
Building Simple Models: 
A Case Study with Decision Trees 

David Jensen, Tim Oates, and Paul R. Cohen 

Department of Computer Science 
University of Massachusetts 

Amherst, MA 01003 
{ j ensen I oates [ cohen}@cs, umass, edu 

A b s t r a c t .  Building correctly-sized models is a central challenge for in- 
duction algorithms. Many approaches to decision tree induction fail this 
challenge. Under a broad range of circumstances, these approaches ex- 
hibit a nearly linear relationship between training set size and tree size, 
even after accuracy has ceased to increase. These algorithms fail to ad- 
just for the statistical effects of comparing multiple subtrees. Adjusting 
for these effects produces trees with little or no excess structure. 

1 I n t r o d u c t i o n  

Many induction algorithms construct models with unnecessary structure. These 
models contain components  tha t  do not improve accuracy, and tha t  only reflect 
random variation in a single da ta  sample. Such models are less efficient to store 
and use than  their correctly-sized counterparts .  Using these models requires the 
collection of unnecessary data.  Portions of these models are wrong and mislead 
users. Finally, excess s tructure can reduce the accuracy of induced models on 
new data  [8]. 

For induction algorithms tha t  build decision trees [1, 7, 10], pruning is a 
common approach to remove excess structure.  Pruning methods take an induced 
tree, examine individual subtrees, and remove those subtrees deemed unneces- 
sary. Pruning methods differ primarily in the criterion used to judge subtrees. 
Many criteria have been proposed, including statistical significance tests [10], 
corrected error est imates [7], and minimum description length calculations [9]. 

In this paper,  we bring together three threads of our research on excess 
structure and decision tree pruning. First, we show that  several common meth-  
ods for pruning decision trees still retain excess structure. Second, we explain 
this phenomenon in terms of statistical decision making with incorrect reference 
distributions. Third, we present a method tha t  adjusts for incorrect reference 
distributions, and we present an experiment  that  evaluates the method.  Our 
analysis indicates that  many  existing techniques for building decision trees fail 
to consider the statistical implications of examining many  possible subtrees. We 
show how a simple adjustment  can allow such systems to make valid statistical 
inferences in this specific situation. 
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LNCS 1280, pp. 211-222, 1997. �9 Springer-Verlag Berlin Heidelberg 1997 
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2 O b s e r v i n g  E x c e s s  S t r u c t u r e  

Consider Figure 1, which shows a typical plot of tree size and accuracy as a 
function of training set size for the UCI a u s t r a l i a n  dataset. 1 Moving from left- 
to-right in the graph corresponds to increasing the number of training instances 
available to the tree building process. On the left-hand side, no training instances 
are available and the best one can do with test instances is to assign them a 
class label at random. On the right-hand side, the entire dataset (excluding test 
instances) is available to the tree building process. C4.5 [7] and error-based 
pruning (the c4.5 default) are used to build and prune trees, respectively. 

Note that  accuracy on this dataset  stops increasing at a rather small training 
set size, thereafter remaining essentially constant. 2 Surprisingly, tree size con- 
tinues to grow nearly linearly despite the use of error-based pruning. The graph 
clearly shows that  unnecessary structure is retained, and more is retained as the 
size of the training set increases. Accuracy stops increasing after only 25% of the 
available training instances are seen. The tree at tha t  point contains 22 nodes. 
When 100% of the available training instances are used in tree construction, 
the resulting tree contains 64 nodes. Despite a 3-fold increase in size over the 
tree built with 25% of the data, the accuracies of the two trees are statistically 
indistinguishable. 

Under a broad range of circumstances, there is a nearly linear relationship be- 
tween training set size and tree size, even after accuracy has ceased to increase. 
The relationship between training set size and tree size was explored with 4 
pruning methods and 19 datasets taken from the UCI repository. 3 The prun- 
ing methods are error-based (EBB - the C4.5 default) [7], reduced error (REP) 
[8], minimum description length (MDL) [9], and cost-complexity with the lsE 
rule (ccP) [1]. The majority of extant  pruning methods take one of four general 
approaches: deflating accuracy estimates based on the training set (e.g. EBP); 
pruning based on accuracy estimates from a pruning set (e.g. aEP); managing 
the tradeoff between accuracy and complexity (e.g. MDL); and creating a set 
of pruned trees based on different values of a pruning parameter  and then se- 
lecting the appropriate parameter  value using a pruning set or cross-validation 
(e.g. ccP).  The pruning methods used in this paper were selected to be repre- 
sentative of these four approaches. 

Plots of tree size and accuracy as a function of training set size were generated 
for each combination of dataset and pruning algorithm as follows. Typically, 

1 All datasets in this paper can be obtained from the University of California-Irvine 
(UCI) Machine Learning Repository. 
http ://ww~. its. uci. edu/ mlearn/MLRepository, html. 

2 All reported accuracy figures in this paper are based on separate test sets, distinct 
from any data used for training. 

3 The datasets are the same ones used in [4] with two exceptions. The crx dataset 
was omitted because it is roughly the same as the aus t r a l i aa  dataset, and the 
horse-co l ic  dataset was omitted because it was unclear which attribute was used 
as the class label. Note that the votel  dataset was created by removing the 
physician-fee-freeze attribute from the vote dataset. 
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Fig. 1. Tree size and accuracy as a function of training set size for the aus t r a l i an  
dataset, c4.5 and error-based pruning were used to build and prune trees. 

k-fold cross-validation is used to obtain estimates of the true performance of 
decision tree algorithms. A dataset ,  D,  with n instances is divided into k disjoint 
sets, Di, each containing n / k  instances. Then for 1 < i < k, a tree is built on the 
instances in D - D i  and tested on the instances in Di,  and the results are averaged 
over all k folds [2]. Tha t  procedure was augmented for this paper  by building 
trees on subsets of D - Di  of various sizes, and testing them on Di. Specifically, 
20 subsets were created by retaining from 5% to 100% of the instances in D - Di 
in increments of 5%; s tandard k-fold cross-validation corresponds to the case in 
which 100% of the instances in D - Di are retained. The  order of the instances 
in D was permuted prior to creating the k -- 10 folds, and the instances to be 
retained were gathered sequentially s tar t ing with the first instance in D - Di 
for each level of da ta  reduction. In this way, 10-fold cross-validated estimates of 
tree size and accuracy as a function of training set size were obtained. 

This procedure was performed twice for each combination of dataset  and 
pruning method,  generating complete size and accuracy curves for two different 
permutat ions  of the data,  and the results were averaged. The goal was to reduce 
the inherent variability of cross-validated estimates of size and accuracy. Note 
tha t  the same divisions of a given dataset  were used for all of the pruning meth- 
ods. With  19 datasets,  4 pruning methods,  20 levels of training set size, and 
2 runs of 10-fold cross-validation at each level of training set size, the results 
reported in this section involved running c4.5  30,400 times. 

For each plot generated by this procedure, the training set size at which 
accuracy ceased to grow was found by scanning the accuracy curve from left 
to right, stopping when the mean of three adjacent accuracy estimates was no 
more than  1% less than  the accuracy of the tree based on all available training 
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data  (the right-most point on the accuracy curve). Averaging three adjacent 
accuracies makes the stopping criterion robust against random variations in the 
accuracy curve. 4 Bounding the absolute change in accuracy from below by 1% 
ensures tha t  any reduction in tree size costs very little in terms of accuracy. 
Then, a linear regression of tree size on training set size was performed on the 
points in the tree size curve to the right of the training set size at which accuracy 
ceased to grow. 

In general, additional tree structure is welcome as long as it improves classi- 
fication accuracy, and it is unwelcome otherwise. Ideally, there will be no corre- 
lation between tree size and training set size once classification accuracy stops 
increasing. The results of a linear regression of tree size on training set size re- 
ports the probability, p, of incorrectly rejecting the null hypothesis that  there is 
no such correlation (that  the slope of the regression line is zero), the estimated 
slope of the regression line, and the amount  of variance in tree size accounted for 
by training set size, R 2 . When p is significant and R 2 is high, changes in training 
set size have predictable effects on tree size. When the slope of the regression 
line is large, the effects are strong. 

For each combination of dataset and pruning method, we recorded the per- 
centage of available training instances at which accuracy ceased to grow, results 
of the linear regression of tree size on training set size (p, slope, and R2), the 
percentage decrease in tree size (A size) and the absolute difference in accuracy 
(A accuracy) between the tree built from all available training instances and 
the tree built from the number of instances at which accuracy ceased to grow. 
A summary of tha t  information is given in Table 1, which shows for each prun- 
ing method the number of datasets for which accuracy peaked prior to seeing 
100% of the available training instances (% Kept < 100), the number of datasets 
for which the relationship between tree size and training set size is statistically 
significant (p < 0.1), the number of datasets for which the relationship is both 
statistically significant and strong (slope > 0.1), and the means of R 2, A size 
and A accuracy for those datasets with significant p values. 

For EBP, accuracy peaked prior to seeing 100% of the available training in- 
stances for 16 of the 19 datasets. Every one of those 16 datasets exhibited a 
significant relationship between tree size and training set size beyond the point 
at which accuracy stopped growing, and 12 of them were highly significant (at 
the 0.001 level). In 13 of the 16 datasets that  exhibit a significant relationship, 
the slope of the regression line exceeds 0.1, indicating that  at least one node is 
added for every 10% increase in the size of the dataset.  

In spite of the fact that  accuracy remains basically constant, tree size contin- 
ues to grow as training set size does (the slope of the regression line is positive 
in all cases). The most remarkable feature of the EBP row in Table 1 is the R 2 
column. Recall tha t  100 * R 2 is the percentage of variance in tree size accounted 

4 We did not use the mean of the final three points on the accuracy curve minus 1% 
as the accuracy threshold because those points represent different training set sizes, 
and their mean is therefore not an estimate (robust or otherwise) of the accuracy of 
trees built on all available training instances. 
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Pruning % Kept p Slope Mean Mean' Mean 
Method < 100 i< 0.1 > 0.1 R 2 A size A accuracy 
EBP 16 16 13 0.90 38.29 -0.14 
REP 17 17 11 0.75 39.32 -0.32 
MDL 18 17 13 0.88 44.031 -0.37 
CCP 19 10 4 0.62 30.11 -0.06 

Table  1. Summary of the effects of random data reduction for all of the pruning 
methods. 

for by training set size. Across 16 datasets,  the average R 2 is 0.90. This result is 
interesting for two reasons. First, it says that  training set size has an extremely 
predictable effect on tree size. Increasing training set size invariably leads to 
larger trees; decreasing training set size invariably leads to smaller trees. Second, 
this effect is robust  over a large group of datasets  with widely varying charac- 
teristics. Regardless of the default accuracy, the number  and types of at tr ibutes,  
the presence or absence of class and a t t r ibute  noise, and differences in a number  
of other features along which the datasets  vary, EBP does not appropriate ly  limit 
tree size as training set size increases. 

The results for REP and MDL are qualitatively the same as those for EBP. For 
aEP, 17 datasets  show a significant relationship between tree size and training 
set size (12 at the 0.001 level), 11 of the 17 datasets  had a slope greater  than 
0.1, and the mean R 2 is 0.75. The average reduction in tree size obtainable via 
random da ta  reduction is 39.32% with an average loss in accuracy of less than 
four tenths of one percent. Accuracy was higher with reduced training sets in 12 
of the 17 cases. For MDL, 17 datasets  had significant p values (14 at  the 0.001 
level), 13 of the 17 datasets  had a slope greater than 0.1, and the average R 2 
was 0.88. Trees based on reduced training sets were on average 44.03% smaller 
and less than  four tenths of one percent less accurate. Note that  for one dataset ,  
h y p o t h y r o i d ,  there is no significant relationship between tree size and training 
set size past  the point at  which accuracy stopped growing. In this one case, 
MDL appropriately limits tree size by not adding s t ructure  to the tree unless a 
concomitant  increase in classification accuracy occurs. 

The results for ccP  indicate tha t  it appropriately limits tree growth much 
more frequently than the previous three pruning methods.  Accuracy peaked for 
all 19 datasets  prior to seeing 100% of the available training instances. How- 
ever, only about  half of the t ime (10 out of 19 datasets) was there a significant 
relationship between tree size and training set size after accuracy s topped grow- 
ing. ccP  appropriate ly  limits tree growth for 9 datasets,  whereas EBP and REP 
never did so, and MDL did so once. For the 10 datasets  tha t  exhibited signifi- 
cant relationships between tree size and training set size, random da ta  reduction 
still leads to substantially smaller trees (30.11% on average) with little loss in 
accuracy (less than  one tenth of one percent on average). 
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3 Expla ining Excess  Structure  

Why do three common pruning methods  retain excess structure? Error-based 
pruning (EBB), reduced-error pruning (REP), and minimum description length 
pruning (MDL) almost invariably produce trees whose size increases as a function 
of training set size. Cost complexity pruning (ccP) produces this pathology as 
well, but  less frequently and to a substantially lesser degree than  the three other 
methods.  

3.1 Selecting Among Multiple Trees 

The three pruning methods which retain the most excess structure (EBP, REP, 
and MDL) share a general approach. For each node NT tha t  forms the root of 
a subtree, the methods calculate the value of an evaluation function ] based 
on a sample of da ta  $.  We call the value of ] the score, XT = f ( N T ,  S ) .  The 
methods  compare the score for the subtree rooted at N T  to a threshold value 
7-. If XT > T,  the subtree is retained, otherwise it is pruned. 5 The threshold 7- 
could be determined in several ways; for EBP, rtEP, and MDL, the threshold is 
the score tha t  NT would receive if it were converted into a leaf node NL,  tha t  is 
7- = XL = / ( N L , S ) .  

EBP, REP, and MDL can each be described in terms of this general approach. 
For example,  EBP uses the training sample to calculate an adjusted error rate 
for a subtree and compares it to the adjusted error ra te  for a leaf. REP uses 
a pruning sample to calculate accuracy for the subtree and compares it to the 
accuracy of the subtree when it is converted into a leaf. MDL uses the training 
sample to calculate a description length for the subtree and compares it to the 
description length for the leaf. 

Given this approach, when will pruning retain excess structure? Pruning 
will fail if, for a large proport ion of subtrees, XT > 7- when the subtree does 
not improve accuracy. This can occur if the threshold is set too low. With an 
incorrectly low threshold, subtrees will be judged to be useful when they actually 
are not, and they will be retained. 

Algorithms tha t  use EBP, REP, and MDL all produce the score XT in a way 
tha t  almost guarantees 7- will be too low. They: 1) generate n possible subtrees; 
2) produce a score for each subtree based on a da ta  sample S; and 3) select the'  
subtree with the max imum score. The  pruning methods compare the max imum 
score xma~ = XT to the threshold 7-. 

The  procedure above is used to both  grow and prune trees. During the grow- 
ing phase, algorithms select each decision node in a subtree by generating and 
evaluating many  possible decision nodes. Each decision node uses a different at- 
t r ibute  and a different parti t ioning of the values of tha t  at tr ibute.  For a subtree 
with D total  nodes, a da ta  sample with A at tr ibutes,  and at t r ibutes  with an 

5 In many cases, the score XT measures error, the inverse of accuracy, and a subtree is 
retained only if its score is less than a threshold. This transformation can be made 
to the discussion with no loss of generality. 
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average of P possible partitionings, algorithms select from approximately DAP 
possible subtrees. During the pruning phase, algorithms select each subtree by 
generating and evaluating many possible pruned subtrees. EBP, REP, and MDL 
each examine subtrees only after a t tempting to prune their constituent nodes. 
For subtrees with D ~ non-leaf nodes, algorithms select from 2D t possible subtrees 
during pruning, up to and including the entire subtree. 

3.2 W h y  Se lec t ion  Affects Scores 

Why should selecting the maximum score affect the threshold 7"? Recall that  
any score x results from applying an evaluation function f to a tree and a data  
sample 8.  Suppose an algorithm examines n subtrees with scores xl ,  x 2 , . . . ,  xn. 
Each score xi is the value of a random variable. Tha t  is, f is a function whose 
value is a real number determined by a specific sample 8. An algorithm examines 
n subtrees and selects the one with the score max(x l, x2,. . . ,  x,~). 

For simplicity and concreteness, consider a tree-building algorithm that  ex- 
amines two subtrees, with scores xl and x2, and assume that  their scores are 
random variables whose values are drawn from independent uniform distribu- 
tions of integers ( 0 , . . . , 6 ) .  The distribution of max(xl,x2) is shown in Table 
2. Each entry in the table represents a joint event with the resulting maximum 
score; for example, (xl = 3 A x2 = 4) has the result, max(xl,x2) = 4. Because 
Xl and x2 are independent and uniform, every joint event has the same proba- 
bility, 1/49, but  the probability of a given maximum score is generally higher; 
for example, Pr(max(xl, x2) = 6) = 13/49. 

Xl 
0 1 2 3 4 5 6  

0 0 1 2 3 4 5 6  
1 1 1 2 3 4 5 6  
2 2 2 2 3 4 5 6  

x 2 3 3 3 3 3 4 5 6  
4 4 4 4 4 4 5 6  
5 5 5 5 5 5 5 6  
6 6 6 6 6 6 6 6  

Table 2. The joint distribution of the maximum of two random variables, each of 
which takes integer values (0...6). 

For independent and identically distributed (i.i.d.) random variables xl ,  ..., xn, 
it is easy to specify the relationship between cumulative probabilities of individ- 
ual scores and cumulative probabilities of maximum scores: 

If Pr(xi < 7") = q, then Pr(max(xl, x 2 , . . . ,  xn) < 7") = qn. (1) 
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For example, in Table 2, Pr(xl < 4) = 4 /7  (and Pr (x2  < 4) is identical, because 
xl and x2 are i.i.d.), but  Pr(max(xl,  x2) < 4) = (4/7) 2 = 16/49. I t  is also useful 
to look at  the upper  tail of the distribution of the maximum: 

If Pr(x~ > 7-) = p, then Pr(max(xl, x 2 , . . . ,  x,~) > 7") = 1 - (1 - p)n. (2) 

These expressions and the distribution in Table 2 make clear tha t  the distri- 
bution of any individual random variable x~ from i.i.d, variables xl ,  x 2 , . . . ,  xn 
underestimates the distribution of the max imum of all the variables Xmax = 
max(x1, x 2 , . . . ,  xn). Pr(xi > 7") underest imates Pr(max(xl, x2, . . . ,  xn) > 7-) 
for all values 7- if the distributions are continuous. Said differently, the distrib- 
ution of xi has a lighter upper  tail than  the distribution of xma~. 

This disparity increases with the number  of random variables, x l ,  x2,.  �9 �9 xn. 
Consider three variables distr ibuted in the same way as the two in Table 2. Then, 

Pr(xi > 4) = 3/7  = 0.43 

Pr(max(xl, x2, x3) >__ 4) = 1 - (1 - 3/7) 3 = 0.81. 

The distribution of Pr(x~ >_ 4) underestimates Xmaz by almost  half its value. In 
comparison, Pr(max(xl, x2) > 4) = 0.67. 

We have examined this relationship, and how it leads to excess structure, in 
greater  detail elsewhere [3]. 

3.3 What  About  Cost-Complexity  Pruning? 

This analysis applies to EBP, REP, and MDL. However, cost-complexity pruning 
(CcP) is unaffected by the difference in the distributions of xmax and x~. Like the 
other pruning methods,  ccP  selects among multiple trees: for each of ten cross- 
validation test sets, it creates a large number  of pruned trees (where each tree is 
characterized by a pruning paramete r  a) and selects the one with the maximum 
score. However, cop  does not compare the max imum score to any threshold. 
Instead,  it combines the values of a from each of the cross-validation folds and 
uses tha t  paramete r  value to prune the tree grown on the entire dataset .  Trees 
are not selected based on their values of a, nor is the selected t ree 's  a compared 
to some threshold. Therefore, the difference in the distributions of a single score 
and a max imum score do not affect ccP. 

4 C o n t r o l l i n g  E x c e s s  S t r u c t u r e  

Section 3 suggests a method for controlling excess structure. Equation 2 can 
be used to set a threshold 7" such tha t  max(xl ,x2, . . . ,x~)  > 7" with a speci- 
fied probabili ty a~nax, given tha t  the null hypothesis is true. Changing notation 
slightly: 
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Pr(max(xl ,  x2, . . . ,  xn) k 7") = am~x = 1 - (1 - ai) n. (3) 

Given a specified value of Olma x and the number of independent scores n, we 
can determine ai = Pr(xi > T). Given ai  and a reference distribution for a 
single score, we can determine 7-. Alternatively, we can use equation 2 to adjust 
probability values derived from the reference distribution for a single score and 
then compare the adjusted probability value directly to OLma x. 

Equation 3 is known as a Bonferroni equation. Applying it is referred to as 
Bonferroni adjustment. The experiments in this section test the utility of Bon- 
ferroni adjustment in the same way as EBP, REP, MDL, and coP were evaluated 
in section 2. 

4.1 B u i l d i n g  and P r u n i n g  Trees  w i t h  B o n f e r r o n i  A d j u s t m e n t  

We developed an algorithm - -  Tree-building with Bonferroni Adjustment (TBA) 
- -  that  grows and prunes decision trees by using Bonferroni-adjusted significance 
tests.  TBA resembles nearly all other algorithms for top-down induction of deci- 
sion trees [10]. It differs in its evaluation function, its use of Bonferroni-adjusted 
significance tests to select attributes and partitions during tree construction and 
to select subtrees during tree pruning, and how it handles missing values. All of 
TBA'S significance tests depend on the adjusted significance level (~max. For all 
experiments reported here, C~max = 0.10. 

Evaluation function: TBA uses the G statistic to evaluate contingency tables 
during both tree construction and pruning. The G statistic is used because it has 
a known reference distribution, a requirement for using Bonferroni adjustment. 
G is computed for contingency tables as follows: 

G = 2 ~ f i j l n ( ~ i J )  (4) \s 
where fij is the number of occurrences, or frequency, in the cell i, j of the table 
and ]ij is the expected value of that  cell. In this case, the expected value is 
f i . f . j / f . . ,  where fi. is the total frequency in row i, f.j  is the total frequency in 
column j ,  and f.. is the total of all cells in the table. 

Selecting partitions: During tree construction, attribute partitions are selected 
using an approach suggested by Kass [5] and Kerber [6]. For each attribute, a 
contingency table is constructed with a row for each class value and a column 
for each of k attribute values - -  every possible value for discrete attributes or 
every unique interval for discretized continuous attributes. Then, the pair of 
columns in the table with the least significant difference is merged. The merging 
process is repeated until all columns are significantly different. For continuous 
attributes, only adjacent columns, corresponding to adjacent numeric intervals, 
can be merged. The result is a node that  partitions the sample into j subsamples, 
where 1 < j _< k. 
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The test that determines whether pairs of columns are significantly different 
uses a Bonferroni adjustment. The exponent n is the number of column pairs. 
Without this adjustment, an inappropriately large number of partitions would 
be produced. 

Selecting attributes: TBA selects attributes based on probability values. These 
values are calculated by comparing the G value for the merged contingency table 
to an appropriate reference distribution, and applying a Bonferroni adjustment. 
For a table with r rows and c columns, the appropriate reference distribution is 
chi-square with ( r -  1)(c-  1) degrees of freedom. Following Kass, the Bonferroni 
exponent n is the number of possible ways of combining k initial categories into 
j final categories. This calculation depends on the type of attribute. All possible 
pairs of categories can be merged in a discrete attribute, while only adjacent 
pairs of categories can be merged in continuous attributes: 

X"k-l'--l~' (k - / ) J  �9 ( ~ = 1 1 )  
n d i s c r e t e  = Z.~i=0 ~ "1 i ~ k  - i ) ! '  n c o n t i n u o u s  "~ (5) 

While these estimates of n are approximate, at best, they provide a rough bal- 
ance between the total number of possible tables (certainly an overestimate 
because the tables are highly correlated) and an exponent of 1 (certainly an un- 
derestimate). In Kass' experiments with randomly-generated data, they adjusted 
appropriately for the bias introduced by the merging process. 

TBA forms a decision node using the attribute with the lowest probability 
value, regardless of whether that value falls below some threshold a. The algo- 
rithm uses the decision node to partition the sample into j subsamples based 
on the attribute's values, and repeats the attribute selection process for each 
subsample. Tree growth stops when no partition can improve accuracy on the 
training set. 

Pruning:  After constructing a tree, TBA prunes the tree by examining the prob- 
ability values calculated during tree construction. Recall that those probability 
values are adjusted to account for multiple comparisons within an attribute. 
However, they are not yet adjusted to account for multiple comparisons among 
the many attributes that could be used at an individual node, nor are they ad- 
justed to account for the many possible nodes available in other parts of the 
tree. The latter two adjustments are made at this stage, where the Bonferroni 
exponent n is the number of attributes considered at that node and the total 
number of decision nodes at the same tree depth as that node, respectively. 

TBA examines each frontier node of the tree - -  decision nodes that have only 
leaf nodes as children. Frontier nodes where p <_ Olma x are retained; frontier nodes 
where p > ~max are converted to leaf nodes and labeled with the majority class 
of the appropriate training subsample. The process continues until all frontier 
nodes are significant. Note that this process cannot eliminate non-frontier nodes 
for which p > amax. This could potentially "trap" insignificant nodes in the 
interior structure of the tree, but it guards against eliminating potentially useful 
subtrees. 
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Handling Missing Values: TBA handles missing values by assigning a default class 
to each decision node (the majority class of the training instances at that node). 
When the decision tree is used to classify instances, this class is assigned to any 
instance that reaches a decision node for which it lacks a value for the appropriate 
attribute. While this approach is easy to implement, it lacks the sophistication 
of the approaches in other algorithms. For example, c4.5 sends instances that 
lack attribute values down all relevant branches of a node, weighted according 
to overall frequency in the training set, and then makes a prediction based on 
the weighted class labels of all branches. In principle, nothing prevents such an 
approach from being implemented in TBA. 

4 . 2  R e s u l t s  U s i n g  T B A  

We repeated the experiments from section 2 on TBA. The results are summarized 
in table 3 along with results reproduced from table 1 for comparison. 

Pruningl% Kept p SlopeiMean Mean Mean 
Method[ < 100 < 0.1 > 0.1 R 2 A size A accuracy 
EBP 16 16 13~ 0.90 38.29 -0.14 
REP 17 17i 11 0.75i 39.32 -0.32 
MDL 18 17 i 13 0.88 44.03 -0.37 
CCP 19 10 4[ 0.621 30.11 -0.06 
T B A  16 I I  2 0 .68  36 .72  -0 .18  

Table 3. Summary of the effects of random data reduction for TBA and the other 
pruning methods. 

Based on the results in table 1, TBA performs better than EBP, REP, and 
MDL and performs similarly to coP. Its accuracy peaked prior to seeing 100% of 
the available training instances for 16 of the 19 datasets. Eleven datasets exhib- 
ited a significant relationship between tree size and training set size beyond the 
point at which accuracy stopped growing. However, the slope of the regression 
line exceeds 0.1 in only two of those datasets. While TBA still exhibits a signif- 
icant relationship between training set size and tree size in many datasets, the 
relationship is a relatively weak one in all but two of those cases. 

5 Acknowledgments 

The authors would like to thank Donato Malerba, Floriana Esposito, and Gio- 
vanni Semeraro of the Dipartimento di Informatica, Universit~ degli Studi, Bari 
Italy for supplying their implementations of reduced error pruning and cost- 
complexity pruning. M. Zwitter and M. Soklic of the University Medical Centre, 



222 JENSEN, GATES, AND COHEN 

Institute of Oncology, Ljubljana, Yugoslavia provided the b r e a s t  c a n c e r  and 
lymphography datasets, and Dr. William H. Wolberg of the the University of 
Wisconsin Hospitals provided the b r e a s t - c a n c e r - w i s c  dataset. 

This research was supported by Sterling Software, Inc. subcontract #7335- 
UOM-001 (DARPA F30602-95-C-0257), and by a National Defense Science and 
Engineering Graduate  Fellowship. The U.S. Government is authorized to re- 
produce and distribute reprints for governmental purposes not withstanding any 
copyright notation hereon. The views and conclusions contained herein are those 
of the authors and should not be interpreted as necessarily representing the 
official policies or endorsements either expressed or implied, of the Advanced 
Research Projects Agency, Rome Laboratory  or the U.S. Government.  

References  

1. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression 
Trees. Wadsworth International, 1984. 

2. Paul R.. Cohen. Empirical Methods for Artificial Intelligence. The MIT Press, 
Cambridge, 1995. 

3. Paul R. Cohen and David Jensen. Overfitting explained. In Preliminary Papers 
of the Sixth International Workshop on Artificial Intelligence and Statistics, pages 
115-122, 1997. 

4. George H. John. Robust decision trees: Removing outliers from databases. In 
Proceedings of the First International Conference on Knowledge Discovery and 
Data Mining, 1995. 

5. G.V. Kass. An exploratory technique for investigating large quantities of categor- 
ical data. Applied Statistics, 29(2):199-127, 1980. 

6. Randy Kerber. Chimerge: Discretization of numeric attributes. In Proceedings of 
the Tenth National Conference on Artificial Intelligence. MIT Press, 1992. 

7. J. R. Quinlan. C~.5 : programs for machine learning. Morgan Kaufmann Publish- 
ers, Inc., 1993. 

8. J. Ross Quinlan. Simplifying decision trees. International Journal of Man- 
Machine Studies, 27:221-234, 1987. 

9. J. Ross Quinlan and R. Rivest. Inferring decision trees using the minimum de- 
scription length principle. Information and Computation, 80:227-248, 1989. 

10. J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986. 


