation.

When subjects ascribe intentions to geometric primitives
like those shown in Heider and Simmel’s research (see Fig-
ure 1), which information guides the process? Blythe et al. [2]
showed that patterns of motion of the actors in animations
are sufficient information to classify the activities in the
animations. In fact, their classification algorithm outperformed
human subjects.

Blythe’s algorithm mapped patterns of motion onto class
labels for intentional states, which isn’t quite the same as
knowing anything about intentional states. One of Heider and
Simmel’s subjects described the larger triangle in Figure 1 as
“blinded by rage and frustration.” Blythe’s algorithm couldn’t
come up with such a description. An agent that classifies
episodes by patterns of motion knows about patterns of
motion, not about rage and frustration, even if these words
are provided as episode labels. So how might an agent infer
affective states?

In both the Heider and Simmel animations and the anima-
tions developed by Blythe et al., subjects can only observe a
subset of the features that are available, i.e. positions, veloci-
ties, sizes, colors, etc. The subjects cannot directly perceive the
affective state, motor commands, and the beliefs and intentions
of the actors in the animations. Yet they infer affective states
and describe them with intentional language.

We think humans infer affective states given non-affective
observables such as positions and velocities by calling on their
own affective experiences. Observables cue, or cause to be
retrieved from memory, schemas that include learned affective
components, which are inferred or “filled in” as interpretations
of patterns of motion or other non-affective observables.

We designed the CAVE algorithm to classify and visualize
episodes. CAVE learns to classify through supervised learning
with labeled episodes, such as instances of robot behaviors.
Visualization produces a compact image of the sometimes
complex interactions between intervals. An agent built with
CAVE learns to classify activities by first performing them,
itself. It therefore has access to both observable aspects of ac-
tivities such as motion, and private aspects such as intentions,
emotional states, and motor commands. It can use observations
of other agents to retrieve activities from memory and project
the hidden or private aspects of the activities onto other agents.

We will describe the representations and algorithms for
an agent that learns to classify activities in Wubble World.
Wubble World is a virtual environment with simulated physics
in which softbots, called wubbles, interact with objects [3].
Wubble World is instrumented to collect distances, velocities,
locations, colors, sizes, and other sensory information (includ-
ing motor commands) and represent them with propositions
such as Above(wubble, box) (the wubble is above the box) and

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 33

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

PVM(wubble) (the wubble is experiencing positive vertical
motion). Wubbles perform several kinds of activities: they
jump over boxes, jump on boxes, approach boxes, push boxes,
and move around boxes.

In outline, Section II describes a representation of activities
that supports inference about unobservable states, and Section
III describes how these representations are learned. Sections
IV and V report an experiment in which hidden aspects of
motor control are inferred, and Section VII describes ongoing
work in scenarios that resemble very closely those created by
Heider and Simmel.

II. QUALITATIVE SEQUENCES

The datasets generated by activities in Wubble World are
called episodes. Each episode is a collection of intervals, and
each interval is a tuple containing a proposition and the times
at which the proposition becomes true and false. A proposition
can become true (and false) multiple times within an episode;
each of these instances is represented as a separate interval.

We assume that different examples of one activity share
patterns of intervals. More colloquially, the intervals in similar
episodes tell the same story with minor variations. Thus, one
may classify episodes by their constituent patterns of intervals.
This is not the only way to do it: A cleaning agent might
classify a cleaning episode by the objects it interacts with,
such as pots and pans, rather than what was done with the
pots and pans. But our focus here is classifying episodes by
patterns of activities, represented by intervals.

Episodes and intervals have different durations, start times,
end times, and constituent propositions, so our representation
of episodes must accommodate and generalize over these
variations. For example, any episode generated by a wubble
jumping over a box begins with an interval in which the
wubble is in front of a box, followed by an interval in which
the wubble moves more or less quickly towards the box. At
some point, which will vary between episodes, the wubble
will jump. Despite variations, all episodes of jumping over a
box contain a common pattern of intervals: the wubble moves
towards the box, jumps, moves above the box, and finishes on
the ground behind the box.

Relationships between intervals can be described by Allen
relations [4]. Allen recognized that, after eliminating symme-
tries, there are only seven possible relationships between two
intervals, shown in Figure 2. Allen relations are qualitative
in the sense that they represent the temporal order of events,
specifically, the beginnings and endings of intervals, but not
the durations of intervals.

The intervals in an episode may be sorted to generate
a canonical representation of an episode. Ordered intervals,
also known as normalized intervals in [5], [6], are sorted
according to earliest end time. If two intervals finish at the
same time, they are further sorted by earliest start time, and
if the start and end times are identical, then they are sorted
alphabetically by proposition name. A canonical representation
of episodes ensures that a classifier only works with one, not
many, representations of an episode.

(x equals y)

(x meets y)

(x finishes-with y)

(x starts-with y)

(x overlaps y)

(x during y)

x
y

x
y

x
y
x
y

x
y

x
y

(x before y)
x
y

(x e y)

(x m y)

(x f y)

(x s y)

(x o y)

(x d y)

(x b y)

Fig. 2. Allen Relations

Our episode representation, which we call a qualitative
sequence, is a sequence of Allen relations between intervals
in the episode. These intervals are first ordered or normalized
according to the rules as we just described. Then we construct
the Allen relations between all of the pairs of intervals in order,
as described in Algorithm 1. An illustrative episode and the
resulting qualitative sequence is shown in Table I. The letters
A, B and C denote propositions, and an assertion such as (C
1 3) means that proposition C was true in the interval [1,3].
The remainder of the paper will use the terms episode and
sequence interchangeably.

Algorithm 1 MAKE-SEQUENCE(I)

S = ()
for i = 1 to size(I) do

for j = (i+ 1) to size(I) do
S ← S + allen(I[i], I[j])

end for
end for
return S

A qualitative sequence can be shortened by defining a
window that determines how close any two intervals must be to
consider one before the other. This is known as the interaction
window. Assume that we have two intervals (p1 s1 e1) and
(p2 s2 e2) such that p1 and p2 are proposition names, s1 and
s2 are start times, e1 and e2 are end times, and e1 < e2. The
two intervals are said to interact if s2 ≤ e1 + w where w is
the interaction window. If we set w = 1 in Table I, then we
would remove the relation (C before C) .

III. LEARNING

The CAVE learning algorithm is an incremental algorithm
designed to discover and highlight patterns in sequences of
propositional data. The agent learns to classify episodes given
episode and activity label pairs.

Episodes are first converted into qualitative sequences of
Allen relations and learning is done with these sequences. Let
S = {S1, S2, . . . , Sk} be a set of qualitative sequences with

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 34

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

Intervals Sequence
(C meets A)

(C 1 3) (C before B)
(A 3 6) (C before C)
(B 4 9) (A overlaps B)
(C 6 10) (A meets C)

(B overlaps C)

TABLE I
AN EPISODE COMPRISING FOUR INTERVALS AND THE CORRESPONDING

QUALITATIVE SEQUENCE.

the same activity label. We define the signature of the activity
label, Sc, as an ordered sequence of weighted Allen relations.
(The only difference between a signature and a qualitative
sequence is these weights.) We select a sequence at random
from S to serve as the initial signature, Sc, and initialize all
of its weights to 1. After this, Sc is updated by combining it
with the other sequences in S, processed one at a time.

Two problems are solved during the processing of the
sequences in S. First, the sequences are not identical, so Sc
must be constructed to represent the most frequent relations
in the sequences. The weights in Sc are used for this purpose.
Second, because a relation can appear more than once in a
sequence Si, there can be more than one way to align Si
with Sc. These problems are related because the frequencies
of relations in Sc depend on how sequences are successively
aligned with it.

Relations Weight
(A finishes-with D) 1

(A overlaps B) 5
(A meets C) 5

(D overlaps B) 1
(D meets C) 1

(B overlaps C) 5

TABLE II
THE SIGNATURE OF AN ILLUSTRATIVE SET OF SEQUENCES.

Updating the signature Sc with a sequence Si occurs in
two phases. In the first phase, Si is optimally aligned with Sc.
The alignment algorithm, described below, penalizes candidate
alignments for relations in Sc that are not matched by relations
in Si, and rewards matches. These penalties and rewards are
functions of the weights stored with the signature. Table III
shows the signature from Table II aligned with the sequence
in Table I. In the second phase, the weights in the signature
Sc are updated. If a relation in Si is aligned with one from Sc,
then the weight of this relation is incremented by one (e.g., (A
overlaps B) in Table III). Otherwise the weight of the relation
is initialized to one (e.g., (C meets A) in Table III) and it
is inserted into Sc at the location selected by the alignment
algorithm.

Updating the signature relies on the Needleman-Wunsch
global sequence alignment algorithm [7]. The algorithm uses
dynamic programming to find an optimal alignment between
two sequences. Alignments are constructed by selecting oper-

ators that modify each sequence to look more like the other.
Operators include inserting a symbol from one sequence into
the other, deleting a symbol from one of the sequences, sub-
stituting a symbol from one sequence for another in the other
sequence, or matching a symbol from each of the sequences.
However, to ensure that no information from sequences in S is
lost, we allow the sequence alignment only to insert or match,
not delete or substitute, relations. Both the cost of insertion
and matching are determined by the weights that are stored
with the signature as mentioned above.

Sc Aligned Si Aligned Sc Updated
− (C m A) (C meets A) 1
− (C b B) (C before B) 1
− (C b C) (C before C) 1

(A f D) − (A finishes-with D) 1
(A o B) (A o B) (A overlaps B) 6
(A m C) (A m C) (A meets C) 6
(D o B) − (D overlaps B) 1
(D m C) − (D meets C) 1
(B o C) (B o C) (B overlaps C) 6

TABLE III
UPDATING THE SIGNATURE Sc . THE LEFTMOST COLUMN IS THE CURRENT

SIGNATURE (FROM TABLE 2). THE SECOND COLUMN IS A SEQUENCE Si
(FROM TABLE 1). THE THIRD COLUMN IS THE OPTIMAL ALIGNMENT OF
Si WITH Sc . THE FINAL COLUMN IS THE WEIGHTS OF THE UPDATED

SIGNATURE.

Because the process of updating signatures is careful to not
remove anything from any of the sequences in S, signatures
become stuffed with large numbers of Allen relations that
occur very infrequently, and thus have low weights. We use
a simple heuristic to clean up the signature: After K training
episodes, all of the relations in the signature with weights less
than or equal to n are removed. All of our experiments use
K = 10 and n = 3, meaning that the signature is pruned
of all relations occurring less than 4 times after a total of
10 training episodes. The signature is again pruned after 20
training episodes, and so forth.

IV. CLASSIFICATION

The signatures learned by the CAVE algorithm function
as classifiers as follows. Recall that S = {S1, . . . , Sk} is a
set of qualitative sequences with the same activity label; for
example, all the sequences in S might be examples of jump
over. Now suppose we have N sets of qualitative sequences,
Σ = {S1, S2, . . . , SN} each of which has a different activity
label, and its own signature, derived as described in the Sec-
tion III. A novel, unlabeled sequence matches each signature
to some degree, determined by aligning it with each signature,
as described earlier. The novel sequence is given the activity
label that corresponds to the signature it matches best.

V. INFERRING HIDDEN STATE

Episodes have observable and unobservable propositions
depending on who is observing. When wubble1 is performing
the activity it observes all of the propositions, but when
wubble1 observes wubble2 performing the same activity,

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 35

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

wubble1 cannot perceive the motor commands, emotional
state, and intentional states of wubble2.

By hidden relations we mean relations that include one or
more propositions that are not directly observable in the be-
havior of other agents, and so must be inferred. Our approach
to inferring hidden relations is to have agents learn signatures
of their own behaviors, in which these relations are not hidden.
Then, when an agent observes another’s behavior, it matches
the observable relations to signatures of its own behavior, and
uses these to infer unobservable relations in other’s behavior.

To illustrate, assume that the signature in Table II was
learned by an agent and the observed behavior of another agent
does not include proposition B. The first agent would infer that
the following hidden relations must also be true: (A overlaps
B) , (D overlaps B) , and (B overlaps C) .

In general, sequences can contain many hidden relations.
The most frequent of these relations are the most likely
to occur when observing other agents. Therefore, our agent
selects the α most frequently occurring hidden relations to be
the inferred hidden state. In the previous example, if we were
to set α = 2, then we would remove the relation that occurs
the least, in this case (D overlaps B) .

VI. EXPERIMENTS

Our approach to deal with hidden propositions and relations
has two parts: Observables are used to select signatures, then
signatures are used to infer hidden relations. Our first exper-
iment tests how accurately observables can select signatures;
a test of classification accuracy. Then we test how accurately
the selected signatures can fill in or infer hidden relations.

Experiments were conducted in the Wubble World virtual
environment described in Section I. Wubbles learned signa-
tures associated with these tasks: jumping over a box, jumping
on a box, approaching a box, pushing a box, moving around
a box to the left, moving around a box to the right. Episodes
were generated by manually controlling a wubble to repeatedly
perform one of these tasks. Each episode was unique, in that
the wubble would start closer or farther from the box, move
more or less quickly, and so on. There were 37 episodes
labeled jump over, 20 episodes labeled jump on, and 25
episodes for each of the remaining tasks.

A. Experiment 1: Classification

The CAVE algorithm was evaluated on its ability to cor-
rectly classify episodes in Wubble World. Classifying episodes
is not trivial because, even though the tasks that generated
them are different, the episodes share propositions and inter-
vals. They all involved the same block, movement, and similar
perceptions.

We present results for classification accuracy when all
propositions are observable and when some are hidden. In
the latter case the hidden propositions are motor commands
such as Forward(wubble) and Backward(wubble). After we
present results for classification accuracy, we will describe
how well these hidden propositions and relations that include
them are inferred.

The classification performance of the CAVE algorithm is
contrasted with a k-nearest neighbor classifier operating on
qualitative sequences, that is, sequences of Allen relations.
To select a class label for an episode, the k-NN classifier
calculates the distance between the episode and all training
episodes (across all class labels). Distances are determined by
a longest common subsequence algorithm, and as in the CAVE
algorithm, more similar sequences have lower distances. The
k-NN classifier selects the most frequently occurring class
label among the k closest neighbors of an unlabeled episode,
and for this paper we’ve set k = 10. We prefer a weighted k-
NN classifier because it weights each of the closest neighbors
by the distance to the unlabeled episode, so that closer
neighbors have more weight. The class label with the most
weight attached to it is the label given to an unlabeled episode.

1) Results: The performance of the CAVE algorithm and
the k-NN classifier is the average number of correctly clas-
sified episodes in a 10-fold cross validation across the 157
episodes, shown in Table IV. Both successfully classify over
90% of the episodes when all propositions are observable. Also
shown in Table IV is the performance of the CAVE and k-NN
classifiers when motor commands are withheld from the test
set. Here we see a dip in performance for each, but both still
correctly classify roughly 90% of the episodes.

Observable Hidden
µ σ µ σ

k-NN 97.8% 3.9 94.3% 5.1
CAVE 94.4% 4.3 89.4% 7.5

TABLE IV
PERFORMANCE ON THE WUBBLE WORLD CLASSIFICATION TASK. µ IS

THE AVERAGE PERCENT OF EPISODES CORRECTLY CLASSIFIED AND σ IS
THE STANDARD DEVIATION.

Figure 3 shows the learning curve for the CAVE algorithm
when tested on episodes lacking propositions corresponding to
motor commands. The CAVE algorithm learned signatures for
each activity one episode at a time. After presenting a single
training example consisting of an activity label and sequence
pair, we tested performance on a classification task.

The learning curve was generated by selecting five episodes
from each type of activity to function as the test set. The
remainder of the episodes were used as the training set to be
presented one at a time to the CAVE algorithm. In Figure 3 the
x-axis is the number of training instances seen by the CAVE
algorithm, and the y-axis marks the percent correctly classified
out of 30 episodes in the test set. The performance is averaged
over 20 different randomizations of the test set and training
presentation order.

As the graph indicates, the CAVE algorithm learns to
classify the episodes in the test set very quickly in both
conditions. Episodes in the test set are labeled with one of six
possible class labels. After seeing 24 episodes (on average only
four episodes per activity) the CAVE agent is able to classify
almost 70% of the test set correctly. This demonstrates that
the signatures learned by the CAVE algorithm quickly identify

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 36

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

Fig. 3. Learning curve of the CAVE algorithm generated by presenting
labeled training instances one at a time to the CAVE algorithm.

relations within the training episodes that allow the algorithm
to correctly classify activities.

B. Experiment 2: Inferring hidden relations

The next experiment demonstrates how well our agent can
infer unobservable relations, i.e. relations that involve motor
commands. The method is to have it learn signatures when
it can observe motor commands, then test its ability to infer
motor commands when shown sequences in which they are
unobservable. This is a precision test.

Five episodes are randomly selected from each type of
activity to serve as the test set. The agent builds a signature
for each activity from the remaining episodes. From signature
we select the α = 10 most frequent relations that contain at
least one of the motor commands as inferred relations. Some
subset of these relations occur in each of the test sequences.
We measure the overlap between the inferred relations and
those in the test sequence.

Table V shows the results. Each cell in the table contains
the average amount of overlap between the most frequent
relations in the signature and the actual hidden relations that
occur in each episode from the test set. On average, 99% of
the inferred relations from the push signature correspond to
hidden relations in unseen push episodes. This means that,
in expectation, if the agent were to correctly classify a push
episode, then 99% of its inferred relations would be present
in the episode.

What if the agent classifies an episode incorrectly? How will
this affect the accuracy of inferred relations? Table V shows
the accuracy of inferred relations for all pairs of activities.
Along the diagonal are cases where the classification of the
activity is accurate, off-diagonal cases are incorrectly classified
episodes. For example, if the agent classifies a push as an
approach then only 56% of the inferred hidden relations will
actually occur in the episode. (The fact that there is any overlap
at all is due to the overlap between the activities: in both cases
the agent approaches the box.)

This experiment confirms that if the agent can correctly
classify the activity of another agent, it can select the α most
frequent relations as inferred hidden relations, and they will
be correct with high accuracy.

Signatures
approach push jump on jump over left right

approach 0.66 0.12 0.15 0.00 0.31 0.32
push 0.56 0.99 0.14 0.01 0.27 0.25

jump on 0.45 0.22 0.91 0.90 0.25 0.27
jump over 0.40 0.38 0.82 0.99 0.27 0.21

left 0.36 0.49 0.16 0.01 0.99 0.95
right 0.34 0.51 0.15 0.01 0.94 0.99

TABLE V
A MATRIX SHOWING THE PERCENT OVERLAP BETWEEN THE α MOST
FREQUENT HIDDEN RELATIONS IN THE SIGNATURE AND THE HIDDEN

RELATIONS THAT EXIST IN THE TEST SET, BUT ARE NOT OBSERVABLE.

VII. PREVIOUS WORK

There is a body of literature on extracting patterns of
intervals from data. Most of this research focuses on extracting
temporal patterns that occur with frequency greater than some
threshold, also known as support. In [6], support is defined as
the frequency of the pattern within a sliding window, ensuring
a degree of locality between the internal relationships of the
pattern, whereas in [5], [8], the support of a pattern depends
on the number of episodes containing the pattern. Other work,
such as [9], [10], focuses on extracting patterns that are
determined to be statistically significant through hypothesis
testing. This is the only work we know of relating support for
a pattern to evidence against the null hypothesis that no pattern
exists. None of the work cited above focuses on classifying
episodes.

Batal et al. [11] proposed a method for classifying multi-
variate propositional time series. The authors first extract large
patterns from the time series with methods similar to those just
discussed. The complete set of large patterns are pruned by
hypothesis testing to generate a subset of patterns that will
serve as a binary feature vector. Each training episode results
in a single binary feature vector such that each value is true
when the corresponding pattern is found within the episode
and false otherwise. The feature vectors and class labels are
used to train a traditional classifier (e.g. SVM). One problem
with this approach is that the classifier must be completely
retrained whenever new training episodes are acquired.

Other research has focused on the problem of inferring
intent from motion data alone. In Blythe et al. [2], human
subjects controlled simulated insects on networked machines
to perform a variety of activities. Activities ranged from
chase and flee behaviors to mating rituals that had one insect
attempting to court another. The authors trained a three-layer
neural network to classify the activities based on observable
information, such as relative distance between the insects,
relative velocity, absolute velocity, relative heading, etc. The
trained neural network outperformed human subjects on a
classification task. Intention was not explicitly modeled in this
system even though it could detect it through motion cues.

More recently, Crick and Scassellati showed that sequences
of belief states constructed from a folk physics-based in-
terpretation of position and motion could correctly classify
multiplayer games like tag and keepaway [12]. This work is an

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 37

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

extension of previous work where they could correctly identify
which player was “it” in a game of tag [13].

Recent research has proposed the mirror neuron system
within humans as a neural mechanism for recognizing and un-
derstanding the intentions of other people [14], [15]. Although
we do not claim that the CAVE agent understands intentions in
the same way that humans do, both lines of research propose a
mechanism such that one agents understands the intentionality
of another by relating the observed actions with one’s own
previous memories and internal states.

VIII. FUTURE WORK

In the examples presented here, the hidden propositions are
motor commands issued by the wubbles, but our ultimate goal
is to infer intentional and particularly affective state. This will
require wubbles to have intentional and affective state while
they learn activities.

To aid in this we have built a 2D physics based simulator
wherein the agents are controlled by the SOAR cognitive
architecture [16]. We’ve augmented SOAR with an emotional
system based on those described in [17], [18]. A screenshot
from the 2D simulator is shown in Figure 4. The blue circle
and the red triangle represent two agents and the light green
areas in front of them represent the limits of their visual
systems. The blue circle has just escaped from the red triangle,
and is still experiencing alarm. The agents follow scripts, much
like actors in movies, that involve common themes such as
“escaping a bully.” As agents act out the interactions with
other agents, they experience intentional and emotional state,
and learn to incorporate them into signatures. We expect these
agents to use their signatures to infer the intentional states of
other agents in similar interactions, such as the classic Heider
and Simmel movie.

Fig. 4. Still frame from our 2D simulator. The blue circle is expressing an
emotion while escaping from the red triangle.

IX. SUMMARY

In this paper we presented a representation of activities
that supports inference about unobservable states, and the
learning and inference algorithms that go along with it. The
agent learns from qualitative sequences of Allen relations that
capture relations between intervals. Activities are classified

using signatures built up from training episodes with the same
activity label. With high accuracy the agent is able to infer
hidden relations when it observes other agents performing
activities it has already learned about.

In the future, the CAVE agent will work directly with
real-valued multivariate time series. Previous research has
detailed how to convert real-valued time series into symbolic
form [19], [20]. Typically the conversion process introduces
new propositional variables that are descriptive of the original
time series. We will address how the system scales under much
larger numbers of variables and more complex datasets.

REFERENCES

[1] F. Heider and M. Simmel, “An experimental study of apparent behavior,”
The American Journal of Psychology, vol. 57, no. 2, p. 243, 1944.

[2] P. W. Blythe, P. M. Todd, and G. F. Miller, “How motion reveals
intention: Categorizing social interactions,” in Simple heuristics that
make us smart. Oxford University Press, USA, 1999.

[3] W. Kerr, P. Cohen, and Y.-H. Chang, “Learning and playing in wubble
world,” in Proceedings of the Fourth Artificial Intelligence and Interac-
tive Digital Entertainment Conference, 2008, pp. 66–71.

[4] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commu-
nications of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[5] E. Winarko and J. F. Roddick, “Armada - an algorithm for discovering
richer relative temporal association rules from interval-based data,” Data
and Knowledge Engineering, vol. 63, no. 1, pp. 76–90, 2007.

[6] F. Höppner, “Learning temporal rules from state sequences,” in IJCAI-01
Workshop on Learning from Temporal and Spatial Data, 2001.

[7] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, March 1970.

[8] P. shan Kam and A. W.-C. Fu, “Discovering temporal patterns for
interval-based events,” Lecture Notes in Computer Science, vol. 1874,
pp. 317–326, 2000.

[9] P. R. Cohen, C. Sutton, and B. Burns, “Learning effects of robot
actions using temporal associations,” in International Conference on
Development and Learning, 2002.

[10] M. Fleischman and D. Roy, “Grounded language modeling for automatic
speech recognition of sports video,” in Proceedings of ACL-08: HLT,
2008, pp. 121–129.

[11] I. Batal, L. Sacchi, R. Bellazzi, and M. Hauskrecht, “Multivariate time
series classification with temporal abstractions,” in Florida Artificial
Intelligence Research Society Conference, 2009.

[12] C. Crick and B. Scassellati, “Inferring narrative and intention from play-
ground games,” in 7th IEEE International Conference on Development
and Learning, 2008.

[13] C. Crick, M. Doniek, and B. Scassellati, “Who is it? inferring role and
intent from agent motion,” in 6th IEEE International Conference on
Development and Learning, 2007.

[14] M. Iacoboni, I. Molnar-Szakacs, V. Gallese, G. Buccino, J. C. Mazziotta,
and G. Rizzolatti, “Grasping the intentions of others with one’s own
mirror neuron system,” PLoS Biol, vol. 3, no. 3, p. e79, 02 2005.

[15] Z. K. Agnew, K. K. Bhakoo, and B. K. Puri, “The human mirror system:
A motor resonance theory of mind reading,” Brain Research Reviews,
vol. 54, no. 2, pp. 286–293, June 2007.

[16] J. F. Lehman, J. Laird, and P. Rosenbloom, “A gentle introduction to
soar: An architecture for human cognition: 2006 update,” 2006.

[17] C. Breazeal, “Emotion and sociable humanoid robots,” International
Journal of Human-Computer Studies, vol. 59, no. 1-2, pp. 119–155,
2003.

[18] M. Masuch, K. Hartman, and G. Schuster, “Emotional agents for
interactive environments,” in The Fourth International Conference on
Creating, Connecting and Collaborating through Computing, 2006, pp.
96–102.

[19] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zaı̈t, “Querying shapes
of histories,” in Proceedings of the 21th International Conference on
Very Large Data Bases, 1995, pp. 502–514.

[20] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel
symbolic representation of time series,” Data Mining and Knowledge
Discovery, vol. 15, no. 2, pp. 107–144, 2007.

2010 IEEE 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 38

978-1-4244-6902-4/10/$26.00 ©2010 IEEE

