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Abstract-This paper describes a framework for an agent to 
learn models of verb-phrase meanings from human teachers and 
combine these models with environmental dynamics to enact verb 
commands. The framework extends prior work in apprenticeship 
learning and leverages recent advancements in modeling activities 
and planning in domains with multiple objects. We show how to 
both learn a verb model as a relational finite state machine and 
how to turn this model into reward and heuristic functions that 
can then be composed with an MDP model of an environment. 
The resulting "combined model" can then be efficiently searched 
by a planner to enact a verb command in this environment. Our 
experiments in simulated robot domains show this framework 
can be used to quickly teach verb commands and improves over 
the current state of the art method. 

I. INTRODUCTION 

Humans use verb phrases in a variety of ways, includ­

ing giving commands ( 'jump over the hurdle') and relaying 

descriptions of events to others ( 'he leapt over it'). These 

simple verb phrases can actually convey a significant amount 

of content, including descriptions of events and conditions that 

should not occur, such as 'avoid the pUddle.' Humans have a 

qualitative understanding of verbs that supports executing the 

same verb in multiple contexts, and with different arguments. 

Humans can also fluidly combine verbs, either as part of novel 

commands such as 'cross the street and avoid the puddle', or 

to define new verbs (,fetch' is a series of simpler verbs). In 

this work we show how a robot can learn (through interaction 

with a human teacher) executable models of verb phrases that 

possess these important verb properties. 

In this work, we present a framework for learning a novel 

representation of verb phrases that supports both recognition 

and execution, as well as the specification of constraints. 

This verb model, called the Verb Finite State Machine or 

VFSM, represents sequences of qualitative states, so it sup­

ports the natural "stages" of verb completion, the composition 

of verb meanings, and application to different physical (or even 

metaphorical) environments. Specifying an agent's objective 

as a verb phrase with this representation allows us to learn 

and enact behaviors that would be difficult to capture using 

traditional AI encodings such as goals (traditional planning) 

or reward functions based on the state of an environment 

(reinforcement learning). For instance, the meaning of a verb 

phrase like 'walk over the hill' is not found in feedback from 

the environment, which has no notion of the verb command, 

or in a goal location, which does not specify how an agent got 

there. 

We begin by describing the verb learning problem in more 

detail, and then describe the VFSM representation in Section 

III. Section IV describes our teaching protocol and a learning 

algorithm for constructing the VFSM from teacher demonstra­

tions and feedback. We then explain how to derive a reward 

and heuristic function from the VFSM, and how to combine 

these with a model of the dynamics of the environment to plan 

a policy to enact the verb, in Section V. Together, these com­

ponents provide an end-to-end framework for learning verb 

meanings from human teachers and executing verb commands. 

We demonstrate the success of our system for several verbs in 

simulated robot domains, including an example that bootstraps 

a new verb meaning through composition, in Section VI. On 

the verbs we tested, our approach substantially outperforms a 

recent method for learning and executing verb-phrases [1]. 

II. FRAMEWORK OVERVIEW 

Formally, we consider a set of environments E where each 

e E E has a set of objects 0 and a starting configuration (or 

distribution over start states) for the low-level properties (e.g 

x and y coordinates) of the objects and the agent. In addition, 

we assume that the agent is equipped with a qualitative under­

standing of the environment, specifically relations between ob­

jects using a set of relational fiuents F where every grounded 

fluent is either true or false at a given timestep. Together, these 

attributes and fluents make up the state of the environment. 

This two-level representation (object attributes and relations) 

provides a qualitative description of the environment, without 

assuming that the dynamics can be captured at a purely 

relational level. In the physical environments most relevant 

for robotic agents, these relations typically describe spatial 

relationships such as LejtOf(X,Y), roughly corresponding to 

prepositional phrases. 

Objectives for an agent will be communicated (by a teacher 

as described below) via verb phrases such as 'go around the 

block', which we will represent formally as go- around(Agent, 

Block). We consider a set of available verb phrases V such that 

v E V has a meaning based on a series of configurations of 

fluents in F that are either true or false on each timestep. For 

instance, Figure 1 illustrates (as a pair of finite state machines) 

the verb fetch, where different stages of the verb are triggered 

by changes in the truth values of these fluents. 

Learning in our system involves incremental refinement of 

verb semantics through interactions with a human teacher, a 

process that extends work from the apprenticeship learning 

literature [2]. Formally, the protocol for each episode is as 

follows. 

1) The teacher can choose an environment e E E, and a 

verb v E V and ask the agent to execute v in e. 
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Fig. 1. An example VFSM (shown for clarity as two machines, one 
for acceptance and one for rejection) for deliver(Robot,Object,Destination). 
The left machine accepts "successful " examples while the right one accepts 
"violations " . 

2) The agent then uses its verb model along with a planner 

to produce and execute a policy that enacts this verb 

phrase. The human teacher can then label this execution 

as successful, incomplete (for partial performance of the 

verb), or violation (of the verb's meaning). 

3) If the agent's behavior was judged by the teacher to 

be incomplete or a violation, the teacher can provide 

a demonstration of the verb in the same environment. 

Both the agent's and the teacher's labeled trajectories 

can be used by the agent to refine its verb model. 

The overall goal of the teacher is to teach the verb-phrase se­

mantics to the agent in a complete enough form that the agent's 

chance of succeeding during subsequent teaching episodes is 

maximized. 

III. VERB REPRESENTATION 

Our representation for verb meanings is a finite-state ma­

chine we will refer to as a Verb FSM (VFSM) (Figure 1). 

Conceptually, this VFSM is a combination of two simpler 

FSMs, M;; representing correct verb behavior, and M;;, 
encoding behavior that violates the semantics of the verb. 

The VFSM differs from standard FSMs in that each edge 

is labeled with a set of propositions (relational fluents as 

described earlier), rather than a single symbol. Also, each 

intermediate (non-start and non-terminal) state contains a loop 

back to itself (omitted from the diagram for clarity), allowing 

parts of the verb (or constraints) to take varying amounts of 

time. The utility of using a similar FSM for recognition of 

activities has been previously established [3], showing that 

the FSM transitions capture the natural stages and choices 

involved in verb completion. 

Importantly, the VFSM is not a finite-state controller (FSC), 

where each state is mapped directly to an action. Rather, the 

VFSM accepts qualitative traces that match the verb semantics. 

Additional steps needed to execute the verb described by the 

VFSM are presented in Section V. The VFSM is a qualitative 

representation in that it represents only propositional informa­

tion, and only information about the ordering of states rather 

than their duration. It is also underspecified because each 

transition specifies only a subset of the propositions compris­

ing the environment state. In addition, all of the propositions 

in the VFSM are expressed as relations over the arguments 

of the verb rather than specific objects (e.g., At(R,D) rather 

than A t(robot 1 ,dest7)). The full verb representation is the 

lexical form of the verb and its argument structure (e.g., pick­

up(Agent,Object)), together with the VFSM. 

Formally, the VFSM can be defined by a tuple (S, �, So, 
0, Ap, An), where S is the set of propositional states, So is 

the start state, and Ap and An are the sets of positive and 

negative accepting states. �, the "alphabet" is theoretically 

all the possible sets of true fluents, though we do not have 

to enumerate all of these to define the transition function. 

Structurally, the VFSM is a DFA, meaning there are no 

epsilon transitions and each transition out of a state bears 

a unique label. However, since transitions are labeled with 

sets rather than individual symbols, a given set of fluents 

may be compatible with more than one outgoing transition, 

meaning that the VFSM transition function operates non­

deterministically. The current state of the VFSM is thus given 

by a set of FSM states, and the transition function 0 maps 

each set of states and set of fluents to a set of possible next 

states. 0 is defined as follows: If the machine is in the set of 

states Si and the set of fluents F is observed, the new state of 

the machine is a set containing every state Sj such that some 

Si E Si contains a transition labeled with a set of fluents IJ 

such that IJ S;;; F. 
Intuitively, this non-determinism allows multiple ways to 

perform the verb (and multiple constraints) to be "active" at 

one time. For instance, if an agent is trying to achieve the verb 

'jump over' but has started to turn away from the target object 

and is not jumping, multiple violations need to be watched 

for. The agent's trajectory can be tracked through the VFSM 

until it reaches a positive accepting state, indicating that the 

verb was successfully completed, or a negative accepting state, 

indicating that a violation has occurred. If no accepting state 

is reached, the trajectory is deemed incomplete. 

IV. LEARNING VERB MEANINGS FROM TEACHERS 

Our algorithm for updating the VFSM based on a labeled 

trace of behavior (as collected in the protocol from Section II) 

is shown in Algorithm 1. The algorithm manages the storage of 

examples with each label, eliminating traces that are subsumed 

by others, and uses a conservative FSM construction from only 

the instances labeled as "success" or "violation". This cautious 

approach was taken based on results in apprenticeship learning 

showing that acting based on the most specific hypothesis 

allows the teacher to safely drive the generalization process 

[2]. 

The trimming of examples (lines 6 through 13) is a form of 

FSM inference that relies on the notion of core paths. A core 

path is a sequence of sets of relations that lead from the initial 

state to a terminal state. Intuitively, each element of It and 

I;;, containing positive and negative examples, respectively, 

represents a specific hypothesis for one of the core paths. 

Initially, these core paths may be longer than needed. For 

instance, if the verb "jump over" was demonstrated by an 

agent getting a running start, jumping over the object, and 

running more afterwards, the initial core path would contain 

all the relation sets from this sequence, when really all that is 

needed are the relation sets from the middle portion. 

Each agent or teacher trace yields a sequence of states, 

each composed of ground attributes and relational fluents. For 



Algorithm 1 UpdateVerb(v, 7, l) 

1: Initially: It and T"ncand I;; = 0 
2: Input: A verb v, execution trace 7, and label l. 
3: Let I = I; (dataset for label l) 
4: if 3c E I where c is a subsequence of 7 then 

5: Return Iffhe instance is already explained. 
6: else if I = It or I = I;; then 
7: 

8: 

9: 

10: 

11: 

12: 

Let C = {c E I where 7 is a subsequence of c} 
if C = 0 then 

Add 7 to I as a new core path 
else 

I=(I\C)U{7} 
end if 

13: end if 

14: Rebuild Mt and M;; from It and I;;, respectively, by 
building a trie from all the examples, and then minimizing. 
Merge these machines to create the final VFSM. 

learning the VFSM, only the relational part of each state is 
considered, so each trace is represented as a sequence of sets 
of relations. When a new trace 7 arrives, if one of the core 
paths already explains it, (line 4) nothing is done. If 7 is not a 
subsequence of any of the current core paths, 7 is added into 
I as indicated by its label (line 9). The final case (line 1 1) is 
that that 7 is a subsequence of some subset of the core paths 
C <:;;; I, meaning that there is a contiguous sequence of relation 
sets Fi ... i+!r!(c) in each c E C such that Fj(7) <:;;; Fj(c) for 
j = i ... i + 171 and Fj is the set of relational fluents true at time 
j. In such a case, each matching core path c is replaced by the 
smaller core path 7. In this way, vestigial components such as 
the run-up and run-after parts of "jump over" are excised from 
the core paths. 

To build the actual VFSMs, we construct a trie (line 14) out 
of all the examples in It (or I;; for M;;), ignoring the highly 
uninformative examples in T"nc. This conservative construction 
means the agent will be tied to the most specific hypothesis 
of a verb meaning supported by the current examples in I+ 
and I-. DFA minimization can be performed on this trie 
[4] to reduce the size of the state space without changing 
the set of sequences it accepts. Minimization of a trie also 
ensures that the resulting DFA has precisely one accepting 
state, since the algorithm merges states with the same set 
of outgoing transitions. This property will be desirable for 
combining verbs. 

A. Learning Verbs by Definition 

In addition to learning by demonstration, our verb represen­
tation supports bootstrapping complex verbs out of simpler 
ones by composition. Effectively, this allows the teacher to 
define a new verb by reference to existing verbs. Because 
the VFSM is a finite state machine, VFSMs also support 
standard FSM operations, including alternation ('go around 
it or go over it') and concatenation ('go get it, then bring 
it to me'). For example, since each VFSM has one start state 
and one positive accepting state, concatenation of two VFSMs 

machines is achieved by merging the Ap from the first VFSM 
with So of the second VFSM. We explore a concatenation 
example in Section VI-B. 

V. EXECUTING V ERBS 

In this section we describe how the VFSM can be com­
bined with a representation of the robot's environment and 
modern planning techniques to execute the verb. We begin by 
describing a model from the reinforcement-learning literature 
that captures both relational information and low-level robot 
dynamics. Our algorithm for planning and executing of a verb 
phrase is given in Algorithm 2. 

A. Object-Oriented Markov Decision Processes 

A standard Markov Decision Process (MDP) [5] model 
M = (S, A, T, R, ,) is comprised of states, actions, a tran­
sition function, rewards, and a discount factor. The long-term 
value of a state can be described by the optimal value function: 
V*(s) = R(s) + ,maxa Ls' T(s, a, s')V(s'). In order to 
leverage the VFSM model, a robot needs a relational view 
of its environment, which could in principle be provided by 
any relational MDP. However, since the dynamics of complex 
physical environments cannot be captured by purely relational 
models (like STRIPS), we will use a two-level model called 
an object-oriented MDP (OOMDP) from [6]. In an OOMDP, 
each state consists of a set of objects with attributes, as well 
as a set of relations between the objects. The set of relations 
are defined based on object attributes (such as On(X, Y) := 

X.yCoord = Y.yCoord +1). In an OOMDP, the agent's actions 
have stochastic affects on object attributes, which in turn may 
causes changes to the relational state. 

B. Combining the VFSM and OOMDP Models 

Recall that the VFSM does not directly encode a policy 
for verb execution. Thus, to plan for verb execution, we 
must combine the dynamics model for the environment Me 
(an OOMDP) and the qualitative verb model Mv (a VFSM). 
This corresponds to line 2 in Algorithm 2. This requires 
combining the state spaces and transition functions of the 
two models and using the terminal states of the VFSM to 
indicate reward. Specifically, we build a combined MDP 
Me = (Se, A, Te, Re, ,) where A and, come from the 
OOMDP but the states Se = SE x Sv are any pairing of an 
OOMDP environment state and a set of states in the VFSM. 
The transition function Te is then: 

Tc(se, a, s�) = T(s�la, s�)][(c5(sv, P[s�]) = s�) ( 1) 

where P[s] denotes the propositions that are true in sand c5 
comes from the VFSM. The reward function is based only on 
the completion of the verb, 0 for states in Ap from Mv, and 
otherwise -1. Formally, the reward function can be stated as: 

Note that the reward function here depends solely on the 
VFSM. Incorporating the environment's reward function Re is 
possible, but requires weighting the agent's desire to complete 



the verb versus maximizing reward in the environment itself. 
While this would be useful for an agent to, say, consider its 
own safety while completing the verb, it is a complex topic 
beyond the scope of this work. 

To mitigate the size of the combined state space and the 
sparsity of reward, we would like to leave some "breadcrumbs" 
throughout the state space so that small rewards are given for 
completing each stage of a verb. A simple mechanism for 
encoding such subgoals is to initialize the values of each state 
W(se)) using a heuristic function q,(se). We use the heuristic 
function q,(sc) = -p(sv), where p(sv) is the shortest distance 
in the VFSM from Sv to an accepting state in M;; without 
reaching an accepting state in M;;. This is the minimum 
number of stages remaining in the VFSM to successfully 
complete the verb activity. This heuristic draws the planner's 
search towards areas where it can progress through stages of 
the verb, but will not stop it from backtracking if the currently 
explored branch does not allow for the verb's completion in 
the current environment. 

C. Planning in the Combined Space 

We now have a fully specified combined MDP Me = 

(Se, A, Te, Re, "(), as well as a heuristic function q,(se). 
To actually perform the verb, the agent requires a planner 
that can map states in Me to actions. When the environment 
is deterministic, we can use the cost and heuristic functions 
constructed above with simple A * search [7] to find the 
optimal policy. But if the MDP dynamics are stochastic we 
will need to use a more general planner. 

If the MDP is small enough, then standard MDP planning 
algorithms like Value Iteration (VI) [5] could be used. How­
ever, because OOMDPs usually have a large ground state space 
to begin with, and since ISel contains the cross product of all 
of these states with all of the Sv states, the computational 
dependence of algorithms like VI on I Se I is likely to be pro­
hibitive. Instead, our experiments with stochastic environments 
employ Upper Confidence for Trees (UCT) [8], a sample­
based planner that sidesteps a dependence on I Se I by only 
guaranteeing to produce a policy for the start state So (hence 
it may need to be called at every timestep, as in line 6). 
While UCT is not expressly built to utilize a heuristic function 
such as our q,( se) described above, we simply translated this 
heuristic into a reward shaping function [9] that served to 
guide UCTs search to areas where stages of the verb could be 
quickly completed. 

VI. EXPERIMEN TS 

We evaluated the performance of the VFSM on a set of 
4 verbs, and against baseline methods described later in this 
section. The verbs tested were the following: 

• go(Robot,Target): Travel to the target location. 
• go-via(Robot,Waypoint,Target): Travel to the target loca­

tion via the waypoint location. 
• deliverCRobot,Object,Target): Travel to the object, pick it 

up, then travel to the target and place the object there. 

Algorithm 2 Planning, Executing, and Updating with an 
OOMDP and VFSM 

1: Input: An OOMDP Me , a VFSM Mv, Environment e 

with initial state Se O, and horizon H 
2: Create combined MDP Me with Se = (Se x Sv) and Te 

from (1) and Re from (2) 
3: Create the heuristic function q,((se , sv)) = -p(sv) 
4: t = 0, St = (Se O, svO) 
5: while the Sv component of St is not terminal and t < H 

do 
6: at = Planner.recommend(Me, q" ST) 
7: Execute at in e, observe s� 
8: Query Mv(sv, at, s�) for s� 
9: St+! = (S�, S�) 

10: t = t + 1 
11: end while 
12: Use the teacher's label l of 7 to call UpdateVerb(v,7,l) 
13: If the teacher provides a demonstration trace and label 

(7', l'), UpdateVerb(v,7',l') 

• intercept(Robot,Enemy,Target): Make contact with the 
enemy robot before it reaches the target. 

Our experiments used two simulated mobile robot domains: 
the Gazebo robot simulator! , where we ensured that the robot's 
actions had deterministic effects, and the Wubble World 2D 
(WW2D) simulator2, where actions had stochastic effects. 
Both environments contained similar objects (robots, blocks, 
and locations) and relations (mostly spatial relations such as 
DistanceDecreased or InFrontOf). 

As a baseline for execution, we also implemented the 
Maximum Likelihood verb model of Kollar et al. [1], which 
we will refer to as ML. ML proceeds by iteratively simulating 
all possible sequences of actions up to some depth (a breadth­
first search), and then executing the sequence that maximizes 
the likelihood of the verb under a Naive Bayesian model. This 
process terminates when all possible actions would decrease 
the likelihood. ML only models the percentage of time that 
each relation is true, and assumes all relations are independent 
of each other. We also implemented the Inverse Reinforcement 
Learning (IRL) method of Abbeel and Ng [10] as a baseline. 
We discuss the suitability of IRL for learning verb models in 
Section VI-C. 

The teaching protocol defined in Section II provides natural 
opportunities for evaluation. During each teaching episode, 
the robot is asked to perform the verb in a situation it has 
not encountered before, which is a form of hold-one-out 
evaluation. From many learning trajectories, we can estimate 
the probability of success after a given number of teaching 
episodes. This measure of performance for the VFSM and the 
ML baseline at each teaching episode is shown in Figure 2. 
The order of presentation by the teacher was randomized for 
each learning trajectory. Success is determined by an automatic 

1 http://piayerstage.sourceforge.netl 
2http://code.googie.com!p/wubbieworld2d1 
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Fig. 2. Experimental results for execution and recognition of verb phrases. Error bars show one standard deviation (n � 15). The dashed line shows the 
performance of a bootstrapped version of go-via, an example of verb composition discussed in Section VI-B. 

validation procedure for each verb. 

A. Learning Verbs 

We tested all three algorithms on the verb phrases listed 

above. The simplest verb, go, was tested in both domains, 

Gazebo and WW2D. In each case, the VFSM was able to 

master the verb, achieving a high rate of success after only 

a few training examples, as shown in Figure 2. However, the 

ML baseline was not able to match the performance of the 

VFSM, reaching a plateau around 70% success rate, somewhat 

lower than the 90% success rate reported by Kollar et al. [1]. 

While the VFSM explicitly models the completion of a verb, 

ML instead relies on a decrease in the likelihood function for 

termination, meaning that it does not always stop at the goal, 

reducing its success rate. 

VFSM significantly outperforms ML on the more complex 

verb deliver, which is naturally described by a sequence of 

stages. As previously discussed, the VFSM can represent this 

sequence of stages, and provide incremental feedback to a 

planner based on the state of underlying FSM. The failure 

of ML to master deliver is not unexpected, as Kollar et al. 

reported a low rate of success (29%) for the similar verb 

bring [1]. However, the reasons for this failure underscore the 

importance of the sequential nature of the VFSM for modeling 

verbs. ML struggles with deliver because the features it is 

trained on are order-independent averages over full traces, 

making it difficult to model the sequential semantics of deliver. 

Since ML attempts to match these averages, it frequently 

performs behaviors inappropriate for the current stage of verb 

execution. For example, when given the object at the start of 

the verb, it will typically put it down and wait briefly, so that 

the Holding(R,O) relation will not be true "too often." 

We also examined a more dynamic verb intercept in which 

the enemy is another agent moving along a known path 

to a target location. This is perhaps the most difficult verb 

because the agent must act effectively in a constantly changing 

stochastic environment. As shown in Figure 2, the VFSM 

representation outperformed the ML baseline significantly on 

this verb. Unlike the VFSM, the ML method does not learn 

a model of verb constraints, meaning it cannot learn from its 

failures. Also, its reliance on a full BFS means it can look 

ahead only a limited number of steps, reducing the precision 

of control and thus failing to catch the enemy more often. By 

contrast, planners like UeT consider full trajectories without 

(in general) searching all possible action sequences. 

B. Bootstrapping Verbs 

Our next experiment concatenates two VFSMs to compose 

the meaning of a new verb, as described in Section IV-A. We 

compare two ways of arriving at the verb go-via: Teaching 

the verb directly, and defining go-via in terms of the simpler 

verb go. Figure 2 compares the performance of the agent when 

taught go-via directly and bootstrapping go-via from go. Even 

at a relational level, there are several possible configurations 

of the waypoint and final destination, each of which will 

become a path in the VFSM when go-via is learned directly, 

slowing learning. By contrast, the teacher can simply define 

go-via(X,Y) as follows: go(Y) then go(X). With go-via defined 

this way, the teacher can teach the simpler verb go and the 

agent's ability to perform go-via will improve. The dashed line 

in Figure 2 shows the performance on go-via after varying 

numbers of exposures to go. The agent learns to perform the 

verb reliably, and with much lower average planning time 

(roughly 8 vs. 80 seconds), since the bootstrapped VFSM 

is much smaller. This example demonstrates how combining 

smaller verbs can accelerate learning of verbs by allowing the 

agent to quickly bootstrap the core verb semantics. 

C. Comparison to Inverse Reinforcement Learning 

We also considered the Inverse Reinforcement Learning 

(IRL) method of Abbeel and Ng [10] as a baseline, but our 

examination of it revealed properties not well suited to a 

general verb representation. Because IRL makes a linear cost 

assumption, its behavior on a "goal oriented" verb like go was 

highly dependent on the amount of "padding" at the end of 

an example showing the agent sitting at the destination. With 

a large amount of padding the agent successfully completed 

all test instances with one teacher trace, but without padding, 

even with all the training data, it failed in all the test examples 

because it preferred approaching the goal to actually reaching 

it. For a verb like deliver, IRL without padding had trouble 

finding a weight for Carrying, since this was a "good" relation 



as long as the agent was not at the destination (a non-linear 

relationship). With padding, performance improved, although 

if there was another way to get the object to the destination 

(perhaps triggering a violation), the agent might prefer this 

method. These results indicate that while IRL can learn 

certain verbs very quickly, it cannot capture the full range 

of complicated (non-linear) verb definitions. 

VII. RELATED WORK 

A number of previous works (e.g. [3], [11]) have consid­

ered the problem of learning classifiers or recognizers for 

verb phrases from situated language data. Our work differs 

from these approaches because we provide a framework for 

executing the verbs. For verb execution, other than the work 

of Kollar et aI., the most relevant work is in the fields of 

Robot Learning from Demonstration (LID) [12] and various 

subfields of reinforcement learning. Our verb-model inference 

and transformation to a reward function can be considered a 

form of inverse reinforcement learning (IRL) [10], but most 

IRL methods assume the cost function is linear in the feature 

space, making it hard to uncover verb stages that are triggered 

by specific sequential combinations of features. Our VFSM­

based cost function is an example of a non-Markovian reward 

function, however other recent work in this area focuses 

on logical formalisms for planning with such rewards (e.g., 

[13]), rather than learning the cost functions themselves, as 

we have in this work. In the classical planning literature, 

Temporally-Extended Goals (TEGs) [14] capture some tempo­

ral and sequential aspects of verb meanings. However, the TEG 

literature generally assumes deterministic and fully symbolic 

domains. 

Another approach is to learn a policy directly from teacher 

demonstrations, forgoing the inference of a reward function. 

Various representations have been used to represent such an 

inferred policy (e.g., finite state controllers [15] and decision 

lists [16]). but all such approaches explicitly specify which 

action to take from each state, resulting in a more restrictive 

model than our VFSM, which only specifies relational states 

that must be achieved and therefore can lead to different 

grounded policies for enacting the same verb. 

VIII. FUTURE WORK AND CONCLUSIONS 

In this work we have shown how to combine a teaching 

protocol for learning verbs from humans with dynamics mod­

els to create an interactive system for teaching and executing 

verb phrases. This method learns a verb model that engenders 

a cost and heuristic function for use with a planner. This 

end-to-end system for learning and executing verb commands 

considerably outperforms other recent methods, while main­

taining several properties of verbs, such as stages of execution, 

qualitative description, and composability. 

There is still much work to be done in verb learning. 

The space of possible verbs is large and highly diverse, 

so defining exactly the set of verbs that can be modeled 

effectively by a VFSM is an important challenge. In addition, 

the potential to use the learned VFSMs for recognition has 

not been explored in this work. An exploration strategy may 

be especially useful for learning precise violation conditions 

(important for verbs such as avoid), since it is difficult for the 

teacher to correctly anticipate violations the student is likely 

to perform. In addition, while VFSMs can naturally represent 

verbs with primarily sequential structure (e.g., fetch), verbs 

with complex looping/conditional structures (e.g., patrol) may 

pose a challenge to the current system. 

There are a number of extensions for future investigation. 

First, we assumed throughout this work that the OOMDP 

(Me ) was known and that the reward function of the ground 

environment Re could be replaced by a uniform step-cost 

function. These decisions were made to highlight the verb 

learning and execution portion of our work, but prior work 

[2] has shown such relational models can be learned from 

teacher demonstrations; so a version of our system that learns 

both the verb semantics and low-level dynamics is a natural 

next step. In addition, incorporating Re into Me (in Equation 

2) could allow the agent to reason about physical costs when 

performing a verb. 
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