
Teaching and Executing Verb Phrases

Daniel Hewlett, Thomas J. Walsh, Paul Cohen

Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA

{dhewlett,twalsh,cohen}@cs.arizona.edu

Abstract-This paper describes a framework for an agent to
learn models of verb-phrase meanings from human teachers and
combine these models with environmental dynamics to enact verb
commands. The framework extends prior work in apprenticeship
learning and leverages recent advancements in modeling activities
and planning in domains with multiple objects. We show how to
both learn a verb model as a relational finite state machine and
how to turn this model into reward and heuristic functions that
can then be composed with an MDP model of an environment.
The resulting "combined model" can then be efficiently searched
by a planner to enact a verb command in this environment. Our
experiments in simulated robot domains show this framework
can be used to quickly teach verb commands and improves over
the current state of the art method.

I. INTRODUCTION

Humans use verb phrases in a variety of ways, includ­

ing giving commands ('jump over the hurdle') and relaying

descriptions of events to others ('he leapt over it'). These

simple verb phrases can actually convey a significant amount

of content, including descriptions of events and conditions that

should not occur, such as 'avoid the pUddle.' Humans have a

qualitative understanding of verbs that supports executing the

same verb in multiple contexts, and with different arguments.

Humans can also fluidly combine verbs, either as part of novel

commands such as 'cross the street and avoid the puddle', or

to define new verbs (,fetch' is a series of simpler verbs). In

this work we show how a robot can learn (through interaction

with a human teacher) executable models of verb phrases that

possess these important verb properties.

In this work, we present a framework for learning a novel

representation of verb phrases that supports both recognition

and execution, as well as the specification of constraints.

This verb model, called the Verb Finite State Machine or

VFSM, represents sequences of qualitative states, so it sup­

ports the natural "stages" of verb completion, the composition

of verb meanings, and application to different physical (or even

metaphorical) environments. Specifying an agent's objective

as a verb phrase with this representation allows us to learn

and enact behaviors that would be difficult to capture using

traditional AI encodings such as goals (traditional planning)

or reward functions based on the state of an environment

(reinforcement learning). For instance, the meaning of a verb

phrase like 'walk over the hill' is not found in feedback from

the environment, which has no notion of the verb command,

or in a goal location, which does not specify how an agent got

there.

We begin by describing the verb learning problem in more

detail, and then describe the VFSM representation in Section

III. Section IV describes our teaching protocol and a learning

algorithm for constructing the VFSM from teacher demonstra­

tions and feedback. We then explain how to derive a reward

and heuristic function from the VFSM, and how to combine

these with a model of the dynamics of the environment to plan

a policy to enact the verb, in Section V. Together, these com­

ponents provide an end-to-end framework for learning verb

meanings from human teachers and executing verb commands.

We demonstrate the success of our system for several verbs in

simulated robot domains, including an example that bootstraps

a new verb meaning through composition, in Section VI. On

the verbs we tested, our approach substantially outperforms a

recent method for learning and executing verb-phrases [1].

II. FRAMEWORK OVERVIEW

Formally, we consider a set of environments E where each

e E E has a set of objects 0 and a starting configuration (or

distribution over start states) for the low-level properties (e.g

x and y coordinates) of the objects and the agent. In addition,

we assume that the agent is equipped with a qualitative under­

standing of the environment, specifically relations between ob­

jects using a set of relational fiuents F where every grounded

fluent is either true or false at a given timestep. Together, these

attributes and fluents make up the state of the environment.

This two-level representation (object attributes and relations)

provides a qualitative description of the environment, without

assuming that the dynamics can be captured at a purely

relational level. In the physical environments most relevant

for robotic agents, these relations typically describe spatial

relationships such as LejtOf(X,Y), roughly corresponding to

prepositional phrases.

Objectives for an agent will be communicated (by a teacher

as described below) via verb phrases such as 'go around the

block', which we will represent formally as go- around(Agent,

Block). We consider a set of available verb phrases V such that

v E V has a meaning based on a series of configurations of

fluents in F that are either true or false on each timestep. For

instance, Figure 1 illustrates (as a pair of finite state machines)

the verb fetch, where different stages of the verb are triggered

by changes in the truth values of these fluents.

Learning in our system involves incremental refinement of

verb semantics through interactions with a human teacher, a

process that extends work from the apprenticeship learning

literature [2]. Formally, the protocol for each episode is as

follows.

1) The teacher can choose an environment e E E, and a

verb v E V and ask the agent to execute v in e.

978-1-61284-990-4/11/$26.00 ©2011 IEEE

ApproochinglR, D) AtIR, D) II �AtIR, D)

ApproochingIR,O)
CorryinglR, o� __ CorrymglR, 0)

I
cor

Q
m\IR' 0) �Ca�YlngIR, 0)

I
I \ I Start

5tort TouchinglR, 0) AtIR, D) I / � \
�Car m IR 0) TouchmgIR,O)

CarryingIR,O) AtIR, D) �CarrymgIR, 0) ry g ,
�CarrYlnglR 0)

CarryingIR,O) TouchlnglR, 0) I TouchmgIR,O) ,

Fig. 1. An example VFSM (shown for clarity as two machines, one
for acceptance and one for rejection) for deliver(Robot,Object,Destination).
The left machine accepts "successful " examples while the right one accepts
"violations " .

2) The agent then uses its verb model along with a planner

to produce and execute a policy that enacts this verb

phrase. The human teacher can then label this execution

as successful, incomplete (for partial performance of the

verb), or violation (of the verb's meaning).

3) If the agent's behavior was judged by the teacher to

be incomplete or a violation, the teacher can provide

a demonstration of the verb in the same environment.

Both the agent's and the teacher's labeled trajectories

can be used by the agent to refine its verb model.

The overall goal of the teacher is to teach the verb-phrase se­

mantics to the agent in a complete enough form that the agent's

chance of succeeding during subsequent teaching episodes is

maximized.

III. VERB REPRESENTATION

Our representation for verb meanings is a finite-state ma­

chine we will refer to as a Verb FSM (VFSM) (Figure 1).

Conceptually, this VFSM is a combination of two simpler

FSMs, M;; representing correct verb behavior, and M;;,
encoding behavior that violates the semantics of the verb.

The VFSM differs from standard FSMs in that each edge

is labeled with a set of propositions (relational fluents as

described earlier), rather than a single symbol. Also, each

intermediate (non-start and non-terminal) state contains a loop

back to itself (omitted from the diagram for clarity), allowing

parts of the verb (or constraints) to take varying amounts of

time. The utility of using a similar FSM for recognition of

activities has been previously established [3], showing that

the FSM transitions capture the natural stages and choices

involved in verb completion.

Importantly, the VFSM is not a finite-state controller (FSC),

where each state is mapped directly to an action. Rather, the

VFSM accepts qualitative traces that match the verb semantics.

Additional steps needed to execute the verb described by the

VFSM are presented in Section V. The VFSM is a qualitative

representation in that it represents only propositional informa­

tion, and only information about the ordering of states rather

than their duration. It is also underspecified because each

transition specifies only a subset of the propositions compris­

ing the environment state. In addition, all of the propositions

in the VFSM are expressed as relations over the arguments

of the verb rather than specific objects (e.g., At(R,D) rather

than A t(robot 1 ,dest7)). The full verb representation is the

lexical form of the verb and its argument structure (e.g., pick­

up(Agent,Object)), together with the VFSM.

Formally, the VFSM can be defined by a tuple (S, �, So,
0, Ap, An), where S is the set of propositional states, So is

the start state, and Ap and An are the sets of positive and

negative accepting states. �, the "alphabet" is theoretically

all the possible sets of true fluents, though we do not have

to enumerate all of these to define the transition function.

Structurally, the VFSM is a DFA, meaning there are no

epsilon transitions and each transition out of a state bears

a unique label. However, since transitions are labeled with

sets rather than individual symbols, a given set of fluents

may be compatible with more than one outgoing transition,

meaning that the VFSM transition function operates non­

deterministically. The current state of the VFSM is thus given

by a set of FSM states, and the transition function 0 maps

each set of states and set of fluents to a set of possible next

states. 0 is defined as follows: If the machine is in the set of

states Si and the set of fluents F is observed, the new state of

the machine is a set containing every state Sj such that some

Si E Si contains a transition labeled with a set of fluents IJ

such that IJ S;;; F.
Intuitively, this non-determinism allows multiple ways to

perform the verb (and multiple constraints) to be "active" at

one time. For instance, if an agent is trying to achieve the verb

'jump over' but has started to turn away from the target object

and is not jumping, multiple violations need to be watched

for. The agent's trajectory can be tracked through the VFSM

until it reaches a positive accepting state, indicating that the

verb was successfully completed, or a negative accepting state,

indicating that a violation has occurred. If no accepting state

is reached, the trajectory is deemed incomplete.

IV. LEARNING VERB MEANINGS FROM TEACHERS

Our algorithm for updating the VFSM based on a labeled

trace of behavior (as collected in the protocol from Section II)

is shown in Algorithm 1. The algorithm manages the storage of

examples with each label, eliminating traces that are subsumed

by others, and uses a conservative FSM construction from only

the instances labeled as "success" or "violation". This cautious

approach was taken based on results in apprenticeship learning

showing that acting based on the most specific hypothesis

allows the teacher to safely drive the generalization process

[2].

The trimming of examples (lines 6 through 13) is a form of

FSM inference that relies on the notion of core paths. A core

path is a sequence of sets of relations that lead from the initial

state to a terminal state. Intuitively, each element of It and

I;;, containing positive and negative examples, respectively,

represents a specific hypothesis for one of the core paths.

Initially, these core paths may be longer than needed. For

instance, if the verb "jump over" was demonstrated by an

agent getting a running start, jumping over the object, and

running more afterwards, the initial core path would contain

all the relation sets from this sequence, when really all that is

needed are the relation sets from the middle portion.

Each agent or teacher trace yields a sequence of states,

each composed of ground attributes and relational fluents. For

Algorithm 1 UpdateVerb(v, 7, l)

1: Initially: It and T"ncand I;; = 0
2: Input: A verb v, execution trace 7, and label l.
3: Let I = I; (dataset for label l)
4: if 3c E I where c is a subsequence of 7 then

5: Return Iffhe instance is already explained.
6: else if I = It or I = I;; then
7:

8:

9:

10:

11:

12:

Let C = {c E I where 7 is a subsequence of c}
if C = 0 then

Add 7 to I as a new core path
else

I=(I\C)U{7}
end if

13: end if

14: Rebuild Mt and M;; from It and I;;, respectively, by
building a trie from all the examples, and then minimizing.
Merge these machines to create the final VFSM.

learning the VFSM, only the relational part of each state is
considered, so each trace is represented as a sequence of sets
of relations. When a new trace 7 arrives, if one of the core
paths already explains it, (line 4) nothing is done. If 7 is not a
subsequence of any of the current core paths, 7 is added into
I as indicated by its label (line 9). The final case (line 1 1) is
that that 7 is a subsequence of some subset of the core paths
C <:;;; I, meaning that there is a contiguous sequence of relation
sets Fi ... i+!r!(c) in each c E C such that Fj(7) <:;;; Fj(c) for
j = i ... i + 171 and Fj is the set of relational fluents true at time
j. In such a case, each matching core path c is replaced by the
smaller core path 7. In this way, vestigial components such as
the run-up and run-after parts of "jump over" are excised from
the core paths.

To build the actual VFSMs, we construct a trie (line 14) out
of all the examples in It (or I;; for M;;), ignoring the highly
uninformative examples in T"nc. This conservative construction
means the agent will be tied to the most specific hypothesis
of a verb meaning supported by the current examples in I+
and I-. DFA minimization can be performed on this trie
[4] to reduce the size of the state space without changing
the set of sequences it accepts. Minimization of a trie also
ensures that the resulting DFA has precisely one accepting
state, since the algorithm merges states with the same set
of outgoing transitions. This property will be desirable for
combining verbs.

A. Learning Verbs by Definition

In addition to learning by demonstration, our verb represen­
tation supports bootstrapping complex verbs out of simpler
ones by composition. Effectively, this allows the teacher to
define a new verb by reference to existing verbs. Because
the VFSM is a finite state machine, VFSMs also support
standard FSM operations, including alternation ('go around
it or go over it') and concatenation ('go get it, then bring
it to me'). For example, since each VFSM has one start state
and one positive accepting state, concatenation of two VFSMs

machines is achieved by merging the Ap from the first VFSM
with So of the second VFSM. We explore a concatenation
example in Section VI-B.

V. EXECUTING V ERBS

In this section we describe how the VFSM can be com­
bined with a representation of the robot's environment and
modern planning techniques to execute the verb. We begin by
describing a model from the reinforcement-learning literature
that captures both relational information and low-level robot
dynamics. Our algorithm for planning and executing of a verb
phrase is given in Algorithm 2.

A. Object-Oriented Markov Decision Processes

A standard Markov Decision Process (MDP) [5] model
M = (S, A, T, R, ,) is comprised of states, actions, a tran­
sition function, rewards, and a discount factor. The long-term
value of a state can be described by the optimal value function:
V*(s) = R(s) + ,maxa Ls' T(s, a, s')V(s'). In order to
leverage the VFSM model, a robot needs a relational view
of its environment, which could in principle be provided by
any relational MDP. However, since the dynamics of complex
physical environments cannot be captured by purely relational
models (like STRIPS), we will use a two-level model called
an object-oriented MDP (OOMDP) from [6]. In an OOMDP,
each state consists of a set of objects with attributes, as well
as a set of relations between the objects. The set of relations
are defined based on object attributes (such as On(X, Y) :=

X.yCoord = Y.yCoord +1). In an OOMDP, the agent's actions
have stochastic affects on object attributes, which in turn may
causes changes to the relational state.

B. Combining the VFSM and OOMDP Models

Recall that the VFSM does not directly encode a policy
for verb execution. Thus, to plan for verb execution, we
must combine the dynamics model for the environment Me
(an OOMDP) and the qualitative verb model Mv (a VFSM).
This corresponds to line 2 in Algorithm 2. This requires
combining the state spaces and transition functions of the
two models and using the terminal states of the VFSM to
indicate reward. Specifically, we build a combined MDP
Me = (Se, A, Te, Re, ,) where A and, come from the
OOMDP but the states Se = SE x Sv are any pairing of an
OOMDP environment state and a set of states in the VFSM.
The transition function Te is then:

Tc(se, a, s�) = T(s�la, s�)][(c5(sv, P[s�]) = s�) (1)

where P[s] denotes the propositions that are true in sand c5
comes from the VFSM. The reward function is based only on
the completion of the verb, 0 for states in Ap from Mv, and
otherwise -1. Formally, the reward function can be stated as:

Note that the reward function here depends solely on the
VFSM. Incorporating the environment's reward function Re is
possible, but requires weighting the agent's desire to complete

the verb versus maximizing reward in the environment itself.
While this would be useful for an agent to, say, consider its
own safety while completing the verb, it is a complex topic
beyond the scope of this work.

To mitigate the size of the combined state space and the
sparsity of reward, we would like to leave some "breadcrumbs"
throughout the state space so that small rewards are given for
completing each stage of a verb. A simple mechanism for
encoding such subgoals is to initialize the values of each state
W(se)) using a heuristic function q,(se). We use the heuristic
function q,(sc) = -p(sv), where p(sv) is the shortest distance
in the VFSM from Sv to an accepting state in M;; without
reaching an accepting state in M;;. This is the minimum
number of stages remaining in the VFSM to successfully
complete the verb activity. This heuristic draws the planner's
search towards areas where it can progress through stages of
the verb, but will not stop it from backtracking if the currently
explored branch does not allow for the verb's completion in
the current environment.

C. Planning in the Combined Space

We now have a fully specified combined MDP Me =

(Se, A, Te, Re, "(), as well as a heuristic function q,(se).
To actually perform the verb, the agent requires a planner
that can map states in Me to actions. When the environment
is deterministic, we can use the cost and heuristic functions
constructed above with simple A * search [7] to find the
optimal policy. But if the MDP dynamics are stochastic we
will need to use a more general planner.

If the MDP is small enough, then standard MDP planning
algorithms like Value Iteration (VI) [5] could be used. How­
ever, because OOMDPs usually have a large ground state space
to begin with, and since ISel contains the cross product of all
of these states with all of the Sv states, the computational
dependence of algorithms like VI on I Se I is likely to be pro­
hibitive. Instead, our experiments with stochastic environments
employ Upper Confidence for Trees (UCT) [8], a sample­
based planner that sidesteps a dependence on I Se I by only
guaranteeing to produce a policy for the start state So (hence
it may need to be called at every timestep, as in line 6).
While UCT is not expressly built to utilize a heuristic function
such as our q,(se) described above, we simply translated this
heuristic into a reward shaping function [9] that served to
guide UCTs search to areas where stages of the verb could be
quickly completed.

VI. EXPERIMEN TS

We evaluated the performance of the VFSM on a set of
4 verbs, and against baseline methods described later in this
section. The verbs tested were the following:

• go(Robot,Target): Travel to the target location.
• go-via(Robot,Waypoint,Target): Travel to the target loca­

tion via the waypoint location.
• deliverCRobot,Object,Target): Travel to the object, pick it

up, then travel to the target and place the object there.

Algorithm 2 Planning, Executing, and Updating with an
OOMDP and VFSM

1: Input: An OOMDP Me , a VFSM Mv, Environment e

with initial state Se O, and horizon H
2: Create combined MDP Me with Se = (Se x Sv) and Te

from (1) and Re from (2)
3: Create the heuristic function q,((se , sv)) = -p(sv)
4: t = 0, St = (Se O, svO)
5: while the Sv component of St is not terminal and t < H

do
6: at = Planner.recommend(Me, q" ST)
7: Execute at in e, observe s�
8: Query Mv(sv, at, s�) for s�
9: St+! = (S�, S�)

10: t = t + 1
11: end while
12: Use the teacher's label l of 7 to call UpdateVerb(v,7,l)
13: If the teacher provides a demonstration trace and label

(7', l'), UpdateVerb(v,7',l')

• intercept(Robot,Enemy,Target): Make contact with the
enemy robot before it reaches the target.

Our experiments used two simulated mobile robot domains:
the Gazebo robot simulator! , where we ensured that the robot's
actions had deterministic effects, and the Wubble World 2D
(WW2D) simulator2, where actions had stochastic effects.
Both environments contained similar objects (robots, blocks,
and locations) and relations (mostly spatial relations such as
DistanceDecreased or InFrontOf).

As a baseline for execution, we also implemented the
Maximum Likelihood verb model of Kollar et al. [1], which
we will refer to as ML. ML proceeds by iteratively simulating
all possible sequences of actions up to some depth (a breadth­
first search), and then executing the sequence that maximizes
the likelihood of the verb under a Naive Bayesian model. This
process terminates when all possible actions would decrease
the likelihood. ML only models the percentage of time that
each relation is true, and assumes all relations are independent
of each other. We also implemented the Inverse Reinforcement
Learning (IRL) method of Abbeel and Ng [10] as a baseline.
We discuss the suitability of IRL for learning verb models in
Section VI-C.

The teaching protocol defined in Section II provides natural
opportunities for evaluation. During each teaching episode,
the robot is asked to perform the verb in a situation it has
not encountered before, which is a form of hold-one-out
evaluation. From many learning trajectories, we can estimate
the probability of success after a given number of teaching
episodes. This measure of performance for the VFSM and the
ML baseline at each teaching episode is shown in Figure 2.
The order of presentation by the teacher was randomized for
each learning trajectory. Success is determined by an automatic

1 http://piayerstage.sourceforge.netl
2http://code.googie.com!p/wubbieworld2d1

go (gazebo) go (ww2d) deliver (gazebo) intercept (ww2d) go-via (ww2d)
1.0

en 0.9
en

� 0.8
g 0.7
� 0.6
� 0.5

:: 0.4
� 0.3 � J: 0.2

0.1
�--L..=:::c==:::c:=:::..

2 4 6 8 to 2 4 6 8 to 12 2 4 6 8 to 2 4 6 8 to 12 2 4 6 8 to 12 14
Teaching Episode Teaching Episode Teaching Episode Teaching Episode Teaching Episode

Fig. 2. Experimental results for execution and recognition of verb phrases. Error bars show one standard deviation (n � 15). The dashed line shows the
performance of a bootstrapped version of go-via, an example of verb composition discussed in Section VI-B.

validation procedure for each verb.

A. Learning Verbs

We tested all three algorithms on the verb phrases listed

above. The simplest verb, go, was tested in both domains,

Gazebo and WW2D. In each case, the VFSM was able to

master the verb, achieving a high rate of success after only

a few training examples, as shown in Figure 2. However, the

ML baseline was not able to match the performance of the

VFSM, reaching a plateau around 70% success rate, somewhat

lower than the 90% success rate reported by Kollar et al. [1].

While the VFSM explicitly models the completion of a verb,

ML instead relies on a decrease in the likelihood function for

termination, meaning that it does not always stop at the goal,

reducing its success rate.

VFSM significantly outperforms ML on the more complex

verb deliver, which is naturally described by a sequence of

stages. As previously discussed, the VFSM can represent this

sequence of stages, and provide incremental feedback to a

planner based on the state of underlying FSM. The failure

of ML to master deliver is not unexpected, as Kollar et al.

reported a low rate of success (29%) for the similar verb

bring [1]. However, the reasons for this failure underscore the

importance of the sequential nature of the VFSM for modeling

verbs. ML struggles with deliver because the features it is

trained on are order-independent averages over full traces,

making it difficult to model the sequential semantics of deliver.

Since ML attempts to match these averages, it frequently

performs behaviors inappropriate for the current stage of verb

execution. For example, when given the object at the start of

the verb, it will typically put it down and wait briefly, so that

the Holding(R,O) relation will not be true "too often."

We also examined a more dynamic verb intercept in which

the enemy is another agent moving along a known path

to a target location. This is perhaps the most difficult verb

because the agent must act effectively in a constantly changing

stochastic environment. As shown in Figure 2, the VFSM

representation outperformed the ML baseline significantly on

this verb. Unlike the VFSM, the ML method does not learn

a model of verb constraints, meaning it cannot learn from its

failures. Also, its reliance on a full BFS means it can look

ahead only a limited number of steps, reducing the precision

of control and thus failing to catch the enemy more often. By

contrast, planners like UeT consider full trajectories without

(in general) searching all possible action sequences.

B. Bootstrapping Verbs

Our next experiment concatenates two VFSMs to compose

the meaning of a new verb, as described in Section IV-A. We

compare two ways of arriving at the verb go-via: Teaching

the verb directly, and defining go-via in terms of the simpler

verb go. Figure 2 compares the performance of the agent when

taught go-via directly and bootstrapping go-via from go. Even

at a relational level, there are several possible configurations

of the waypoint and final destination, each of which will

become a path in the VFSM when go-via is learned directly,

slowing learning. By contrast, the teacher can simply define

go-via(X,Y) as follows: go(Y) then go(X). With go-via defined

this way, the teacher can teach the simpler verb go and the

agent's ability to perform go-via will improve. The dashed line

in Figure 2 shows the performance on go-via after varying

numbers of exposures to go. The agent learns to perform the

verb reliably, and with much lower average planning time

(roughly 8 vs. 80 seconds), since the bootstrapped VFSM

is much smaller. This example demonstrates how combining

smaller verbs can accelerate learning of verbs by allowing the

agent to quickly bootstrap the core verb semantics.

C. Comparison to Inverse Reinforcement Learning

We also considered the Inverse Reinforcement Learning

(IRL) method of Abbeel and Ng [10] as a baseline, but our

examination of it revealed properties not well suited to a

general verb representation. Because IRL makes a linear cost

assumption, its behavior on a "goal oriented" verb like go was

highly dependent on the amount of "padding" at the end of

an example showing the agent sitting at the destination. With

a large amount of padding the agent successfully completed

all test instances with one teacher trace, but without padding,

even with all the training data, it failed in all the test examples

because it preferred approaching the goal to actually reaching

it. For a verb like deliver, IRL without padding had trouble

finding a weight for Carrying, since this was a "good" relation

as long as the agent was not at the destination (a non-linear

relationship). With padding, performance improved, although

if there was another way to get the object to the destination

(perhaps triggering a violation), the agent might prefer this

method. These results indicate that while IRL can learn

certain verbs very quickly, it cannot capture the full range

of complicated (non-linear) verb definitions.

VII. RELATED WORK

A number of previous works (e.g. [3], [11]) have consid­

ered the problem of learning classifiers or recognizers for

verb phrases from situated language data. Our work differs

from these approaches because we provide a framework for

executing the verbs. For verb execution, other than the work

of Kollar et aI., the most relevant work is in the fields of

Robot Learning from Demonstration (LID) [12] and various

subfields of reinforcement learning. Our verb-model inference

and transformation to a reward function can be considered a

form of inverse reinforcement learning (IRL) [10], but most

IRL methods assume the cost function is linear in the feature

space, making it hard to uncover verb stages that are triggered

by specific sequential combinations of features. Our VFSM­

based cost function is an example of a non-Markovian reward

function, however other recent work in this area focuses

on logical formalisms for planning with such rewards (e.g.,

[13]), rather than learning the cost functions themselves, as

we have in this work. In the classical planning literature,

Temporally-Extended Goals (TEGs) [14] capture some tempo­

ral and sequential aspects of verb meanings. However, the TEG

literature generally assumes deterministic and fully symbolic

domains.

Another approach is to learn a policy directly from teacher

demonstrations, forgoing the inference of a reward function.

Various representations have been used to represent such an

inferred policy (e.g., finite state controllers [15] and decision

lists [16]). but all such approaches explicitly specify which

action to take from each state, resulting in a more restrictive

model than our VFSM, which only specifies relational states

that must be achieved and therefore can lead to different

grounded policies for enacting the same verb.

VIII. FUTURE WORK AND CONCLUSIONS

In this work we have shown how to combine a teaching

protocol for learning verbs from humans with dynamics mod­

els to create an interactive system for teaching and executing

verb phrases. This method learns a verb model that engenders

a cost and heuristic function for use with a planner. This

end-to-end system for learning and executing verb commands

considerably outperforms other recent methods, while main­

taining several properties of verbs, such as stages of execution,

qualitative description, and composability.

There is still much work to be done in verb learning.

The space of possible verbs is large and highly diverse,

so defining exactly the set of verbs that can be modeled

effectively by a VFSM is an important challenge. In addition,

the potential to use the learned VFSMs for recognition has

not been explored in this work. An exploration strategy may

be especially useful for learning precise violation conditions

(important for verbs such as avoid), since it is difficult for the

teacher to correctly anticipate violations the student is likely

to perform. In addition, while VFSMs can naturally represent

verbs with primarily sequential structure (e.g., fetch), verbs

with complex looping/conditional structures (e.g., patrol) may

pose a challenge to the current system.

There are a number of extensions for future investigation.

First, we assumed throughout this work that the OOMDP

(Me) was known and that the reward function of the ground

environment Re could be replaced by a uniform step-cost

function. These decisions were made to highlight the verb

learning and execution portion of our work, but prior work

[2] has shown such relational models can be learned from

teacher demonstrations; so a version of our system that learns

both the verb semantics and low-level dynamics is a natural

next step. In addition, incorporating Re into Me (in Equation

2) could allow the agent to reason about physical costs when

performing a verb.

REFERENCES

[1] T. Kollar, S. Tellex, D. Roy, and N. Roy, "Grounding Verbs of Motion in
Natural Language Commands to Robots," in International Symposium

on Experimental Robotics, 2010.
[2] T. J. Walsh, M. L. Littman, and C. Diuk, "Generalizing Apprenticeship

Learning across Hypothesis Classes," in Proceedings of the Twenty­
Seventh International Coriference on Machine Learning, 2010.

[3] w. Kerr, A. Tran, and P. Cohen, "Activity Recognition with Finite State
Machines," in International Joint Conference on Artificial Intelligence,

2011.
[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.
[5] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy­

namic Programming. New York, NY: John Wiley and Sons, 1994.
[6] C. Diuk, A. Cohen, and M. L. Littman, "An object-oriented represen­

tation for efficient reinforcement learning," in Proceedings of the 25th
International Conference on Machine Learning, 2008.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ: Prentice Hall, 2003.

[8] L. Kocsis and C. Szepesv, "Bandit Based Monte-Carlo Planning," in
European Coriference on Machine Learning, 2006.

[9] E. Wiewiora, "Potential-Based Shaping and Q-Value Initialization are
Equivalent," Journal of Artificial Intelligence Research, vol. 19, pp. 205-
208,2003.

[10] P. Abbeel and A. Y. Ng, "Apprenticeship learning via inverse rein­
forcement learning," in Proceedings of the Twenty-First International
Coriference on Machine Learning. New York, New York, USA: ACM
Press, 2004.

[11] S. Tellex, G. Shaw, N. Roy, and D. Roy, "Grounding Spatial Language
for Video Search," in International Coriference on Multimodel Inter­
faces, 2010.

[12] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, "A survey of
robot learning from demonstration," Robotics and Autonomous Systems,

2009.
[13] S. Thiebaux, C. Gretton, 1. Slaney, D. Price, and F. Kabanza, "Decision­

Theoretic Planning with non-Markovian Rewards," Journal of Artificial
Intelligence Research, vol. 25, pp. 17-74,2006.

[14] F. Bacchus and F. Kabanza, "Planning for temporally extended goals,"
Annals of Mathematics and Artificial Intelligence, vol. 22, pp. 5-27,
1998.

[15] D. Grollman and O. Jenkins, "Incremental Learning of Subtasks from
Unsegmented Demonstration," in Proceedings of the International Con­
ference on Intelligent Robots and Systems. Citeseer, 2010, pp. 261 -
266.

[16] S. Yoon, A. Fern, and R. Givan, "Inductive Policy Selection for First­
Order MDPs," in Uncertaintly in Artificial Intelligence, 2002.

