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Abstract 

In this paper we study a classification model that 
mimics guilt by association. We consider a 
population consisting of known adversaries, 
covert adversaries, and benign individuals. In 
our model we associate a suspicion score with 
each individual. The scores for the covert and 
benign populations are initially set to 0, while 
the known adversaries have a fixed score of 1. 
The scores change dynamically as individuals 
meet each other. An individual will be classified 
as an adversary if his score exceeds a certain 
threshold. We demonstrate analytically and 
empirically that a method for assigning suspicion 
scores, and hence the classification procedure 
itself, can be very sensitive to its parameters. 
This suggests that guilt-by-association models, 
and classification procedures based on them, 
should be treated very carefully and analyzed for 
robustness to their parameters. 

1. Introduction 
“Guilt by association” is widely understood concept in 
classification problems. It is used in one form or another 
for community finding in social networks (Clauset 2004, 
Newman and Girvan 2004), studying covert networks 
(Dombroski 2003; Krebs 2001), and relational 
classification (Macskassy and Provost 2003; Neville and 
Jensen 2000). In this paper, by “guilt by association” we 
mean a class of models in which an individual i is 
assigned a score si(t) that depends on the scores of the 
individuals j, k,…,m, with whom i associates. Scores 
change over time as new associations between 
individuals are formed, so we are interested in models 
like this: 
 
 si(t +1) = φ(s j (t),sk (t),..) (1) 

If φ is monotonic, then over time all scores in a group of 
associated individuals will increase without bound. As 
each individual’s score increases, it increases the scores 
of associated individuals at the next time step, and so on, 
in a mutually reinforcing way. Here we consider the class 
of guilt-by-association models in which scores are 
bounded by the [0,1] interval, and for whom the steady-
state average score is less than or equal to 1. The 
following model has these properties:  
 
 φ = si(t) − βsi(t) + α(1− si(t))z(s j (t),sk (t),..)  (2) 

In this model z is a function of the scores of the 
individuals with whom i associates. The parameters α 
and β represent how much effect z has on i’s score, and a 
rate of decay of i’s score, respectively. The main result of 
this paper is that one’s ability to classify individuals on 
the basis of their scores is very sensitive α and β. 

 To make this result concrete, imagine one is trying to 
classify individuals as terrorists or non-terrorists. One 
obtains a time series of transactions: On Monday, a 
meeting took place between individuals 17, 23, and 48; 
on Tuesday, individual 48 met with individuals 17 and 
91, and so on. One increases the suspicion scores of the 
individuals at meetings, proportional to some function of 
all the scores at the meeting, scaled by α. One decreases 
the suspicion score of every individual, whether or not 
they attend a meeting, proportional to β. After a number 
of iterations and meetings one ranks the individuals by 
their suspicion scores and guesses that the top-ranked 
individuals are terrorists. It turns out that the accuracy of 
this procedure is very sensitive to α and β.  

 One might argue that the model in Equation (2) is 
just a bad model, and that there are better ways to assign 
suspicion scores that are not so sensitive to their 
parameters. Our point is not that the model is a good one, 
but that we should analyze guilt-by-association models, 
and classification procedures based on them, for 
robustness to their parameters. That said, we think the 



model in Equation (2) has elements that will be found in 
all guilt-by-association models:  There must be a term 
that represents the suspiciousness of associates (z in 
Equation (2)) and the effect of this term will always be 
scaled by some function (in Equation (2) it is a linear 
scaling by α). Not all models will be bounded by the 
interval [0,1], but there are strong reasons to want to 
have this requirement: If scores increase without bound 
then an individual’s score must somehow be standardized 
to account for how long the individual has been “alive,” 
otherwise a high score might signify nothing more than 
seniority. Similarly, classification based on suspicion 
scores is possible only if some individuals can have 
higher scores than others, so the steady-state average 
score cannot be the maximum score, and some decay 
parameter such as β in Equation (2) is required. 

 In the following sections we present our guilt-by-
association model in more detail and then report 
analytical and empirical results that demonstrate how 
classification accuracy is very sensitive to the model 
parameters. 

2. Model 
Let us consider a population consisting of three types of 
individuals: There are Na known adversaries, Nc covert 
adversaries, and Nb benign individuals. Assume that we 
can meetings between these individuals. For simplicity, 
we assume that in each meeting there are only two 
participants. Meetings between all kinds of individuals 
are observed. However, on average, covert adversaries 
are more likely to meet with known adversaries than with 
benign individuals. Our task is to identify the covert 
adversaries using this record of contacts. 

 We suggest the following guilt by association 
scheme for classifying individuals: All the known 
adversaries are assigned a permanent suspicion score 
s=1, all other individuals are assigned an initial score s=0 
that will change as they meet with other individuals. 
Specifically, if an individual with score s1 meets with an 
individual with a score s2, then his score will be updated 
as follows: 
 
 s1 → s1 + α(1− s1)s2  (3) 

In addition to the incremental growth in the suspicion 
score, we will also have it decay at rate β. Thus, the 
dynamics of suspicion scores is described by:  
 
 si(t + 1) = si(t) − βsi(t) + α(1− si(t))z  (4) 

Here z is the score of the individual that the i-th 
individual has met at time t: if the individual does not 
meet anyone at time t then z=0. Generally speaking, z is a 
random variable with a certain distribution that we will 
specify in the next section. It is easy to see that this 
distribution will be different for benign individuals and 
covert adversaries since the rates at which they meet with 

various types of individuals are different. The main 
question is whether this difference in the meeting pattern 
will produce distributions of suspicion scores that can be 
used to classify covert adversaries as such.  

 If an individual has a suspicion score greater than a 
threshold, we will classify that individual as a covert 
adversary. In the experiments that follow, the threshold is 
always set to the value that gives the highest 
classification accuracy. In this way we can study the 
effects of α and β on classification accuracy without 
worrying about effects due to the threshold. 

3. Statistical Analysis 
The success of a classification algorithm that uses 
suspicion scoring depends crucially on how these scores 
evolve in subpopulations. As we already mentioned, the 
difference in the evolution of the scores in 
subpopulations is due to the difference in the meeting 
patterns between various types of individuals. To be 
specific, let us consider the case where meetings between 
individuals are governed by a random Poisson process. 
Specifically, we assume that each covert individual meets 
with known adversaries, covert adversaries, and benign 
individuals with rates Ca, Cc and Cb, respectively. 
Similarly, the benign individuals meet with known 
adversaries, covert adversaries, and benign individuals 
with rates Ba, Bc and Bb. 
 Further, let Pc(s,t) be the probability distribution that 
a randomly chosen covert individual at time t has a score 
s. We define Pb(s,t) similarly for the benign populations 
(note that Pc(s,t) and Pb(s,t) are simply the average 
fraction of covert and benign individuals with score s at 
time t). Then the variable z in Equation 4 can be easily 
shown to have the following distribution for each 
subpopulation:  
 
pc (z) = (1− Ca − Cb − Cc )δz,0 + Caδz,1 + CbPb (z, t) + CcPc (z, t)  (5) 

pb (z) = (1− Ba − Bb − Bc )δz,0 + Baδz,1 + BbPb (z, t) + BcPc (z, t) (6) 

Given the distribution for z, we can derive the stochastic 
Master equation for the evolution of the score 
distributions using the continuous time limit of Equation 
4: 

(7) 
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The initial conditions are Pc(s,0)=δs,0 and Pc(s,0)=δs,0. 
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through the overlap of these distribution functions. 
Namely, if we choose a threshold Sthr for classification, 
then the fraction of False Positives  (FP) and False 
Negatives are  

 
 
 
 
 
 
 
While the master equations (7,8) can be solved readily 
through numerical integration, their analytical solutions 
are not available in the most general case. Instead, in this 
paper we prefer to work its first moment that describes 
the evolution of the average scores in both subpopulation. 
The rational behind this is that the difference in the 
average scores between two populations will be 
indicative of the measure of the overlap of corresponding 
distribution. 
 We now examine how the average suspicion score 
over two sub-populations changes with time. Let Sc(t)  
and Sb(t) be the suspicion score averaged over covert and 
benign populations at time t. The equations for Sc(t) and 
Sb(t) are obtained by multiplying the corresponding 
master equations by s and integrating over s. The 
resulting equations read:  
 
 dSc

dt
= −βSc + α 1− Sc( ) Ca + CcSc + CbSb( ) (9) 

 dSb

dt
= −βSb + α 1− Sb( ) Ba + BcSc + BbSb( ) (10) 

Equations (9,10) are a coupled nonlinear system with the 
coupling coefficients given by the cross-population 
meeting rates Cb and Bc. In the case Cb = Bc = 0 the 
evolution in each sub-system is independent. Note also, 
that these equations could be obtained directly from 
Equation 4 by averaging over z using the distribution 
functions for z, Equations 5-6. 
 To test our analytical model, we carried out 
simulations of suspicion scoring scenario with two 
subpopulation of 1000 benign and 1000 covert 
individuals. The rates used were Cc  = 0.002, Bb = 0.002, 
Ca = 0.001, Ba = 0.0002, Cb = Bc = 0.0002. In Figure 1 we 
plot the time evolution of the suspicion scores averaged 
over sub-populations for simulation and the numerical 
solutions of equations 9 and 10 for two different values 
of the parameters α and β. We did not average the 
simulation results over many runs in order to account for 
fluctuations. One can see that the analytical solution 
agrees very well with the simulation results. As it can be 
seen from Fig. 1, after some transient time (that varies 
with the choice of the parameters) the average scores 
evolve into a steady state. What is important is that the 
difference between the steady state values for covert and 

benign populations depends on the choice of the model 
parameters α and β.  
 To study this dependence, we note that these steady 
state values are the solution of following system of non-
linear equations: 
 
 −βSc + α 1− Sc( ) Ca + CcSc + CbSb( ) = 0 (11) 

 −βSb + α 1− Sb( ) Ba + BcSc + BbSb( ) = 0 (12) 

Note that the steady state values depend on the ratio β/α 
only. However, in the following we will study the 
dependence on these parameters individually.   

 

Again, in the most general case, the solutions of the 
steady state equations have to be obtained numerically. 

FP = dsPb
Sthr

1

∫ (s)

FN = dsPc
0

Sthr

∫ (s)

Figure 1: Analytical (solid lines) and simulation (symbols) 
results for the evolution of average suspicion score for each 
population. 



We use these solutions to examine how the difference 
between average scores in two subpopulations ΔS = Sc - 
Sb behave for various choices of parameters α and β. 
 In Figure 2 (top) we plot this difference versus decay 
parameter β for three different values of α. Remarkably, 
the dependence is highly non-monotonic with a single 
maximum at a certain value of β that shifts to right as α 
increases. This can be understood as follows: For a zero 
decay β = 0, the average score in both sub-populations 
will reach s = 1. The difference will be only in the 
transient time required to reach this maximum   

 
(e.g., longer for the benign population). Hence, the score 
difference will be zero. In the other extreme when the 
decay rate is very high, the scores of individuals decay 
exponentially fast with a rate 1/β, so that the average 
scores in both populations will be close to zero again. 
Hence, ΔS should reach at least one extremum. 

Remarkably, the maximum seems to be the most 
pronounced (e.g., high and narrow) for the smaller values 
of α. This can also be seen in the surface plot of Fig. 
2(bottom). 
 The strong non-monotonic behavior of ΔS suggests 
that the classification procedure using suspicion score 
might be very sensitive to the model parameters (α, β). 
Indeed, if we assume that the separation between the 
averages of two distributions can be used to characterize 
their overlap then the classification accuracy will vary 
with the choice of (α, β). We examined this issue 
empirically in simulation. Note, that we do not take into 
account variation due to the subtle question of setting the 
correct classification threshold. Instead, to concentrate on 
the impact of α and β solely, we empirically find the 
threshold that yields the best F-Measure. 
 We present the result in Figure 3 where we plot the 
F-Measure versus α for a fixed value of the decay 
parameter β = 0.00025. The maximum separation of the 
averages for this value of β occurs at α = 0.1, that 
corresponds to the value of roughly F-Measure ≈ 0.98. If 
one increases α, however, the detection accuracy 
deteriorates significantly, e.g., for α = 0.3 the F-Measure 
drops below 0.75, and decreases even further as α 
increases.  
 We also note that when one changes α in the 
opposite direction (e.g., decreasing starting from α = 
0.1), then there is no significant deterioration in the 
classification accuracy. The reason for this is that while 

decreasing α, the score difference ΔS decreases not 
because two distributions are overlapping significantly, 
but because the values of Sc and Sb themselves are small. 
However, their variances are small as well so that two 
distributions stay separated.  

Figure 2: (top) The difference between the steady state 
values ΔS as a function of decay parameter β, for three 
different values of α; (bottom) surface plot of the ΔS(α,β). 

Figure 3: F-Measure vs α. 



4 Discussion  
In this paper we presented and studied a classification 
model that we believe mimics guilt by association. In our 
model we associate a suspicion score with each 
individual that changes with time: it increases whenever 
an individual meets with another individual with non-
zero score, and also decays in time so that the 
distribution of scores over the entire population have a 
well defined long term limit. Our results indicate that 
assigning suspicion scores, and hence the classification 
procedure itself, can be very sensitive to its parameters. 
We demonstrated this both empirically and analytically, 
using statistical analysis of the average score evolution in 
separate subpopulations. 
 Although in this paper we examined a single model 
for suspicion scoring, we think that our results might 
have more general implications. Indeed, despite its 
simplicity our model seems to capture the main elements 
of suspicion scoring models: increase in an individual’s 
score due to meeting with other suspicious individuals, 
and decrease due to “inactivity”.    
 More generally, it is known that only few popular 
data mining algorithms performed well on multiple 
problems without parameter adjustments (Keogh 2004). 
In a classification problem with suspicion scoring one 
usually have certain number of tunable parameters. If the 
behavior of the classification procedure is not robust to 
small adjustments in these parameters, then the accuracy 
of the final classification can be very poor, and 
inconsistent as it can change unpredictably. We conclude 
by noting that the results presented here emphasize the 
need for methods that will allow analyzing robustness of 
various classification algorithms with respect to their 
parameters. 
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