
8 
Detecting and Explaining Dependencies in Execution 
Traces 

Adele E. Howe and Paul R. Cohen 

Computer Science Department 
Colorado State University 
Fort Collins, CO 80523 
howe@cs.colostate.edu and 

Experimental Knowledge Systems Laboratory 
Department of Computer Science 
University of Massachusetts 
Amherst, MA 01003 
cohen@cs.umass.edu 

ABSTRACT AI systems in complex environments can be hard to understand. We present a simple method for finding 
dependencies between actions and later failures in execution traces of the Phoenix planner. We also discuss failure 
recovery analysis. a method for explaining dependencies discovered in the execution traces of Phoenix's failure recovery 
behavior. 

Dependencies are disproportionately high co-occurrences of particular precursors and later 
events. For the execution traces described in this paper, the precursors are failures and failure 
recovery actions; the later events are later failures. In complicated environments, it can be difficult 
to know whether actions produce long-term effects, in particular, whether certain actions cause 
or contribute to later plan failures. Statistical techniques such as those discussed in this paper 
can help designers determine how recovery actions affect the long-term function of a plan and 
whether recovery actions are helping or hindering the progress of plans. 

8.1 Identifying Contributors to Failure in Phoenix 

Phoenix is a simulated environment populated by autonomous agents. It is a simulation of forest 
fires in Yellowstone National Park and the agents that fight the fires. Agents include watchtowers, 
fuel trucks, helicopters, bulldozers and, coordinating (but not controlling) the efforts of all, a 
fireboss. Fires burn in unpredictable ways due to wind speed and direction, terrain and elevation, 
fuel type and moisture content, and natural boundaries such as rivers, roads and lakes. Agents 
behave unpredictably, too, because they instantiate plans as they proceed, and they react to 
immediate, local situations such as encroaching fires. 

Lacking a perfect world model, neither a Phoenix planner nor its designers can be absolutely 
sure of the long term effects of actions: Does an action interact detrimentally with a later action 
in the plan? Will an action provide short term gain with long term loss? Are failures caused by 

"This research was supported by DARPA-AFOSR contract F49620-89-C-OOI13. the National Science Foundation under an 
Issues in Real-Time Computing grant, CDA-8922572. and a grant from the Texas Instruments Corporation. 

1 Selecting Modelsfrom Data: AI and Statistics W. Edited by P. Cheeseman and R.W. Oldford. © 1994 Springer-Verlag. 

P. Cheeseman et al. (eds.), Selecting Models from Data
© Springer-Verlag New York, Inc. 1994



72 Adele E. Howe and Paul R. Cohen 

Fip Fij; 
R.p 52 33 
RiP 240 643 

TABLE 8.1. Contingency table for testing the pattern R.p -+ Fip. 

a mismatch between the planning system and its environment? These questions are extremely 
difficult to answer for large, complex systems, and yet, these are precisely the systems in 
which detrimental interactions and failures are most likely [Corbato 91]. To identify the sources 
of failure and expedite debugging, we have developed a technique called Failure Recovery 
Analysis (FRA) [Howe 92]. FRA detects dependencies between failure recovery actions - those 
taken to recover from plan failures - and later failures. FRA also explains how some failure 
recovery actions might have caused later failures. 

FRA involves four steps. First, execution traces are analyzed for statistically significant depen­
dencies between failure recovery actions and subsequent failures; we call this step dependency 
detection. The remaining three steps explain failures by using the dependencies to focus the 
search for flaws in the planner that may have caused the observed failures. 

B.1.1 Detecting Dependencies 

Dependency detection is syntactic and requires little knowledge ofthe planner or its environment; 
thus, it can be applied to any planner in any environment. To begin, we gather execution traces 
of the planner. To determine how the planner's actions might lead to failure, the execution traces 
include failures and the recovery actions that repaired them, as in the following short trace: 

F's are failures (e.g., Fip is the Insufficient Progress failure in Phoenix) and R's are recovery 
actions (e.g., R.p is the Substitute Projection action in the Phoenix Planner's recovery action 
set). It appears from this short trace that the failure ip is always preceded by the recovery action 
sp. We call disproportionately high co-occurrences between failures and particular precursors 
dependencies. In this example, the precursor of ip is the action sp, but conceptually, it could 
be any combination of predecessors in the trace: the preceding failure, the combination of the 
failure and the recovery action that repaired it, or even longer combinations of previous actions 
and failures. Currently, the analysis looks at only singles (i.e., failures or recovery actions) and 
pairs (i.e., failures and recovery actions) as precursors. 

With more dat!', we can test whether the observed relationship between sp and ip is statistically 
significant. We build a contingency table of four cells: one for each combination of precursor 
and failure and their negations. For example, the contingency table in Table 8.1 tests whether 
Fip depends on the precursor R.p. 

We test the significance of the observed relationship, R.p ~ Fip , with a G-test on the 
contingency table. A G-test on this table is highly significant, G = 42.86,p < .001, meaning 
that it is highly unlikely that the observed dependence is due to chance or noise. 

We construct contingency tables for three types of immediate precursors: failures, recovery 
actions, and a combination of a failure and the recovery action that repaired it. We denote 
these cases F ~ F, R ~ F, and F R ~ F, respectively. The three types overlap. In particular, 



Detecting and Explaining Dependencies in Execution Traces 73 

F R -; F is a special case of both F -; F and R -; F (because they subsume all possible values 
of the missing member), so if the former dependency is significant, we do not know whether it 
is truly a dependency between a F1R and the subsequent F2 , or between Fl irrespective of the 
intervening action, or between R with the initial failure playing no role. In practice, all three 
dependencies might be present to varying degrees. 

We sort out the strengths of the dependencies by running a variant on the G-test called the 
Heterogeneity G-test [Sokal and Rohlf 81]. The intuition is that we compare the contributions 
of subsets to that of the superset; one can imagine looking at a Venn diagram (as in Figure 1) to 
gauge whether the failure ner, the recovery action sp or the combination seems to account for 
most of the area in the intersection with the subsequent failure ip. Both F~. and R.p overlap 
with part of the subsequent Fip , but it is easy to see that a larger proportion of R.p than Fn .. 
overlaps with Fip' Thus, R.p is a more reliable precursor for Fip. 

Transitions 

FIGURE I . Venn diagram representing the data for the precursors and the following failure. 

Similarly, but somewhat harder to see, the proportion of Fn .. R;p (the darker shaded area plus 
the cross hatched area) that overlaps with Fip (just the darker shaded area) is about the same as 
the proportion of R.p (the area in the heavy box) that overlaps with Fip (the two shaded areas), 
suggesting that we can generalize the relationship without loss of information. To compute the 
overlap, we add the G values for each of the subsets together (e.g., for F -; F, we add G values 
for all possible R's) and compare the result to the G value for the superset; if the difference is 
significant, then the subsets account for more of the variance in the dependency and so cannot be 
generalized. For this example, the G values for the subsets add to 45.89; the difference between 
that and G for the superset R.p is 3.035, which is not a significant difference at the .05 level. 

8.1.2 Explaining Dependencies 

The first step in failure recovery analysis identifies potential problems in the planner's interaction 
with its environment; the remaining three steps explain how those problems may have been 
produced by the planner's actions and suggest redesigns to avoid the resulting failures. The 
statistical dependencies are mapped to structural dependencies in the planning knowledge bases 
suspected to be vulnerable to failure. Then, the interactions and vulnerable plan structures are 
used to generate explanations of how the observed failures might occur. Finally, the explanations 
serve to recommend redesigns of the planner and recovery component. These steps do not rely 
on statistical techniques or arguments, so we will not describe them in detail here. Interested 
readers should consult [Howe 92]. 



74 Adele E. Howe and Paul R. Cohen 

8.1.3 Sensitivity of Dependency Detection to the Size of Execution Traces 

Execution traces are often expensive to collect. Consequently, much of the effort required to 
execute dependency detection is expended collecting execution traces. We expect that the results 
of dependency detection will vary based on how many execution traces we collect; the total 
number of patterns (i.e., possible combinations of different types of precursors and failures) and 
the ratios of the patterns (i.e., the ratio of the counts in the first column to the counts in the second 
column) in a contingency table influences the results of the G-test. To determine how the size 
and number of execution traces collected influences the results of the G-test, we need to answer 
two questions: How does the value of G change as the number of patterns in the execution 
traces increases? How does the value of G change as the precursor to failure co-occurrence (i.e., 
the ratio of the upper right to upper left cells in the contingency table) varies from the rest of 
the execution traces (i.e., the ratio of the lower left to the lower right cells in the contingency 
table)? The first question addresses the sensitivity of the test to the size of the execution traces; 
the second addresses'the sensitivity to noise: how much of a difference is required to detect a 
dependency? 

G-Test Sensitivity to Execution Trace Size. 

We selected the G-test over the more common Chi-square test because the G-test is additive. 
Additivity means that G values for subsets of the sample can be added together to get a G value 
for the superset. If the ratios remain the same but the total number of counts in the contingency 
table double, then the G value for the contingency table doubles as well. For example, the G 
value for the contingency table in Table 1 is 42.86; the G value for the contingency table with 
10 times fewer counts (i.e., a contingency table with 5, 3, 24 and 64 in its cells) is 4.319 or 
roughly (as close as one gets when rounding the counts to the nearest integer) one tenth of 42.86. 
Additivity means that the value of G increases linearly with the amount of data (or in this case, 
the number of patterns in the execution traces). 

A linear relationship between the number of patterns in the execution traces and the value of G 
is convenient for several reasons. First, the additivity property is exploited for the second step in 
dependency detection: pruning overlapping dependencies. We can divide the patterns into their 
subparts (e.g., a precursor with both a failure and recovery method in it) and add the resulting 
G values to get the same value as if we had calculated a G for all the subsets together. Second, 
a linear relationship is predictable. We know that the more patterns in the execution traces, the 
more likely we are to detect dependencies. Linearity is convenient because we are unlikely to 
be surprised by new dependencies suddenly showing up if we gather a few more execution 
traces (meaning the new dependencies were not even close to being dependencies before the 
additions). The bottom line is that given execution traces with few patterns, the G-test can find 
strong dependencies, but given more patterns, it will also find rare dependencies. If a user of 
FRA is interested in detecting any dependencies, then a few execution traces will be adequate to 
do so; if the user wishes to find rare or obscure dependencies, then it will be necessary to gather 
more execution traces. The level of effort expended in gathering execution traces depends on 
what kinds of dependencies one wishes to find. 

Empirically Testing for Data Sensitivity. 

We know that the value of G increases linearly with increases in the number of patterns in the 
execution traces, but only if the ratios in the contingency table remain the same, as the number of 



Detecting and Explaining Dependencies in Execution Traces 75 

Exec. Traces 1 Exec. Traces 2 Exec. Traces 3 Exec. Traces 4 
R-F 0/4 4/8 10/15 7112 
F-F 9/13 15/19 7/15 10/12 
FR-F 517 3/4 11116 0/0 

1 Total 1 14/24 1 22/31 1 28/46 1 171241 

TABLE 8.2. Dependencies remaining after tweaking contingency tables. The table includes the number of dependencies 
remaining after tweaking over the total number of dependencies found in the execution traces from the four experiments. 

patterns increases. In trying to decide how many execution traces to gather, we also need to know 
whether the results will be vulnerable to noise, which is more apparent with few patterns. Unlike 
the sensitivity to total number of patterns, the sensitivity of the G-test to noise is complicated. 

We can evaluate empirically whether, in practice, getting slightly more or fewer execution 
traces would have significantly changed which dependencies were detected in execution traces 
gathered from Phoenix. We do so by seeing how many of the dependencies would not have 
been detected if the counts in row one in the contingency table varied by a small amount. For 
example, if the contingency table in Table 8.1 had [52,35,240,643] instead of [52,33,240,643], 
then G = 40.42, which is not much different than the value for Table 8.1 of G = 42.86. To 
determine whether the dependencies detected in the execution traces are vulnerable to noise, 
we can do the following test: 1) construct the contingency table for dependencies detected in 
execution traces, 2) vary, one at a time, the counts of row one, column one and row one, column 
two by ±2, and 3) run a G-test on the resulting contingency tables. By tweaking the contingency 
table cell values in this manner, we check the sensitivity of G to noise in the data. Both columns 
of the first row were varied because some of the first column counts were 1, which makes 
it impossible to test whether a lower ratio of first column to second column might not have 
influenced the value of G more than a higher ratio. We tweaked the counts by ±2 because many 
contingency tables contained cell counts of less than 5, varying by ±2 spans that range. 

Table 8.2 shows how many of the dependencies found in each of four sets of execution 
traces for Phoenix would remain if their contingency tables are so tweaked. About 65% of the 
dependencies remain after tweaking their contingency table values, meaning that the counts in 
the first row of the contingency table can be changed by ±2 without dropping the significance of 
G below the level of 0:. So, 35% of the dependencies detected would disappear if a few patterns 
more or less were included in the execution traces. Based on this testing of execution traces from 
Phoenix, dependency detection is sensitive to small differences in the content of the execution 
traces. Most of the dependencies that were vulnerable to the tweaking were based on execution 
traces that included few instances of the precursor/failure pattern, 23 out of 44 or 52% of the 
dependencies that disappeared were based on contingency tables in which one of the counts in 
the first row was less than five. 

The implication of the sensitivity of dependency detection to noise in the execution traces 
is that rare patterns are especially sensitive to noise and so should be viewed skeptically. One 
must interpret the results of dependency detection with care: if "sensitive" dependencies are 
discarded, then rare events may remain undetected; at the same time, one does not wish to chase 
chimeras. Interpreting dependencies requires weighing false positives against misses. If we are 
trying to identify dependencies between precursors that occur rarely or failures that occur rarely, 
then additional effort should be expended to get enough execution traces to ensure that the 



76 Adele E. Howe and Paul R. Cohen 

dependency is not due to noise. 

8.2 Applications and Extensions of Dependency Detection 

We discovered by chance that dependencies can be used to track modifications to planners and 
their environments. We ran Phoenix in one configuration, call it A, and collected execution 
traces from which we derived a set of significant dependencies, D A. Then we modified Phoenix 
slightly-we changed the strategy it used to select failure recovery actions-and ran the modified 
system and collected execution traces, and, thus, another set of dependencies, DB. Finally, we 
added two new failure recovery actions to the original set, ran another experiment, and derived 
another set of dependencies Dc. To our surprise, the intersections of the sets of dependencies 
were small. However, both DAnDB and DB nDe contained more dependencies than DA nDe, 
suggesting that the size of an intersection mimics the magnitude of modifications to a system. 

These results are only suggestive, but they raise the possibility that particular planner­
environment pairs can be characterized by sets of significant failure-action dependencies. If 
true, this technique might enable us to identify classes of environments and planners. Today, we 
assert on purely intuitive grounds that some environments are similar; in the future we might be 
able to measure similarity in terms of the overlap between sets of dependencies derived from 
a single planner running in each environment. Conversely, we might measure the similarity of 
planners in terms of dependencies common to several planners in a single environment. 

8.2.1 Further Work 

More Complex Dependencies. 

The dependencies examined so far have been limited to temporally adjacent failures, actions 
or the combination of each. The combinatorial nature of dependency detection precludes ar­
bitrarily long sequences of precursors. More complex dependencies can be discovered either 
by controlling the collection of data to selectively test for particular dependencies (through 
experiment design) or by heuristically controlling the construction and comparison of depen­
dencies (through enhancements to the Heterogeneity G-Test). A new experiment design would 
selectively eliminate actions from the available set to test whether each precipitates or avoids 
particular failures (i.e., an ablation or lesion study). Rather than examining all possible chains of 
which some action is a member, the new analysis removes the action from consideration, which 
results in execution traces free from the interaction of the missing action. Dependency sets from 
the different execution traces would be compared to assess the influence of the missing action. 

Alternatively, dependency sets can be built iteratively from subsets; the Heterogeneity G-Test 
suggests a method of doing so for singletons and pairs, but cannot be applied in a straight­
forward fashion to longer combinations. We need to enhance the technique to compare longer 
combinations and use the results of comparing sets of shorter precursors to motivate the search 
for longer ones. For example, if some singleton subsumes a set of pairs, it seems unlikely to 
be necessary to look at longer combinations beyond the pairs. In effect, Heterogeneity testing 
becomes a means of controlling heuristic search through the potentially combinatorial space of 
possible dependencies. 



Detecting and Explaining Dependencies in Execution Traces 77 

Marker Dependencies. 

Some dependencies might function as markers for particular characteristics of environments. 
For example, severely resource constrained environments might be characterized by resource 
contention failures repeating over and over, leading to the observed dependency that one resource 
contention failure leads to another. We would expect this dependency to appear in any type of 
resource constrained environment, however superficially different, whether it is a transportation 
planner, an air traffic control system, or a forest fire fighter dispatcher. To look for such markers, 
we will need to describe a hierarchy of failures and actions such that dependency sets for different 
task environments can be compared. 

8.3 REFERENCES 

[Corbato 91] Fernando J. Corbato. On building systems that will fail. Communications of the 
ACM, 34(9):72-81, September 1991. 

[Howe 92] Adele E. Howe. Analyzing failure recovery to improve planner design. In 
Proceedings of the Tenth National Conference on Artificial Intelligence, pages 
387-393, July 1992. 

[Sokal and Rohlf 81] Robert R. Sokal and F. James Rohlf. Biometry: The Principles and Practice of 
Statistics in Biological Research. W.H. Freeman and Co., New York, second 
edition. 1981. 


