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ABSTRACT
This paper describes a machine learning approach to classifying
the activities of players in games. Instances of activities generally
are not identical because they play out in different contexts, so the
challenge is to extract the “essences" of activities from instances.
We show how this problem may be mapped to a sequence align-
ment problem, for which there are polynomial-time solutions. The
method works well even when some features of activities are not
observable (e.g., the emotional states of players). In fact, these fea-
tures can in some conditions be inferred with high accuracy.
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1. INTRODUCTION
This paper deals with the problem of recognizing the activities of

players in games. At first, this problem seems to apply only to hu-
man players, not to non-player characters (NPCs), as the activities
of NPCs are controlled by the game and thus are known. However,
interactions between players, including NPCs, and their environ-
ments can give rise to emergent or “unprogrammed” activities, for
which recognizers may be useful.

The main technical problem addressed by this paper is: Given
a set, Ec, of instances of activity C , learn a formal representation,
Sc, that captures the “essential aspects” of activity C . Generally,
instances of activities in Ec are rich and complex and contain a lot
that should not be in Sc; for example, as one escapes from a pursuer,
one really doesn’t care whether the pursuer is wearing brown shoes
or black. Said differently, shoe color is not essential to recognizing
instances of “escape.” Often, several experiences are required to
learn Sc, if only to eliminate from Sc those aspects of activities Ec
that are not essential.

The structure Sc is called the signature of C . The main technical
contribution of this paper is an efficient algorithm for both learning
signatures and using them as recognizers of activities.

The problem as described involves supervised learning in the
sense that the learner can be sure that all the activities in a set Ec
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are instances of activity C . For example, Eescape might be a set of
instances of a player escaping from another player. We also have
developed an unsupervised method to cluster activities of several
kinds, and to learn the “average” activity in each cluster [17].

If aspects of activity C are not accessible to the learner, then they
cannot be added to signatures Sc. An illustrative covert aspect of
activity is intensional state: the affect, beliefs, desires and inten-
tions of a player. These are hidden in the sense that one player
generally cannot “see” them in another. You can see that some-
one is hurrying down the street but you do not know whether he’s
late for an appointment, trying to shake a pursuer, or merely out
for a brisk walk. Covert aspects of activity are a problem because
without them it is difficult to classify activities.

Our approach is to build NPCs that have affect, beliefs, desires
and intentions, and make these available as aspects of the experi-
ences, Ec. These aspects may then be learned as part of the sig-
nature Sc. The intensional content of an activity such as “escape”
might not be learnable by observing other players escaping, but it
can be learned by escaping oneself, assuming that one’s intensional
state is accessible to oneself.

2. REPRESENTATION
We represent activities in Ec as propositional multivariate time

series or PMTS’s. Think of a PMTS as a matrix in which every
row represents a proposition, every column represents a moment
in time, and every cell i, t contains 1 or 0 depending on whether
proposition Pi is true at time t. Consecutive moments during which
proposition Pi is true are called the fluent Pi, as illustrated in Fig-
ure 1.

Episode

Activity: approach

proposition fluent

Figure 1: A fluent-based representation of “approach".

This figure suggests that the meaning of an activity such as “ap-
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proach” can be represented as a set of temporal relations between
fluents: First, the player starts to move and shortly thereafter the
distance between the player and a box begins to decrease. Imme-
diately after the player stops moving forward, its speed starts to
decrease. Finally, it collides with the box.

The temporal relations between these fluents can be represented
by Allen relations, of which there are seven, shown in Figure 2.
The Allen relations in any activity (such as a player approaching a
box) may be written out sequentially in a canonical form called a
qualitative sequence [19].
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(x meets y)

(x finishes-with y)
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(x e y)

(x m y)

(x f y)

(x s y)

(x o y)

(x d y)

(x b y)

Figure 2: Allen Relations

To illustrate qualitative sequences (and to keep further examples
short) we abbreviate the fluents as capital letters as follows: A =
forward(agent), B = decreasing-distance(agent, box), C = speed-
decreasing(agent), and D = collision(agent,box). The qualitative
sequence representation of Figure 1 is shown in Figure 3.

1 A overlaps B
2 A meets C
3 B f inishes−with C
4 A be f ore D
5 B meets D
6 C meets D

Figure 3: The qualitative sequence associated with the fluent-
based representation in Figure 1.

3. LEARNING
Signatures are learned by a package of algorithms called CAVE,

which we developed for the purposes of classifying and visualizing
episodes or activities. Qualitative sequences are the raw materials
from which CAVE learns signatures. Let Ec = {S1,S2, . . . ,Sk} be a
set of qualitative sequences with the same activity label, C . We de-
fine the signature of the activity label, Sc, as an ordered sequence of
weighted Allen relations. (The only difference between a signature
and a qualitative sequence is these weights.) The task is to learn Sc
given several qualitative sequences, Ec.

In general, the qualitative sequences associated with an activity
will not be identical. They will differ in “accidental” aspects: the
color of a box, a spurious object off to one side, the initial distance

between the agent and the box, and so on. The task is to learn
the “essence” of an activity, the aspects of qualitative sequences
that are entailed by the activity, and are not accidental. In practice,
qualitative sequences can involve dozens of fluents and hundreds or
thousands of Allen relations [19]. Thus, the algorithm that reduces
qualitative sequences Ec to the signature Sc must be very efficient.

Our approach is based on sequence alignment. A set of quali-
tative sequences Ec is aligned to optimize the correspondence be-
tween the elements of the sequences. Where elements correspond,
their scores are increased. The signature Sc accumulates the align-
ment of sequences. After aligning all the sequences, the sequence
of the highest-scoring elements in Sc is the “essence” of activity C .

We select a sequence at random from Ec to serve as the initial
signature, Sc, and initialize all of its weights to 1. After this, Sc is
updated by combining it with the other sequences in Ec, processed
one at a time.

Two problems are solved during the processing of the sequences
in Ec. First, the sequences are not identical, so Sc must be con-
structed to represent the most frequent relations in the sequences.
The weights in Sc are used for this purpose. Second, because a
relation can appear more than once in a sequence Si, there can be
more than one way to align Si with Sc. These problems are related
because the frequencies of relations in Sc depend on how sequences
are successively aligned with it.

Updating the signature Sc with a sequence Si occurs in two phases.
In the first phase, Si is optimally aligned with Sc. The alignment
algorithm, described below, penalizes candidate alignments for el-
ements in Sc that are not matched by elements in Si, and rewards
matches. These penalties and rewards are functions of the weights
stored with the signature. In the second phase, the weights in the
signature Sc are updated. If an element in Si is aligned with one
from Sc, then the weight of this element is incremented by one.
Otherwise the weight of the element is initialized to one and it is
inserted into Sc at the location selected by the alignment algorithm.

Updating the signature relies on the Needleman-Wunsch global
sequence alignment algorithm [22]. The algorithm uses dynamic
programming to find an optimal alignment between two sequences.
Alignments are constructed by selecting operators that modify each
sequence to look more like the other. Conventionally, sequence
alignment is based on three operators: Elements from two sequences
may match; an element may be deleted, or an element may be in-
serted. However, to ensure that no information from sequences
in Ec is lost, we allow the sequence alignment only to insert or
match, not delete, elements. The costs of insertion and matching
are determined by the weights that are stored with the signature as
mentioned above.

Sc Aligned Si Aligned Sc Updated
− (C meets A) (C meets A) 1
− (C before B) (C before B) 1
− (C before C) (C before C) 1

(A finishes D) − (A finishes D) 1
(A overlaps B) (A overlaps B) (A overlaps B) 6

(A meets C) (A meets C) (A meets C) 6
(D overlaps B) − (D overlaps B) 1

(D meets C) − (D meets C) 1
(B overlaps C) (B overlaps C) (B overlaps C) 6

Table 1: Updating the signature Sc.

The process is illustrated in Table 1. Suppose that some se-
quences have already been aligned with the signature Sc. The se-
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quence in column “Si Aligned" is first aligned optimally with Sc, as
shown; notice that this involves inserting some “empty space" into
both Sc and Si. Then the two are merged, as shown in column “Sc
Updated," and the weights associated with each Allen relation are
updated.

Because the process of updating signatures first aligns and then
merges new sequences into Sc, signatures become stuffed with large
numbers of elements that occur very infrequently, and thus have
low weights. We use a simple heuristic to clean up the signature:
After K training episodes, all of the relations in the signature with
weights less than or equal to n are removed. All of our experiments
use K = 10 and n = 3, meaning that the signature is pruned of all
elements occurring fewer than 4 times after a total of 10 training
episodes. The signature is again pruned after 20 training episodes,
and so forth.

4. THE USES OF SIGNATURES
Signatures support several functions:

Learning Signatures are learned from qualitative sequences as de-
scribed above.

Classification Given a qualitative sequence, its corresponding ac-
tivity should be correctly classified.

Inference Given a qualitative sequence, the entailments of the ac-
tivity, some of which will not be directly observable in the
sequence, should be correctly inferred.

The remainder of this paper describes experiments to test whether
signatures support classification of activities and inference of affec-
tive and other internal aspects of state.

5. DATA SOURCES
This section describes two virtual environments in which play-

ers interact with each other and with objects under the constraints
of simulated physics. These environments are simpler than today’s
computer games, but are sufficient to support complex behaviors
and to generate large propositional, multivariate time series. In ad-
dition, our signature-learning algorithm has been tested with real-
valued multivariate time series in several domains, including rec-
ognizing handwritten characters [19].

5.1 Wubble World 3D
Wubble World is a virtual environment with simulated physics,

in which softbots, called wubbles, interact with objects [18]. Wub-
ble World is instrumented to collect distances, velocities, locations,
colors, sizes, and other sensory information and represent them
with propositions such as Above(wubble,box) (the wubble is above
the box) and PV M(wubble) (the wubble is experiencing positive
vertical motion).

We collected a dataset of episodes of wubbles performing several
kinds of tasks: jumping over a box, jumping on a box, approach-
ing a box, pushing a box, moving around a box to the left, moving
around a box to the right. Episodes were generated by manually
controlling a wubble to repeatedly perform one of these tasks. Each
episode was unique, in that the wubble would start closer or farther
from the box, move more or less quickly, and so on. There were
37 episodes labeled jump over, 20 episodes labeled jump on, and
25 episodes for each of the remaining tasks. The average number
of fluents and average number of Allen relations for these episodes
are shown in Table 2.

5.2 Wubble World 2D

NumFluents NumAllenRelns
approach 34.84 572.72
jump-on 80.45 1356.70

jump-over 51.35 1156.51
left 95.24 3228.16

push 99.40 3802.20
right 95.04 3276.44

Table 2: Average values for the episodes in the Wubble World
3D dataset.

Like Wubble World 3D, Wubble World 2D is a virtual environ-
ment with simulated 2D physics (Fig. 4). Agents in the Wubble
World 2D simulation were endowed with a cognitive system based
on a blackboard architecture [9]. Every agent has a limited percep-
tual system comprised of a visual system with a 90◦ field of view
and a limited range of sight, an auditory system that provides om-
nidirectional sensing with a limited range, and an olfactory system
that is also omnidirectional and limited in range. Agents have a
fixed amount of energy that can be replenished by consuming bits
of food scattered throughout the environment, and can expend en-
ergy by “running” or by colliding with other agents. All agents have
the ability to increase their speed so as to run or sprint for a short
period of time, and doing so will drain the agent’s energy. Wubbles
have a primitive two-dimensional computational model of emotion,
inspired by those in [6, 21]. One dimension, called valence, loosely
corresponds to the happiness of the agent. The second dimension,
called arousal, loosely corresponds to the excitement level of the
agent. The emotional system is autonomic and over time tends to-
wards a neutral emotional state.

The decision making process of an agent is guided by the sen-
sory system as well as an arbiter that selects between competing
goals. Agents in Wubble World 2D can: wander around, pursue
other agents, flee from other agents, kick inanimate objects, eat and
defend food, or sit idly waiting for something to happen to them. At
every moment in time the arbiter determines the insistence of each
possible goal. The insistence of a goal is affected by the energy
level, the arousal level, and valence of the agent as well as the cur-
rently perceived state of the world. For instance, if a smaller agent
is in front of an agent who has bullying tendencies it will have a
high desire to pursue the smaller agent. Once the arbiter calculates
all of the insistence values, it selects to carry out the the goal with
the highest insistence. Goals are mapped into actions via a finite
state machine. Once the agent has selected a goal to achieve, it
initializes the corresponding FSM and begins executing the com-
mands that will ultimately achieve the goal. Sometimes the FSMs
for a goal can be very complex while others, such as wandering,
are very simple.

Like the original Wubble World, all of the interactions for an
agent are recorded for later analysis. Each agent has its own unique
view of the world based on its perceptual system. In Wubble World
3D the wubbles had a global view of the world, whereas in Wubble
World 2D the agents have a egocentric view of the world and if the
agent cannot sense an object, then nothing is recorded about that
object. An egocentric view of the world helps focus the agent’s
attention on the things within its sphere of influence and reduces
the dimensionality of the time series generated.

Unlike Wubble World 3D, in the 2D version most of the sensors
recorded are real-valued. These values are converted to proposi-
tions with an algorithm like SAX [20]. At every time step we record
the current position, speed and heading of an agent, as well as the
internal state of the agent consisting of its energy level, arousal, va-
lence, active goal, and the active state of the executing FSM. For
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NumFluents NumAllenRelns
ball 697.55 137283.20

chase 366.55 41906.10
column 637.25 125309.90

eat 130.80 6069.80
fight 1319.65 527603.75
flee 337.0 36758.45

Table 3: Average values by activity for the episodes in the Wub-
ble World 2D dataset.

every other agent or object within our sensing area we record the
relative position, relative velocity, distance, whether or not there is
currently a collision between the agent and the object, and whether
the object was seen, smelt, or heard.

The average numbers of fluents and average numbers of Allen
relations for these episodes are shown in Table 3. It’s worth not-
ing the scale of the learning problem: On average, fight activities
generated qualitative sequences of more than half a million Allen
relations.

Figure 4: Agents and objects in Wubble World 2D (see text)

6. CLASSIFICATION
For classification purposes, a novel sequence is given the activ-

ity label that corresponds to the signature it matches best. Classi-
fication accuracy was assessed using 10-fold cross validation. Re-
sults for Wubble World 3D and 2D are shown in Table 4. For both
datasets, the classification accuracies of learned signatures are very
high. Most of the errors occur when one activity contains a part
that looks like another. For example, in Wubble World 3D, some
activities were mistaken for approach, as all activities start with the
wubbles approaching objects.

Mean SD
WW 3D 98.73% 2.7
WW 2D 95% 7.03

Table 4: Mean and standard deviation classification accuracy
for CAVE signatures for the datasets described in the text.

7. INFERRING HIDDEN STATE

We are interested in activities that have elements that are not ac-
cessible to an observer. For such activities, the observable elements
must serve as a basis for inferring unobservable elements. For ex-
ample, if one sees a player moving toward a goal in a hurry, one
might infer that the player has seen the goal and wishes to acquire
it.

Figure 5 illustrates how this works. We assume that a player
has access to its own internal state and learns signatures that in-
clude internal state (illustrated as dark bars in Fig. 5). Then, the
observable activities of another player, denoted S in Figure 5, are
classified, and a signature is retrieved. Note that S contains only
observable fluents (i.e., no dark bars) and the classification of S is
done with only these observables. However, the signature that is
retrieved contains internal state, and these are attributed to or “pro-
jected onto” the other player.

...
... ...

?

... ...

Learning

Classification

Inference
S

Figure 5: The learning, classification and inference pipeline

We implemented this idea in Wubble World 2D as follows:

1. Build wubbles that have externally observable fluents Pe and
internal fluents that are not observable, Pi (the dark bars in
Fig. 5). All fluents are both influenced by their environments
and influence the wubbles’ activities;

2. Make the wubbles engage in activities in which Pe and Pi get
a workout.

3. Learn signatures for these activities. Note that the signatures
will include both Pe and Pi and Allen relations between them.

4. When observing a novel activity, to infer its hidden content
(i.e., the Pi fluents)

(a) transform it into a qualitative sequence, S, based only
on observable (Pe) fluents,

(b) find the signature that best matches the qualitative se-
quence based only on observables

(c) read out the unobservable, Pi, parts of the signature as
the inferred fluents
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7.1 Inference
For each learned signature, we select the α = 10 most frequent

Allen relations that contain at least one unobservable fluent. For
example, the ten most frequent Allen relations in the chase signa-
ture that include at least one hidden fluent are shown in Table 5.
These are relations that will be inferred if an episode is classified
as chase. We call them the “will be inferred” relations.

((novel(agent1 agent2) s (goal(agent1) PursueGoal)))
(((goal(agent1) PursueGoal) c (distance(agent1 agent2) 1)))
(((goal(agent1) PursueGoal) c (arousal(agent1) up)))
(((goal(agent1) PursueGoal) c (distance(agent1 agent2) down)))
(((goal(agent1) PursueGoal) c (energy(agent1) stable)))
(((goal(agent1) PursueGoal) c (valence(agent1) stable)))
(((state(agent1) charge) c (arousal(agent1) up)))
(((state(agent1) charge) c (distance(agent1 agent2) down)))
(((state(agent1) charge) c (energy(agent1) stable)))
(((goal(agent1) PursueGoal) c (heading(agent2) up)))

Table 5: The top 10 Allen relations that include hidden fluents
in the signature for chase. In the example, s and c correspond
to the Allen relations starts-with and contains.

To test the inference of hidden Allen relations, a qualitative se-
quence S is selected at random, then classified as one of six activi-
ties. Next, we calculate the degree of overlap between the “will be
inferred” relations for the classified activity and the actual Allen
relations that include at least one hidden fluent in S.

The results are shown in Table 6. The diagonal entries are cases
where the qualitative sequence S was classified correctly and the
off-diagonal entries are for cases where S was classified incorrectly.
The number in the cells of Table 6 are the proportions of “will be
inferred" relations that are actually in S. For example, when S is an
instance of chasing, and is correctly classified as such, then 98%
of the relations in Table 5 are actually in S. (The reason that the
proportion is 98%, when there are only ten relations to be found, is
that 98% is the average proportion of these ten relations that were
found in repeated iterations in a cross-validation study.)

So, when a qualitative sequence S is classified correctly, there is
a very high probability that its associated “to be inferred" relations
actually occur. Interestingly the specificity of these inferences is
also high: when S is classified incorrectly, its inferred relations are
rarely correct. The confusions, however, are telling. When S is
kicking a column, and it is incorrectly classified as kicking a ball,
then 81% of its inferred relations are correct. This occurs because
kicking a column and kicking a ball have a lot of the same affective
components. However, if kicking a column is incorrectly classified
as a chase, then none of the inferred relations will be correct.

This experiment and others with the 3D wubbles strongly sup-
port the claim that if an agent can correctly classify the activity of
another agent, it can select the α most frequent relations as inferred
hidden relations, and they will be correct with high probability.

8. RELATED WORK
The problem that motivated this work was illustrated decades

ago in a study by Heider and Simmel [14]. These investigators
showed a short stop-action animation of three geometric shapes in-
teracting and asked subjects to describe what was going on. Invari-
ably, the subjects told elaborate stories that attributed agency, goals
and affective states to the geometric shapes. How is it that seeing
one geometric shape move rapidly toward another, which recoils,
gives rise to the words “attack" and “hit" and “bully" and the like?

In [5], human subjects controlled simulated insects on networked
machines to perform a variety of activities. The authors trained a
three-layer neural network to classify the activities based on ob-

Signatures
column ball chase flee fight eat

column 0.97 0.81 0.00 0.01 0.23 0.13
ball 0.18 0.97 0.00 0.01 0.16 0.13

chase 0.01 0.07 0.98 0.05 0.04 0.02
flee 0.05 0.17 0 0.97 0.06 0.11
fight 0.13 0.19 0.63 0.06 0.96 0.19
eat 0 0.02 0 0.03 0 0.97

Table 6: A matrix showing the percent overlap between the α

most frequent hidden relations in the signature and the hidden
relations that exist in the test set, but are not observable for the
2D wubble dataset.

servable information, such as relative distance between the insects,
relative velocity, absolute velocity, relative heading, etc. The trained
neural network and heuristic based algorithm outperformed human
subjects on a classification task. Intention was not explicitly mod-
eled in this system even though they system could detect it through
motion cues. In a followup study [3], Barrett et al. provide re-
sults that suggest that our ability to infer the intentionality of agents
(even simple triangles) appears as young as 4 years of age, and we
become more adept at it as we age. Given a forced choice task with
similar behaviors to the original study, subjects correctly identified
the right behavior in 80% of the samples.

Baker et al. [2] demonstrate that goal inference can be accom-
plished by Bayesian inverse planning. Furthermore, the learned
Bayesian model accords well with human judgments of the inten-
tions of a simple goal seeking agent.

Signatures and signature learning are a novel approach to learn-
ing models of activities, but there are many related approaches.
Firoiu and Cohen [13] describe a system composed of HMMs each
trained on a batch of robot episodes. The robot represents its ex-
periences with the HMM and learns the number of hidden states
within the HMM via HMM state splitting. In [23], the authors per-
form an experiment in which time series recordings are made of
the sensors of a Pioneer-1 robot performing different actions. The
resulting time series are clustered using Dynamic Time Warping as
a distance metric between the time series. Although they do not
explicitly model entire activities, the authors show that the clusters
found by agglomerative clustering match those constructed by an
expert. Similarly in [26] the authors propose to cluster the sensor
recordings for a mobile robot. In this instance, they first look for
abrupt changes within sensor values as indication that an event has
occurred, and after finding events they cluster the time series to
generate signatures for the interaction.

More recently, Crick and Scasselatti developed a system for rec-
ognizing activities and simultaneously the intentions of the actors,
all from a folk physics-based interpretation of position and mo-
tion [11, 12]. This work is an extension of previous work where
the authors developed a system that could correctly identify which
player was “it” in a game of tag [10]. They found that when the
robot was able to participate in playground games (like tag), then it
could recognize the intentions of other agents towards itself much
more quickly than if it was simply a passive observer. This was
because it was able to test its hypotheses about the other agents
intentions towards it by approaching them.

Pautler et al. [25] propose a similar folk physics-based interpreta-
tion of intention. In addition to recognizing intentions, the authors
also focus on developing agents capable of extracting explanations
for these intentions. Explanations are generated when the agent’s
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assumptions about the environment are violated and other agents
are not acting in accordance to their perceived intentions. In both
[12] and [25], the ability to recognize intentions and the set of in-
tentions that can be recognized are built into the agent, not learned.

In [7], Breazeal describes an implementation of facial imitation,
which is much more focused than general activity learning, but they
have similar motivations that guided the implementation. They ar-
gue that robots need to infer the mental states of others in order to
interact with them in a humanlike way, and they believe that this
will come from the observable behavior.

Real time behavior recognition of video game opponents has re-
ceived a fair amount of attention in the past few years. Kabanza
et al [16] adopt a hidden-markov model (HMM) based approach to
plan recognition of human opponents in the real-time strategy game
Starcraft. The authors constructed a library of potential Hierarchi-
cal Task Networks, or plans, that can potentially be executed by the
human opponent. As the game unfolds the system selects the plan
with the highest probability and from there infers the intentions of
the player. In order to avoid developing a complete library of plans,
Cheng and Thawanmos [8] recommend a case-based approach to
plan recognition. This method treats the world more similar to our
PMTS representation, but makes no attempt to extract a common
pattern for a plan.

Recent research has proposed the mirror neuron system within
humans as a neural mechanism for recognizing and understanding
the intentions of other people [15, 1]. We do not claim that signa-
tures are a software version of mirror neurons, but they certainly
are a representation of both external and internal aspects of behav-
ior and can effectively infer the latter given the former.

9. DISCUSSION AND FUTURE WORK
The experiments reported here, and others in [19], demonstrate

remarkably high classification accuracies for signatures. These re-
sults are not limited to Wubble World, but are equally robust for
classifying handwritten characters based on the dynamics of pen
movements, as well as multivariate time series with carefully con-
trolled covariances between the variables. We know from these
experiments that writing PTMSs as qualitative sequences of Allen
relations increases classification accuracy. Apparently representing
a pattern of fluents as a sequence of Allen relations between fluents
captures much of the structure of activities, and seems robust to
the errors that sequence alignment can potentially introduce while
constructing a signature.

Although the CAVE algorithm was originally designed for propo-
sitional sequences, it works well on real-valued sequences by first
transforming them to propositional form, apparently with little loss
of accuracy.

CAVE seems a promising algorithm for learning signatures of
activities in online games much more sophisticated than Wubble
World. Unlike some “bottom up" algorithms that learn by com-
posing larger patterns from smaller ones [4, 24], the computational
complexity of CAVE depends only weakly on the number of propo-
sitions or real-valued fluents that are used to describe activities.
More propositions means more Allen relations, which means longer
qualitative sequences, and a somewhat harder job for sequence align-
ment. In contrast, bottom up approaches quickly drown in the com-
binatorics of pairs, triples, and n-tuples of propositions, each pair
of which can be in seven Allen relations. CAVE can easily handle
activities that involve, on average, more than a thousand fluents and
half a million Allen relations.

Although CAVE is currently a supervised algorithm, meaning
that someone must label the instances of activities, an unsuper-
vised version has been implemented and works well. The basic

idea is to cluster qualitative sequences with the k-means algorithm.
Each cluster centroid becomes a signature, then each qualitative se-
quence “moves" toward the centroid it matches best (according to
sequence alignment) and then the centroids (signatures) are recal-
culated. This process continues until the qualitative sequences no
longer move from one signature to a closer one.

We are enthusiastic about unsupervised learning of signatures in
the context of games because it gives us a way to learn emergent
activities that were not directly programmed or anticipated by game
designers. As games increase in complexity, and especially as more
human players and NPCs interact, the ability to find unanticipated
activities in gameplay may help to explain why some games are
more engaging and successful than others.
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