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This paper presents a model of failure recovery from 
which we have designed and tested sets of failure 
recovery methods in the Phoenix system. We derive 
the model, document its assumptions, and then test the 
validity of the assumptions and predictions of the 
model. We present three experiments. One derives 
baselines for failure recovery in the Phoenix 
environment. The second compares the performance 
of two strategies for selecting failure recovery 
methods. The third compares the performance of an 
initial set of failure recovery methods with a 
redesigned set t is predicted to have Bower expected 
cost. 

Planners that commit to future action inevitably fail. Plan 
failures may be caused by actions not having their intended 
effects, by unexpected environmental changes or events, or 
even by inadequacies in the planner itself. Ever since 
planners have been applied in dynamic environments, 
researchers have adopted numerous approaches to 
recovering from plan failures. For the most part, these 
approaches classify the failure and select among a set of 
domain-independent methods for adapting the plan in 
progress to recover from the failure (I-Iayes 1975, 
Hammond 1987, Ambros-Ingerson & Steel 1988, Simmons 

1988, Simmons 1990). These approaches 
their classification of failures and 

; so how does a designer identify and evaluate 
possible recovery techniques for a new domain? In this 
paper, we will describe an approach to designing and 
evaluating recovery methods based on a model of the 
application of failure recovery methods within an 
environment. 

In general, environment analysis identifies those aspects of 
the environment that necessarily constrain the behavior of 
agents within it. Plan failures arise from an interaction 
between the environment, which changes, and the plrln. 
which is based on expectations of change (or lack thereof) 
in the environment. The environment does not by itself 

anges. Thus, any environmental 
rstanding failure recovery needs 

QW environmental changes mani6est as 
failwres for the planner. 

of failure recovery methods, however, the environment 
analysis need only include the constraints on the 
applicability of the recovery methods, i.e 
failures and the information available to the 
them. The task of the designer is to define a 
methods that can together address those failure situations. 
Consequently, in this paper, we will rely on failure 
descriptions already provided by the test environment as 

environment analysis, but owledge 
that a semantic model of failures 

ur test environment fo 
forest fire fighting in Yellowstone National park. The goal 

to contain fires. In this simulation, 
oss, coordinates t fforts of field 

line, cleared areas that the spread of 
fire. Fire spread is influenced by weather (e.g., wind speed, 
wind direction, temperature) and terrain (e.g., ground 
cover, elevation, moisture content). le terrain remains 
constant, weather changes constantly: agents planning to 
contain the fire must be prepared for these changes to 
invalidate their expectations. 

The Phoenix system provides the forest tire simulator and a 
basic agent architecture that support the experiments in 
failure recovery design and evaluation (Cohen et al. 1989). 
The agent architecture includes a set of sensors and 
effecters for this environment and two components for 
control: reflexes and the cognitive component. Reflexes 
rnC&e snA1 short-term adjustments to the sensor/effecter 
settings to keep them tuned or to remove the agent from 

ate danger. The cognitive component a 
which makes nearly all decisions about d 
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WATA RV RAV SA RP RT 

Table 1. Failures and the applicabilities of failure recovery methods 

future action. The planner operates by lazy skeletal 
expansion: it selects plans from a library and begins to 
execute them, expanding some into more detailed action 
sequences only as the need arises. Its plan language is 
specific to this style of planning and its plan library is 
specific to fire fighting. 

Table 1 describes the possible failure situations that we 
have observed in Phoenix. Each failure situation has a 
name, such as not-enough-resources, and a one-letter 
identifier, used in later tables. Table 1 also indicates which 
failure recovery methods (e.g., RP for replan-parent; to be 
presented in Section 3.3) are applicable to each of the 
failure situations. Table 1 shows, for example, that the RP 
method is applicable to all failure situations; indeed, in the 
baseline experiments, described in Section 5.1, most 
methods are applied in most failure situations. 

The goal of failure recovery is to allow a plan to continue 
from a failure, while incurring minimal overhead. The 
previous section described possible failures in terms of 
features. This section describes a model in which the 
overall cost of recovery is a function of the probability of 
failure situations occurring and the expected cost of 
recovery methods. 

2.1 Basic Model 
In the basic cost model, the expected cost of recovering 
from any situation is a cumulative function of the 
probability of a situation Si occurring times the cost of 
recovering from it, for all situations: 

EC = E P(Si)XC($i) (1) 
i= 1 

where n is the number of situations possible in the 
environment. A situation Si is a type of failure. The 
probability of a situation occurring P(Si) is empirically 
determined for a given environment (see Sec. 5.2). C(Si) is 
the expected cost of recovering from situation Si. 

We assume that failure recovery works by selecting a 
method from a set of applicable methods and running that 
method. If no methods are applicable to a particular 
situation, then C(Si) is defined to be the cost of outright 
failure. If we assume that a method may fail, then for a 
given situation, we may need to try several methods before 
one works or we run out of methods. Given the probability 
that each method will succeed in situation Si (P(MjlSi)), 
and the cost of the method C(M*), the expected cost of 
trying two methods in the order d j, Mk is as follows: The 
cost of Mj and Mk are assessed regardless of whether they 
succeed because methods run for the same amount of time 
whether they succeed or fail. If both methods fail, C(F), the 
cost of failure, is assessed. Thus, the expected cost of 
attempting to execute Mj, Mk in situation Si, is: 

EC(Si) = C (MO)+ (1 - PouljISi)) C(Mk) 
+ (I - &Mjei)) (I - P(MkISi))C(F ) (2) 

By the same argument we can find the expected cost of 
executing any sequence of methods in a situation Si : 

EC(Si) = C (Mj) + QW#i) [C(Mk) 
+ Q(Mj W K( 1) + +-- QOUW W’91-- 1 (3) 

where Q(MjlSi) = 1 - P(MjlSi). So the expected cost of 
recovery from a situation is the cost of trying the methods 
in some order times the probability of previous methods 
having failed, accumulated until the final option is 
accepting outright failure. 

The assumptions of this model are: 

1) \J’m C(Mm) < C(F). 
2) The cost of failure C(F) is independent of the 

situation Si. 
3) C(Mm) is independent of the order of execution of 

the methods. 
4) P(MmISi) is independent of the order of execution 

of the methods. 
5) The cost of each method C(Mm) is independent of 

the situation Si. 

Assumption 1 must be trivially true: there is no point in 
failure recovery if it costs more than the failure itself (i.e., 
the cure is worse than the disease). Assumption 2 is very 
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difficult to test, and is not dealt with here. The validity of 
the other assumptions depends on the design of set of 
methods, the environment in which they are used, and the 
strategy by which the methods are selected. Assumpti 
3-5 are tested in subsequent sections. We begin with 
method selection strategy. 

e best control s&ate 

We can see from Eqs. 2 and 3 that we 
try methods determines the exp ure 
recovery. For the case of two methods, we can easily derive 
a rule for the minimum-cost ordering. First we expand the 
expressions for the expected cost of order Mj, Mk and 
Mk, Mj, and then remove common terms: 

ECjk = C (M*ISi)+ (1 - P(MjlSi)) C(MlJSi) 
+ (1 - &MjlSi)) (1 - P(MkISi))C(F ) ) 

= - P(MjlSi) C(Mk) 

Eckj = C (MlJSi)+ (1 - P(l@ISi)) C 
+ (1 - P(MkISi)) (1 - P(MjSi) 

= - P(MlJSi) C(Mj) 

SO if m > ‘h”$ii’ , ECjk < EQj. 
ii 

Simon and Kadane (Simon and Kadane 1975) have proven 
in the general case that expected cost of a sequence of 
methods m is minimized by the strategy of trying the - 

methods in order of descending 
P(MmlSi) 
c(Mm) . 

esign of Faiiure Ot?lliX 

The model of the previous section recommends minimizing 
the cost of failure recovery by designing cheap methods 
that always work. Since that it rarely possible, the model 
can be used to focus design effort in several ways: 
maximizing the coverage of methods so as to avoid 
incurring the cost of failure; generalizing cheap methods to 
apply in more situations, and adding new, cheaper methods 
to the method set. We have designed and implemented a 
recovery mechanism and a set of recovery methods for 
Phoenix that attempt to follow these design guidelines. 

3. 
The Phoenix agent architecture includes three mechanisms 
for detecting failures: execution failures, reflexes, and 
envelopesl. Execution failures occur when a plan action 
cannot execute to completion because conditions in the 
environment or plan do not match the expectations of the 
current action. Reflexes are a reactive component of the 
agent architecture that trigger timely responses to 
threatening situations; the execution sf a reflex response 

l(H owe & Cohen 1990) describes in further detail aspects of the 
agent architecture designed to respond to change in the Phoenix 
environment. 

flags an execution time failure in the on-going plan. 
Envelopes detect impending failures ( 
Cohen 1990). They monitor the plan’s progress to 
determine wheth the plan can complete given 
expectations about e environmental conditions and its 
resources. 

Because two of these mechanisms, reflexes and envelopes, 
operate as adjuncts to the planning actions, they tend to 
provide little information about the failure and its impact 

Moreover, the Phoenix plan language itself is 
d in its representation of cause and e Thus 

does 
cause of failure, but only the 

whatever information 
an. We have avoided 

more knowledge intensive, and therefore more predictable, 
approaches to expl ’ l g failures, such as in Hammond’s 
CHEF (Hammond 1987) and Simmons’ GQRDIUS 
(Simmons 1988), because the environment and plan 
interactions that cause failures are difficult to model and 
analyze (see Sec. 5). 

d, an action to deal with it is added 
‘s agenda of actions and plans. Executing this 

action results in calling the planner to find a plan (i.e., 
) to address the failure. plauner searches a plan 

library for methods applicable to the failure situation and 
selects among them. In the experiments described below, 
the planner is made to either select randomly among the 
methods without replacement, or to select methods in the 
optimum order, specified irn Section 2.2, above. 

3. et 
To test the model, we de d a core set of basic recovery 
methods. These are the methods shown at the top of Table 
1. ther global or I~call repairs to plans: 

ait aud try the failed action again. 
Re-calculate one variable use 

variables used in failed 

$A: Substitute a similar plan step for the failed 
action. 

. . Abort current plan and re-plan at the parent 
level (i.e., the level in the plan immediately 
above this one). 

T: Abort current plan and re-plan at the top level 
(i.e., redo the entire plan). 

The first four methods make local changes to the failed 
action and surrounding actions; the last two replan at either 
the next higher level of plan abstraction or at the top level. 
These recovery methods, or ones very like them, have 
appeared in other recovery systems. WATA is like the 
“retry” method described in (Hanks & Firby 1990); RV and 
RAV are Phoenix specific forms of SPPE’s Reinstantiate 
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(Wilkins 1988); SA is applied in GORDIUS (Simmons 
1988) and the two replan methods are constrained forms of 
the more general replanning done in nearly all failure 
recovery systems. 

4. theses 
Several hypotheses follow m the expected cost model in 
Eq. 3. These include tests of our assumptions from Section 
2.1: 

1) C(Mm) is independent of the order of execution of 
the methods. 

2) P(MmlSi) is independent of the order of execution 
of the methods. 

cost of each method C(Mm) is independent of 
the situation Si. 

We also test whether the model in Eq. 3 would facilitate the 
redesign of a method set with a predicted lower expected 
cost of failure recoverv: 

4) 

5) 

Ordering the s&lection of fail= recovery me 
RMrnW 

by C(Mrnl 
- should result in a lower average cost 

of failure recovery than a random method 
selection strategy. 

It should be possible to change the average cost of 
failure recovery in all situations by 

- modifying the applicability conditions of 
failure methods to reduce the applicability of 
expensive methods that are unlikely to 
succeed 

- modifying the set of failure methods to 
include lower-cost methods 

Moreover, the cost savings of these modifications 
should be predictable from the model in E!q. 3. 

In addition, we are interested in whether different 
conditions in the Phoenix environment lead to different 
distributions of failure types. 

We ran three sets of experiments. In Experiment 1, we 
collected baseline statistics to test hypotheses l-3, above, 
and to empirically determine values for the parameters 
P(MmlSi), P(Si) and C(Mm). In Experiment 2 we 
compared the random and optimum method-selection 
strategies (hypothesis 4, above). In Experiment 3, we 
added new recovery methods to more cheaply address 
expensive recovery situations as suggested in hypothesis 5 
and compared the results to those of Experiment 2. 

5.1 Experiment 1. Baselines. 
We ran 116 trials in which Phoenix fought three fires, 
resulting in 2462 failure situations and 5558 attempts to 
recover from the failures. During these trials, the fires were 
set at intervals of eight simulation hours. Wind speed and 
wind direction were varied by f 3 kph and f 30 degrees, 
respectively at one hour intervals. For each situation we 

collected the following data: the failure type, the failure 
methods tried, the order in which the methods were tried, 
and the cost (in simulation-time seconds) of executing the 
recovery methods and the plan modifications made by the 
methods. The agents were given the recovery method set 
and applicabilities described in Table 1; in addition, the 
bulldozer agents were given a special method for avoiding 
a deadly object. The distribution of method use was 
essentially uniform, modulo the applicability of the two 
replan methods to an additional failure situation. 

Hypothesis I: C(Mm) is in ent of the or&r of 
execution of the methods. We want to know whether 
failure recovery methods have different costs depending on 
their position in the order in which methods are executed. 
We ran a two-way analysis of variance in which the factors 
were method and position, and the dependent variable was 
C(Mm). We analyzed separately failures in the Phoenix 
fireboss and Phoenix bulldozers, since the fireboss 
encounters different types of fa.iIures which generally take 
much longer to repair than bulldozer failures. 

The bulldozer data produced a main effect of method, 
indicating that different methods have different costs. But 
the analysis found no significant effect of position, nor any 
method by position interaction. The fireboss data yielded 
main effects of cost and position and a significant 
interaction effect. Because we believed this to be due to 
large variance in the costs for the replan methods, we 
analyzed the data for the replans separately from the other 
methods. As separate data sets, neither analysis of variance 
found significant interaction effects, indicating that the 
replan methods behave qualitatively differently from the 
other methods and that for methods other than the replans, 
the cost of a method is independent of its order of 
execution. 

othesis 2: P(M,IS is ~~e~e~~e~t of the order of 
ution of the metho o To test whether the probability 

of a method’s success depends on its position in the order in 
which methods are executed, we counted the number of 
successes and failures for each method in each position in 
which it was executed. and constructed contingency tables 
from these counts. 

(X-square analyses for all but the two replan methods and 
the substitute action method yield the same result: P(MilSi) 
is independent of position. As in the testing of Hypothesis 
1, the replan methods behave differently from the other 
methods. Because the two replans are designed to take the 
same action in some situations, when one replan method 
fails, the other will as well: thus, the probability of success 
for these methods is not independent of which method 
proceeded them. Similarly, we believe that the substitute 
action method may be interacting with one of the other 
actions, but we have yet to test these explanations. 
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Table 2. Probabilities and actual costs for baseline and strategy experiments, by situation. 

in different situations, we ran a two- 
way analysis of variance in which the factors were method 
and failure situation. As before, we analyzed fireboss and 
bulldozer failures separately. The bulldozer data showed a 
main effect of method (i.e., different methods have 
different costs), no effect of failure type, and no method by 
failure interaction, indicating that the cost of any given 
method is independent of the failure situation in which it is 
applied. As in the analysis of hypothesis 1, the fireboss data 
was separated into global (i.e., the two replans) and local 
(i.e., WATA., RV, RAV, and SA) methods. The an 
these groups showed no method by failure interaction. 

5.2 Experiment 2. 
We ran 94 trials in which Phoenix fought three fires, 
resulting in 2001 failure situations and 3877 attempts to 
recover from the failures. We collected the same data about 
each failure as in Experiment 1. The experiment scenario, 
that is, wind changes and the intervals between new fires 
were the same as in Experiment 1. 

cost of ~a~~~~~ rewve 
strategy. To test this hypothesis we used observed values 
of P(MmISi) and mean values of C(Mm) derived from 
Experiment 1 to determine P(MmlSi)/C(Mm), from 
we determined the best order in which to try m 
Using the mean for C(Mm) is justified by the fact that 
C(Mm) is independent of situation and position. 

Table 2 gives costs of failure recovery for each of the 
failures, identified by capital letters as in Table 1. The 
second row shows the costs incurred during the baseline 
experiments (Experiment 1). The fourth row shows the 
actual mean costs under the optimum method selection 
strategy for each failure situation. In all but situations H 
and J, the cost of failure recovery is much lower (1 l-86%) 
with the optimum strategy than with the random strategy. 
as predicted. 

Table 2 also includes the probability of occurence for each 
of the failure types as observed in the two experiments. 

produced a highly significant result (z = -16.6, p e .OOOl). 
lection of failure recovery methods by 
gy results in a lower cost for most 
a significantly lower cost overall. 

As noted however, the cost of situation J increased, as well 
as its probability of occuring. We believe ese increases 
are primarily due to changes made to the underlying system 
during the intervening time between the two experiment 
sets. 

resuhing in 1540 failure situations and 4279 attempts to 
recover from the failures. We used the optimum strategy to 
select methods. Ah other con tions were as they were for 
Experiments 1 and 2. 

Hypothesis 5 is that we can redesig 
failure recovery methods to minimize 
recovery. We could do so in two ways: 

a. modify the 
methods 
methods 

b. modify the set of failure methods to include Ilower- 
cost methods 

Because the strategy already selects methods to produce the 
most efficient ordering, we chose to use the same 
applicability conditions as in Experiment 2 (which results 
in the method orderings shown in Table 3 ) turd augment the 
failure method set. As in Table 1, rows represent failure 
situations and columns represent methods. The cells 
contain the strategic ordering of the methods for each 
failure situation, e.g., for situation G, fire-not-encircled, 
the method selection order is SA, then RP, and finally RT. 
We added two new methods for each of the agents, 
designed by specializing some of the to 
perform better in those situations that ve 
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and likely (insufficient-progress, H, and cant-calculate- 
projection, 3, for the fireboss). The new methods, add- 
another-resource (A&R) and substitute-projection- 
actions (SPA), were based on existing methods (RAV and 
SA, respectively); consequently, the cost and probabilities 
for them were copied from those methods and reduced 
somewhat to reflect better expected performance, e.g., the 
P(MmlSi) values were increased for the target situations. 

The costs of failure recovery for the fireboss are shown in 
Table 4. The new method set has managed to reduce the 
cost of the target situations (B, II, and J) by 21%, 26% and 
lo%, respectively ; yet, doing so incurred higher costs in 
nearly all the other situations. This produced a mean 
recovery cost over all situations of 2370 with the new 
method set. Consequently, a z-test on the difference 
between the means for Experiments 2 and 3 (2530 and 
2370) was not significant (z = -1.00, p = .1587). Since we 
made no changes to the method set which would account 
for the increased costs in other situations, we did not 
predict this result and at present have no explanation for it 
(see Section 7 for further discussion). As in Experiment 2, 
a comparison of the new and old method set applied to 
bulldozer errors resulted in a highly significant result (z = 
6.57, p < .OOOl). 

5.4 Another Baseline Experiment 
To test the hypothesis that the distribution of failure 
situations is independent of the environment conditions, we 
recorded the failures that occurred in two different 
scenarios. In the fast-change scenario the windspeed and 
wind direction changed every 30 minutes, the wind speed 
by f2 kilometers/hour and the wind direction by f 15 
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degrees; three fires were set at 8 hour intervals.. In the 
slow-change scenario the windspeed and the wind direction 
changed every 60 minutes, by f 3 kph illtlc1 f 30 degrees, 
respectively, and three fires were set at 12 hour intervals. 
Table 5 shows the distribution of failure situations (labelled 
with letters, corresponding to the failure situations in Table 
1) in the fast-change and slow-change scenarios. 

S 

A chi-square test shows that the distribution of failure 
situations is not independent of environmental conditions 
(x2(9) = 329.4, p < .OOOl). The fast-ch‘ange scenario 
generates more errors (1 every 2.1 hours for fast: 2.8 hours 
for slow; and 2.4 hours for the baseline); more importantly 
it generates a different pattern of errors than the slow- 
change scenario. A complete model of failure recovery 
should explain why particular failures are more or less 
likely in different environmental conditions; this is the goal 
of our current research. 



5.5 Experiment Recap 
We tested five hypotheses about the behavior of failure 
recovery methods in a planner and one hypothesis about the 
distribution of failure situations in the environment. The 
independence hypotheses described in Section 4 clearly 
hold for the bulldozer agents, but the results are more 
complicated for the fireboss: The two replan methods 
behave qualitatively differently fZrom the local methods. We 
predicted and found that the optimal ordering strategy 
results in a lower overall cost than the randon strategy. We 
predicted that costs can be reduced by modifying the failure 
recovery method set. While the method set modifications 
did result in lower costs for the targeted situations and in a 
lower overall cost, the difference is not statistically 
significant due to increased costs in other situations. 
Consequently, this hypothesis has yet to be conclusively 
demonstrated or refuted. The last hypothesis assumed that 
the distribution of failure situations is independent of the 
environment conditions. In fact, we showed that the 
distribution of failures is not independent of environmental 
conditions, in particular, the rate of change in the 
environment. 

6. Discussion 

The goal of these experiments was to test a model of failure 
recovery performance and demonstrate that the model 
could be used to direct the design of failure recovery in 
novel environments. To that end, the most important result 
from these experiments is the insensitivity of certain 
properties of general methods to aspects of their execution 
context: cost is independent of position and failure 
situation, and probability of success for a situation is 
independent of position of execution. While the 
independence assumptions have been tested only in the 
Phoenix environment, they held constant across the three 
different environmental change scenarios described in the 
last section2 . 

The experiments also disclosed basic differences between 
the behavior of local (e.g., WATA, RV, RAV, and SA) and 
global methods (e.g., RP and RT). Local methods are far 
more predictable (less variance in cost), but have 
correspondingly lower probabilities of success. This leads 
to a trade-off between predictability and power (probability 
of success in this case). We believe that this trade-off is 
general because so long as the scope of changes is small 
and well-known (i.e., predictable), the probability of 
success will be limited to the likelihood that the source of 
the failure is within the limited scope of the changes. 
Conversely, as the scope of changes increases, the 
probability of encompassing the source of the trade-off 
increases, but the predictability in cost reduces 
correspondingly. For the designer, the implications are 

2 We are eager to hear from other researchers whether the 
same results hold in their environments. 

obvious: Lack of predictability may not be tolerable in 
environments with hard real-time deadlines; just as lack of 
recovery success may be intolerable in environments with 
ex right failures. For the Phoenix 
en strategy combined with the 
recovery method set cations has led to a strategy of 
trying the local methods first, when they are 
resorting to the global methods only after 
specialized methods have been exhausted. 

Over the course of these experiments, 
guided the design of the recovery meth 
agents. We started with a core set of general methods that 
performed reasonably well. In fact, the overall recovery 
rate (percentage of failures that are repaired) for the core 
set of methods was at least 70% for aIll but one failure 
situation in the baseline experiment; the lowest recovery 
rate increased from 24% to 46% in the second experiment 
with smaller improvements in most of the other failure 
types, and increased to 56% in the last (producing overall 
recovery rates of 81%, 88% and 90% in Experiments 1, 2 
and 3, respectively). Moreover, as stated earlier, the overall 
cost of recovery decreased from 28 1 I to 2530 to 2370 with 
the refinements to the recovery method set. e high Bevel 
of basic performance, subsequent improvements produced 
from modifications suggested by the model, and the 
independence results demonstrate that this model is 
effective for iterative design of recovery method sets for 
new environments. 

We tested the modifications to the control of failure 
in a single environment. 
environmental conditions 
failures, it remains to be 

seen whether a method set designed for one set of 
conditions is appropriate to another. Based on the result9 of 
the baseline experiments, it appears that an untuned set of 
methods perform reasonably well, but we have yet to 
predict how well a method set will do when the 
environment changes. 

e agent architecture for the Phoenix system includes 
many components. In this paper, we have described the 
analysis and design of just one: failure recovery for the 
planner. In designing this component for the Phoenix 
environment we analyzed the environment, modelled the 
behavior of the component with respect to its environment, 
designed the component, hypothesized its behavior and 
tested the hypotheses. These five steps. along with 
additional steps to revisit some of hypotheses based on 
experiment results and to generalize those results, 
constitute the MAD methodology (Cohen 1991). We 
believe these steps are necessary to the design and analysis 
of AI systems. 

As an understanding of failure recovery, our model is 
weak. It is concerned only with the design and selection of 
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a method set for an environment. Other models of failure 
recovery have addressed the role and form of individual 
methods, specifically, replanning. Morgenstern’s model 
defines a logical formalism for when it is necessary, 
desirable and possible to replan (Morgenstern 1987). 
Kambhampati’s model of plan modification (Kambhampati 
1990) guarantees completeness, coverage and efficiency for 
replanning in hierarchical planners. Yet, we are still some 
distance from a complete model of failure recovery. 

It is an open question how complete our models must be: 
To expedite design, we used mean costs from data with 
considerable variance, and still managed to improve the 
design. In fact, the meastnes of cost and success were 
subject to variation in part because their definitions are not 
always clear. Local methods exert a local influence on the 
plan; thus, we can easily determine the scope of their 
effects (e.g., cost and success). Global methods exert far- 
reaching influence and so it is more difficult to arbitrarily 
assign a horizon of influence to them. As suggested in the 
discussions of independence results, global methods tend to 
interact with one another and may produce downstream 
effects that should change the evaluation of performance. 
The next phase in this project will be to decompose these 
measures into parameters that allow us to better predict 
performance, and through a semantic model, eventually 
understand how failures arise and how they are best 
confronted (Howe, in preparation). 
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