
Envelopes as a Vehicle for Improving

the E�ciency of Plan Execution

David M. Hart, Scott D. Anderson, Paul R. Cohen

COINS Technical Report 90-21

Experimental Knowledge Systems Laboratory

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

Abstract

Envelopes are structures which capture expectations of the progress of a plan. By

comparing expected progress with actual progress, envelopes can notify the planner

when the plan violates those expectations. The planner then has the opportunity to

modify the plan to increase its e�ciency given the unexpected progress. This paper

presents a speci�c example of the construction and use of an envelope, followed by

a discussion of the general utility of envelopes for improving the e�ciency of plan

execution.

This research was sponsored by DARPA-AFOSR contract F49620-89-C-00113; by the O�ce of Naval Re-

search, contract N00014-88-K-0009; and by a grant from the Digital Equipment Corporation.

2

1 Introduction

Most AI planners test the postconditions of an action after its completion to see if it suc-

ceeded, but in our domain, actions take so long to execute that advance knowledge of the

probable outcome is valuable. Therefore, we monitor actions during execution. We represent

the a priori expectations of action progress, which we compare with the actual state, in struc-

tures we call envelopes. By comparing actual progress to the expectations about progress stored

in envelopes, we can see whether a plan1 is executing better or worse than we expected.

Ine�ciency in plan execution encompasses wasteful use of resources in a plan that is suc-

ceeding, ine�ective use of resources in failing plans, and even the costs of recovering from a

failed plan. Envelopes are chie
y concerned with the e�ciency of plan execution, and only

indirectly with the planning process. In this paper, we will show an envelope that categorizes

the progress of a plan as better, worse, or as expected. If progress is better than expected, we

can increase the e�ciency by reducing resource expenditure; if worse, we can act to avert plan

failure, possibly by adding resources.

The term \envelope" derives from the idea of a \performance envelope" in engineering,

describing the performance pro�le of a mechanism under various conditions. When the perfor-

mance of a plan in our system goes outside its envelope, the plan may no longer be appropriate

for the current environmental conditions. This paper details the construction and use of a

particular envelope in a multiagent, real-time problem solving system that �ghts simulated for-

est �res. It also discusses the general utility of envelopes for improving the e�ciency of plan

execution.

2 Monitoring Plan Execution

There is an obvious advantage to knowing how a plan is progressing when the planner

can act based on that knowledge; if the plan is failing, the planner can either abort the plan

(avoiding throwing good resources after bad) or add resources to the plan so as to avert the

failure. In domains where actions are not interruptible or are of such short duration that there

is no time to add or subtract resources from an action in progress, there is clearly no utility to

monitoring an executing action. But �ghting a forest �re can require the e�orts of many agents

over many days, so that plans execute over long time spans and there is ample time to add

and subtract resources. Therefore, in our domain (simulated in a testbed called Phoenix [1]),

it pays to monitor a plan during its execution.

Doyle's work [2] addresses monitoring, but in a robotics domain using a STRIPS-style

action model with speci�ed preconditions and postconditions. Monitoring veri�es the truth of

the preconditions and postconditions:

. . .we assume that the successful execution of actions can be veri�ed by instanta-

neously verifying the action's preconditions before its execution and instantaneously

verifying its postconditions after its execution. This approach proves inadequate for

some actions. [2]

1Because our plans are structures of one or more actions, we will use the terms interchangeably.

3

Doyle goes on to describe cases that require just the sort of continuous monitoring that envelopes

are designed for, such as actions that are extended over time and can fail at any point, and

actions involving looping, which can be viewed as extended action.2

Our work is closest in spirit to that of Sanborn and Hendler [6]. Their simulated robot,

which tries to cross a busy street, must monitor the objects in the world (cars rushing past)

and predict whether they will run over it. We view this as an envelope around the plan of

crossing the street, attempting to avert the catastrophic failure of the plan, not to mention the

robot. This is a clear case of an extended action (though performed as a loop of single steps

forward and backward) in which forewarning of failure is critical. The forewarning is achieved

by predicting the location of the cars and the robot; we will see the signi�cance of prediction

for envelopes below.

Envelopes have been implemented as a general mechanism in Phoenix. Performance falling

outside expected bounds is termed a \violation," and violations notify the planner so that

its planning knowledge can be brought to bear on the situation. The purpose of envelopes,

then, is to provide information to the planner that guides its decision-making during plan

excution. While the planner has a number of options, it typically responds to violations as we

have mentioned|adding or subtracting resources. Without envelopes, these opportunities to

increase e�ciency would go unnoticed.

3 Constructing an Envelope

In Phoenix, simulated forest �res are controlled by bulldozers cutting �reline around the

�re. In some cases, it is too dangerous for bulldozers to cut a �reline close to the �re, and so

we use what is called \indirect attack," in which the bulldozers cut a line some distance away.

In indirect attack, a central �reboss coordinates the actions of the bulldozers. For example, in

Figure 1, the intended placement of �reline, to be cut by several bulldozers, is the polygonal

shape surrounding the �re. The �reboss selects a polygon such that the estimated time required

for n bulldozers to cut the line, BT(n), is less than the estimated time remaining until the �re

spreads to the polygon, FST; the di�erence is the amount of slack time in the plan.

Figure 2 illustrates how an envelope for the multiple-bulldozer, indirect-attack plan is con-

structed. We de�ne \progress space" as the percentage of the �reline which is completed, PFC,

versus time (elapsed simulation time, t). The point at the upper right is the estimated time that

the �re arrives at the polygon, tfa, and 100% of the �reline is dug. Lines 1 and 2 are de�ned

by the expected rate that some number of bulldozers can cut �reline: line 1 has a slope of

100=BT(n), because n bulldozers must cut 100% of the line; line 2 has a slope of 100=BT(n�1).

tp is the time that these estimates were made and the envelope was built. tls is the latest time

at which n bulldozers can start digging line and expect to �nish the �reline before the �re

arrives.

The �lled circle labeled CP represents the current position in progress space|(tnow ;PFCnow).

The location of CP within the regions of progress space indicates how the plan is progressing:

2The example of looping that he gives is of �lling a bucket from a hose, which we believe is more naturally

viewed as an extended action.

4

Figure 1: A �re (shaded region) has been set in the Phoenix forest, seen here 1 hour afterward.

The wind is from the East at 3 kph. The polygon of dashed lines marks both the projected shape

of the �re after about 17 hours and the intended placement of �reline for the indirect-attack

plan. Other lines are rivers and roads.

crossing below line 1 suggests that the plan will fail, since the bulldozers would need to cut the

�reline at a rate faster than we think they can;3 crossing above line 2 suggests that we should

save resources by retiring a bulldozer, since n�1 of them should be able to cut the remaining line

in time. The area between the lines is the envelope|the range of expected performance|and

going outside it is a violation of the envelope, signalling to the agent that something should be

done.4

4 Using Envelopes

The plan library of each Phoenix agent contains skeletal forms of envelopes as well as plans.

Part of the de�nition of a plan denotes what envelopes, if any, should be instantiated to monitor

the execution of that plan. Consequently, when a plan is instantiated at run-time, the associated

envelopes are also instantiated, and the envelopes initialize themselves from plan variables, such

as the BT(n) and tfa variables above. Each envelope provides a monitor method whose purpose

is to update the current progress (CP) and locate it in progress space. Then, while the plan is

executing, a periodic action called \monitor-envelopes" causes the agent to verify that the plan

3The plan will not necessarily fail, since the bulldozers might do better than we expect, even though they so

far have not, or the �re might take longer to reach the �reline than we thought, say if it rains.
4Conceptually, the envelope is just that area of progress space, but we also use the term to describe the data

structure representing this area and associated code for creating the envelope and updating CP .

5

100

Elapsed Simulation Time

P
er

ce
nt

 F
ire

lin
e

C
om

pl
et

ed

t
 p

t
 fa

0
t
 ls

1

2

Slack Time Build Time {BT(n)}

Fire Spread Time {FST}

CP

Figure 2: An envelope for the Indirect-Attack Plan

is progressing satisfactorily by running these monitor methods.

The monitor method checks sensory information previously gathered and stored in the plan

variables, such as the current positions of the bulldozers and the �re, and determines which

region CP lies in. If CP is within the region for acceptable progress, nothing more happens.

However, if CP has crossed into a region of unexpected progress (either better or worse), the

envelope is violated and the monitor method adds an item to the agent's agenda so that the

agent can notice and respond to the violation. In Figure 3, we show an envelope in which the

CP falls into the failure region.

While the �reboss could do many things as a result of this violation (for example, the �reboss

might buy time, say by dumping �re retardant on the �re or expanding the polygon around

the �re), consider the case in which it sends another bulldozer to help dig line. A new envelope

must be set up for monitoring this modi�ed plan. The failure boundary for the new envelope

will be determined by a line whose slope is 100=BTn+1. The additional bulldozer is sent, and

the �re is successfully contained within the original polygon, which means the modi�ed plan

6

Figure 3: Plot of the Multiple-Bulldozer, Indirect-Attack Envelope in Phoenix, showing a vio-

lation at nearly 12 hours into the simulation. The recent progress is
at because the bulldozers

have stopped to refuel.

has succeeded, where the original plan would almost certainly have failed.

We have mentioned that multiple envelopes might exist simultaneously; one way that this

occurs is when a plan and a step in the plan both have envelopes. For example, in the multiple-

bulldozer, indirect-attack plan, each step of digging a side of the polygon has an envelope.

This allows the �reboss to apportion the time constraints from the overall plan to the steps

in the plan. A violation of a step's envelope may indicate a problem with the whole plan, or

may simply mean that other steps will have to do better than expected. Therefore, the step

envelopes do not eliminate the need for the plan envelope|the latter integrates the information

from step envelopes.

Furthermore, since digging a side of the polygon will in fact be executed by bulldozers and

not by the �reboss, the envelope for that step must be an explicit data structure that can

be communicated to the bulldozers. We call this an agent envelope, since it is monitored by

the agent who receives it, allowing the �reboss to turn its attention elsewhere. If a violation

occurs, the agent reports back to the �reboss, who assesses the signi�cance of the violation by

consulting the plan envelope. Agent envelopes free the �reboss from the task of monitoring the

progress of component plan steps carried out by other agents|the �reboss assumes the agent's

progress is within expectations unless it receives a violation report from the agent. Powell and

Cohen [5] discuss the use of envelopes to coordinate activities among echelons in multiagent,

7

operational planning.

Another way that multiple envelopes occur is when data dependencies exist between en-

velopes. For example, the estimate of when the �re will reach the polygon, tfa, is crucial to the

way that progress space is carved into regions. Unfortunately, that estimate is based on inexact

information, because the �reboss does not know exactly where the �re is or exactly what the

local wind conditions are. Therefore, we put an envelope around our estimate and periodically

re-calculate it. Should the re-calculation indicate that the tfa estimate is quite wrong, the tfa

envelope is violated, and this causes the envelope on the plan to be revised.

5 Utility of Envelopes

It is intuitively obvious that information about the progress of a plan cannot hurt and could

well prove invaluable. However, the agent must put e�ort into gathering this information, and

therefore the cost of envelopes must be worth their bene�t. To summarize the possible bene�ts,

using envelopes allows an agent to:

� modify a failing plan so as to prevent its failure

� abandoning a plan that is irretrievably failing.

� retire surplus resources from a plan that is going unexpectedly well.

� improve a plan that is going unexpectedly well. For example, in the multiple-bulldozer,

indirect-attack plan, it can move the vertices nearer the �re so as to reduce the forest lost.

� reduce communication overhead between cooperating agents via agent envelopes, that is,

by allowing them to share expectations and only communicate when those expectations

are violated.

Envelopes cost the planner in three di�erent ways: the cost of setting them up, the cost of

monitoring them at time intervals, and the cost of responding to violations. Assessing these

costs is complicated by the way they can be traded o� against each other. For example, a

planner could create a \quick and dirty" envelope, using estimates that are of low quality

but quick to compute. Employing such an envelope burdens the planner later, since spurious

violations are more likely and time spent responding to them will be wasted. On the other

hand, a planner can put a lot of time and e�ort into creating a great envelope, with precise

boundaries based on the best information, resulting in regions that categorize the situation

quite well. Violations of a high-quality envelope can be better trusted to indicate a problem

with the plan. We can create such high-quality envelopes in Phoenix for some activities, but

the cost of creating them is high. For example, the speeds with which a bulldozer travels and

digs line can be predicted quite accurately using expensive operations that iterate over the

points on its route and sum the costs. The bene�t is that the envelope re
ects very closely

the probable time required to dig a segment of �reline. The cost is the expense of calculating

this information, a cognitive task that competes with other necessary cognitive activities for

8

available \thinking" time5. This tradeo� balances the cost of building an envelope now with

the costs of responding to violations later.

Another tradeo� is in the monitor methods of the envelopes. It's important not to make

these too time-intensive, since the cost will be incurred many times over the course of plan

execution. For instance, how old should sensory information be before the monitor method

discards it and measures the environment anew? One option is to use quick, inexact procedures

in the monitor method and then, if a violation occurs, double-check them with better procedures

to verify whether the violation is spurious.

In very time-pressured situations, an agent will probably want to choose quick and dirty

ways of doing things (including building, monitoring and responding to envelopes), while in

less pressured situations, it will probably want to choose higher quality methods; therefore, the

Phoenix agent architecture allows for this choice.

An extreme tradeo� is to eliminate envelopes entirely and deal with the plan failure when it

arises, that is, dispense with monitoring the progress of the executing plan and rely on reports

from the �eld that the plan has failed. Clearly, in Phoenix, we will have to repair or replace the

current plan when the �re is reported to be escaping from the incomplete polygon. The cost of

this failure, besides the time to replan, is the loss of more forest and the additional time and

e�ort of bulldozers to control it. The cost of failure must be compared to the costs of using

envelopes, which we've noted will depend on the choices made by the agents. We believe that

on average these costs will exceed the overhead cost of using envelopes. The same argument

can be made with respect to improving a plan that is succeeding: if we can save a little forest

by moving the vertices towards the �re when the polygon is being dug faster than anticipated,

does this outweigh the cost of using envelopes?

These tradeo�s imply that envelopes have limited utility for some environments and tasks.

If the environment is highly variable, so that the estimates and predictions that are built into

the envelope don't last, and so that any envelope will be violated shortly, the overhead costs

may swamp any bene�ts. On deeper re
ection, though, since envelopes are used for actions

that assume some constancy to the environment, such actions would not be used in these highly

variable domains. Predictability is the key issue: prediction, used either for planning or building

envelopes, is simply not useful in these unpredictable domains. As we mentioned in Section 2,

Sanborn and Hendler's simulated robot depends on the predictability of the cars' paths, even

though the domain is highly variable. Our approach di�ers from theirs because they have tightly

connected the predictions to the robot's actions, while we notice a violation and let the planner

deliberate as long as it wishes over how to solve the problem. We do this because actions can be

quite costly; for example, sending another bulldozer to the �re is time-consuming and commits

resources which might be required elsewhere.

6 Current and Future Work

We have integrated envelopes into the Phoenix testbed, and added instrumentation to assess

the cognitive load on the various agents. We will test the utility of envelopes by comparing the

5For more on Phoenix agents' cognitive structure, see [1]

9

performance of agents with and without them. In particular, we will run a number of di�erent

�res in the simulator, varying the factors contributing to unexpected success or failure of plans,

such as weather, mechanical breakdowns, and obstacles. Performance will be assessed based

on a combination of cost factors such as forest burned, bulldozer time spent, agents lost, and

cognitive overhead incurred. We also intend to experiment with the tradeo�s mentioned above,

such as balancing the cost of setting up an envelope with the cost of responding to violations.

Another line of research views envelope violations as an opportunity for learning [3]. En-

velopes provide information about plans vulnerable to failure, as well as an opportunity to test

ways of repairing plans. These repairs, when successful, can be used to modify the plan library.

We also intend to apply envelopes to the problem of assessing the progress of tasks that

involve, not acting in the world, but thinking. Many thinking tasks in Phoenix, such as path

planning and predicting �re spread, can be computationally expensive and the time available

for them is limited. If we can model these computational tasks so that we can predict their

progress well enough to use envelopes, we can control them and increase their e�ciency. A brief

discussion of the use of envelopes for real-time control appears in [4].

7 Conclusion

We have shown an example of how to build and use an envelope for a plan in a �re-�ghting

domain. This envelope notices when the plan is failing or succeeding too well. The planner can

then adjust the plan to the changing conditions, thereby increasing the e�ciency of its execution

by minimizing the loss of forest and other costs. We've argued that the predictability of the

environment indicates whether envelopes will be useful: if the domain is too predictable, plans

cannot fail, so there is no point to monitoring them, and if the domain is too unpredictable,

plans would not be of a duration for which envelopes would be useful. For the middle ground|

environments that are uncertain but not too unpredictable, which we think are quite common|

we argue that the bene�ts derived from the opportunity to increase plan e�ciency will outweigh

the costs of creating, monitoring and responding to envelopes.

Acknowledgements

The authors wish to thank Adele Howe, Dorothy Mammen, Jerry Powell, and Paul Silvey

for helpful comments on drafts of this paper and also Mike Greenberg and David Westbrook

for their skilled programming support.

This research was supported by the Advanced Research Projects Agency of the Department

of Defense and was monitored by the Air Force O�ce of Scienti�c Research under Contract No.

F49620-89-C-00113. The United States Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright notation hereon.

10

References

[1] Paul R. Cohen, Michael Greenberg, David M. Hart, and A.E. Howe. Trial by �re: Under-

standing the design requirements for agents in complex environments. AI Magazine, Fall

1989.

[2] Richard J. Doyle, David J. Atkinson, and Rajkumar S. Doshi. Generating perception re-

quests and expectations to verify the execution of plans. In Proceedings of the Fifth National

Conference on Arti�cial Intelligence, Philadelphia, PA, 1986. American Association for Ar-

ti�cial Intelligence.

[3] Adele E. Howe. Integrating adaptation with planning to improve behavior in unpredictable

environments. In Proceedings of AAAI Spring Symposium on Planning in Uncertain, Un-

predictable or Changing Environments, Palo Alto, CA, March 1990.

[4] A.E. Howe, David M. Hart, and Paul R. Cohen. Addressing real-time constraints in the

design of autonomous agents. To appear in Real-Time Systems, 1990.

[5] Gerald M. Powell and Paul R. Cohen. Operational planning and monitoring with envelopes.

In Proceedings of the IEEE Fifth AI Systems in Government Conference, Washington, DC,

1990.

[6] James C. Sanborn and James A. Hendler. Dynamic reaction: Controlling behavior in

dynamic domains. International Journal of Arti�cial Intelligence in Engineering, 3(2),

April 1988.

11

