
Learning Elements of Representations for

Redescribing Robot Experiences

Laura Firoiu and Paul Cohen

Computer Science Department
University of Massachusetts at Amherst,

Amherst, MA 01003-4610
{lfiroiu, cohen}@cs.umass.edu

Abstract. This paper presents our first efforts toward learning sim-
ple logical representations from robot sensory data and thus toward a
solution for the perceptual grounding problem [2]. The elements of rep-
resentations learned by our method are states that correspond to stages
during the robot’s experiences, and atomic propositions that describe
the states. The states are found by an incremental hidden Markov model
induction algorithm; the atomic propositions are immediate generaliza-
tions of the probability distributions that characterize the states. The
state induction algorithm is guided by the minimum description length
criterion: the time series of the robot’s sensor values for several expe-
riences are redescribed in terms of states and atomic propositions and
the model that yields the shortest description (of both model and time
series) is selected.

1 Introduction

We are interested in learning without supervision elements of logical representa-
tions of episodes. The episodes in question are generated by robots interacting
with their environments. Just as human infants bootstrap their sensorimotor ex-
periences into a conceptual structure and language [4], so we want our robot to
learn ontologies and language through interaction. Previous work has focused on
learning sensory prototypes, which represent robot interactions in terms of how
the interactions appear to the sensors [7]. For example, driving toward a wall
and bumping into it is represented as a decreasing series of sonar values followed
by the bump sensor going high. While sensory prototypes support some kinds
of reasoning (e.g., predicting that the bump sensor will go high) they do not
contain explicit elements that represent the robot, the wall, and the act of driv-
ing; and so do not support reasoning about the roles of entities in episodes [1].
This work takes the first step from sensory prototypes to logical representations.
Logical representations have two advantages:

– Because they contain terms that denote the entities in a scene and the rela-
tionships between them, logical representations such as
“push(robot, object)” are compact, and easily support planning and other

D.J. Hand, J.N. Kok, M.R. Berthold (Eds.): IDA’99, LNCS 1642, pp. 99–110, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



100 Laura Firoiu and Paul Cohen

reasoning. The sensory prototype of pushing objects does not support these
easily [8].

– Abstraction can be over predicates and properties of entities, rather than
over patterns in sensory traces. For instance, the extensional category of
pushable objects is the set of elements i such that the robot has experienced
“push(robot, i)” in the past. Given the extensional category, one can imagine
learning the intensional concept of pushable object, the properties that make
objects pushable. Neither kind of categorization is feasible given only sensory
prototypes.

If logical representations are so advantageous, why not build them into our
robots, that is, make them part of the robots’ innate endowment? The rea-
son is that we want to explain how sensorimotor activity produces thought—
classification, abstraction, planning, language—as it does in every human infant.
So we start with sensors and actions, and in this paper we explain how elements
of a logical representation might be learned from these sensorimotor beginnings.

The first step in the process of learning logical representations is to re-
describe the episodes as state sequences. Our intuition is that experiences unfold
through several relatively static stages. At least for simple robot activities, the
robot’s world tends to remain in the same state over some periods of time, so we
expect the state sequences to be simple. For example, the experience of moving
toward an object has some well defined stages: accelerating, approaching, being
near the object. We want to identify the states that correspond to these stages
and ground them in patterns of sensor values.

A technique that allows identification of states is that of hidden Markov
model (HMM) induction. The assumption behind the HMM is that the data
sequence is produced by a source that evolves in a state space and at each time
step outputs a symbol according to the probability distribution of the current
state. The states are thus characterized by stable probability distributions over
the output alphabet. We identify the episode stages with the states of an HMM
induced from all the data collected during a batch of episodes. Since they form
a single vocabulary for all episodes, similar stages can be identified across expe-
riences.

The second step in the process of learning logical representations is to find
atomic propositions that denote facts in the current state. Since the states found
by the HMM are characterized by probability distributions, the atomic propo-
sitions must be derived from them. We define the atomic propositions simply
as disjunctions of the most likely sensor values according to these distributions.
For example, the characterization of “accelerate” is given by some positive val-
ues of the acceleration sensor and by the velocity sensor varying within a range
of values. A representation of an episode becomes a sequence of states described
by these atomic propositions.

These representations are “passive” in the sense that, currently, they are not
used by any problem solving system. These representations do not specify what
to do in a certain situation or predict what will happen if an action is taken. In
the absence of supervision and a problem solving task, we choose the principle



Learning Elements of Representations for Redescribing Robot Experiences 101

of minimum description length to guide the learning process. This principle is
implemented with the help of a cost function that measures both the size of the
representations (atomic propositions, states, episodes as state sequences) and
how well they describe the raw data. Our algorithm identifies the states and the
atomic propositions that heuristically minimize the cost of these descriptions.

2 Identifying Experience Stages with Hidden Markov
Models

2.1 Hidden Markov Models

A discrete hidden Markov model [6] is defined by a set of states and an alphabet
of output symbols. Each state is characterized by two probability distributions:
the transition distribution over states and the emission distribution over the out-
put symbols. A random source described by such a model generates a sequence
of output symbols as follows: at each time step the source is in one state; after
emitting an output symbol according to the emission distribution of the current
state, the source “jumps” to a next state according to the transition distribution
of its current state. The activity of the source is observed indirectly, through the
sequence of output symbols. A continuous HMM emits symbols from a continu-
ous space, according to probability densities instead of probability distributions.
For either discrete or continuous HMMs, efficient dynamic programming algo-
rithms exist that:

– induce the HMM that maximizes (locally) the probability of emitting the
given sequence (the Baum-Welch algorithm)

– find the state sequence that maximizes the probability of the given sequence,
when the model is known (the Viterbi algorithm).

The HMM model definition can be readily extended to the multidimensional
case, where a vector of symbols is emitted at each step, instead of a single symbol.
The simplifying assumption that allows this immediate extension is conditional
independence of variables given the state.

2.2 Input Preprocessing

We collected time series of sensor values from a Pioneer 1 robot. The robot has
about forty sensors, and almost all of them return continuous values. While a
continuous HMM appears more appropriate for this domain we chose discrete
HMMs because our simple method of inducing atomic propositions works readily
for probability distributions but not for probability densities. The sensor vari-
ables are discretized independently with unidimensional Kohonen maps [3]. Each
continuous input value is mapped to one unit and the resulting symbols are the
map units.

Not all of the robot’s sensors are relevant to our experiments. Besides slowing
down considerably the HMM induction algorithm, the irrelevant sensors intro-
duce noise that leads the algorithm into creating meaningless states. We selected



102 Laura Firoiu and Paul Cohen

the sensors that we considered important and discarded the others from the sen-
sor vector.

The sensor values are “jittery” and can bias the state induction algorithm
toward frequent state changes. We correct this bias with one of our own: in a
stable world, sensor values remain constant or change in a regular, not jittery,
way. To introduce this bias, we create new variables by calculating the slopes
(derivatives) of selected sensor variables and adding them to the sensor vec-
tor. The slopes are calculated by fitting lines piecewise to the time series. The
algorithm has two steps:

1. Initialization: create a graph such that:
– there is a node for each known point on the curve (time stamp);
– there is one arc between any two distinct nodes; the arc points to the

node with higher time stamp; the weight of the arc is the mean square
error of the regression line fitted to the curve fragment defined by the
two nodes (time stamps);

2. Find the shortest path in the above graph between the nodes corresponding
to the first and last time step (Dijkstra’s alg.).

The path calculated at step 2 defines a piecewise linear fit with the property that
the sum over the individual fragments of the mean square error is minimized.

2.3 State Splitting Algorithm for HMM Induction

A limitation of HMM induction algorithms is that the number of states must
be known in advance. Often, there are either too few states and the resulting
propositions are too vague (for example a sensor can take any value) or there are
too many states and propositions, such that the representation of experiences
becomes long and not intelligible. Since we consider good representations to be
“short” representations, our algorithm splits states as required to minimize the
size of these representations, as measured1 by a cost function. We designed the
cost function according to the minimum message length (MML) principle [5], as
a measure of the information needed to re-generate the original data (the time
series of the experienced episodes). As in the MML paradigm, the robot must
store two pieces of information. The first is its model, that is the collection of
atomic propositions and states. The second is the encoding of each episode’s
time series by taking advantage of the model.

The cost function is a sum of two components: the model cost and the data
cost. The cost of the model is a measure of the length of the model description.
The data cost is a measure of the size of all the episode encodings. The two cost
components are presented in section 2.5.

The state induction algorithm proceeds by recursively splitting states and
re-training the resulting HMM until the cost cannot be improved:
1 The cost function is not the exact length of the encoded information, but a measure

of it. For example we ignore string delimiters or the exact number of bits when
defining the cost of encoding a number n as log(n).



Learning Elements of Representations for Redescribing Robot Experiences 103

1. initialization: the HMM has only one state
2. iterate while cost is decreasing:

– for each state, compute the cost resulting from splitting the state
– select the state that yields the largest cost reduction and split it

State splitting stops because for the data cost to decrease, the model cost
must increase , so the total cost cannot decrease indefinitely. By choosing to
split the state that yields the largest cost reduction at the current iteration, the
cost is minimized heuristically. We cannot attempt to minimize the cost globally,
because an exhaustive search of all the splitting possibilities is exponential in
the final number of states, and the HMM fitting algorithm is guaranteed to find
only a local maximum, anyway.

2.4 State Characterization with Atomic Propositions

To characterize an HMM state by a set of logical propositions, we replace for each
sensor the probability distributions over its values with logical descriptions of the
distributions. These descriptions are disjunctions of the most likely sensor values,
that is the values that have a probability higher than a certain threshold. An
example of a proposition based on the distribution of the translational velocity
(trans-vel) sensor is:

distribution: 0 0 0 0 0 0.14 0.33 0.54 0
atomic proposition: trans vel 5 6 7

In the example above, the proposition definition covers values 5 through 7. We
consider that all the values in the proposition definition are equally likely to
occur in a state in which the proposition holds. Thus, the proposition is defined
as a generalization of the distribution from which it was derived to the uniform
distribution over the covered values. This crude generalization reduces the prolif-
eration of propositions and allows identification of common propositions across
states.

Propositions are thus simple facts of the form “sensor S takes values x or y”.
Given a sensor model that describes the kind of information a sensor returns,
we can transform these propositions into predicates. For example, if the sensor
model specifies that the translational velocity sensor returns the translational
velocity property of the constant robot, then the proposition trans − vel 5 6 7
becomes the predicate trans−vel 5 6 7(robot). We can assume that for a simple
experience, a sensor returns information about the same object throughout the
experience. Transforming propositions into predicates and then composing them
into more complex representation is the focus of our future work.

2.5 The Model and Data Encoding Costs

The model is a set of atomic propositions and states. We encode it by concate-
nating the descriptions of states and atomic propositions. An atomic proposition
is described by enumerating the values it covers and its cost is:
# covered values ∗ log(# all sensor values).



104 Laura Firoiu and Paul Cohen

The description of a state si has two parts. The first part specifies the codes for
next states, according to its transition probability distribution. These codes are
used in the encoding of time series 2 as follows: if the current state is si and the
next state is sj , then the optimal 3 code for sj , given si, has −log(prob(sj |si))
bits. The cost for all next state codes is −∑#states

j=1 log(prob(sj |si)). If a transi-
tion probability prob(sk|si) is 0, then we replace the k-th term in the sum with
log(#states).
The second part of a state encoding is its characterization with atomic proposi-
tions. This cost is defined as: # propositions in state ∗ log(# all propositions).
The model cost is the sum of the costs of the descriptions of propositions and
states.

The time series of experiences are encoded as the most likely state sequences
in the induced HMM. A state specifies the set of atomic propositions that hold
in the state and these propositions carry information about the sensor values.
The propositions generalize over the distributions from which they were derived
and lose information that was present in the distributions. Consequently, the
propositions may be inaccurate, meaning they specify incorrect sensor values,
or imprecise, meaning they specify a range of sensor values. For example, if a
propositional characterization of an HMM state says “translational velocity is
2, 3, or 4.” and the robot’s translational velocity in the state is actually 5, then
the proposition is inaccurate. If translational velocity is 3, then the proposition
is imprecise.

To re-generate a time series of sensor values from logical state descriptions,
one would have to store additional information, either for specifying one of the
covered values when the proposition is not precise, or for correcting errors when
the proposition does not hold at that time step. The cost of an individual experi-
ence is defined to include both the size of its encoding as a state sequence within
the model and the additional information required for correcting the description,
if necessary. Specifically, the cost is a sum over all time steps of:

1. the length of encoding with the optimal code the current state s(t), given
the previous state s(t − 1); as discussed above, this cost is either
−log(prob(s(t)|s(t − 1))) or log(# states).

2. the length of encoding the sensor vector at the current time step, given the
current state; for each sensor this component of the cost is either
log(# covered values) if the proposition is imprecise, or
log(# all sensor values) if the proposition is inaccurate

2 Although these codes appear in the redescription of experiences, they must be spec-
ified in the model description because otherwise the encoded experiences cannot be
decoded.

3 We do not have to specify what this optimal code. For our cost function, we need to
know only its length.



Learning Elements of Representations for Redescribing Robot Experiences 105

3 Experiment

3.1 Experiment Setting

Sensor value time series were collected from twelve simple experiences of the
Pioneer 1 robot. The experiences fall into four categories: pass object on right,
pass object on left, push object and approach object. There are three experiences
of each kind. For all experiences, the object is perceived by the visual channel
A, which was calibrated to detect blue objects. The perceived object will be
referred from now on as “object A”. The data were collected 4 in a less noisy
environment, with the robot executing forward motions along an almost empty
corridor. The noise reduction proved to be beneficial: no spurious objects – that
usually mislead the state splitting algorithm – were detected in the visual field.

From the forty or so sensors of the Pioneer 1 robot, we selected six that we
consider relevant for describing the twelve experiences in our experiment. These
are:

– “trans-vel” is the robot’s translational velocity
– “vis-A-area” is the area occupied by the object in the channel A visual field
– “vis-A-x” and “vis-A-y” are the coordinates in the visual field of object A
– “grip-front-beam” and “grip-rear-beam” return 1 when an object is between

the two gripper arms and 0 otherwise

The slopes (derivatives) of the first four sensors were also added, yielding
four more variables: “trans-acc” is the derivative of translational velocity and
“diff-vis-A-xxx” are the derivatives of the visual sensors.

The sensor values were discretized with Kohonen maps, one unidimensional
map for each sensor variable. Figure 1 shows the resulting discretization for
the visual A area sensor. As it can be seen in this figure, the map is topo-
logically ordered, that is value(map unit 0) < value(map unit 1) < . . . <
value(map unit 8). Topological ordering is a property of unidimensional Koho-
nen maps, so the maps of all sensors are ordered. Due to this property, we can
easily interpret the atomic propositions. For example, the atomic proposition
“vis-A-area.0-1” tells us that a small object is seen in visual channel A, while
“vis-A-area.7-8” signals the presence of a large object.

3.2 Results

The results of the state splitting algorithm for two of the twelve experiences, and
the corresponding partitioning into stages are shown in fig. 2. For the states that
occur during these two experiences, table 2 lists their probability distributions
over sensor values and the induced atomic propositions. The most likely HMM
state sequences for all experiences are shown in table 1.

4 We thank Zack Rubinstein for providing the data and for collecting them in a less
noisy environment.



106 Laura Firoiu and Paul Cohen

u0 u1 u2 u3 u4 u5 u6 u7 u8
178 466 813 1204 1710 2345 2815 3560 3879map unit values

sensor values

Fig. 1. Discretization of the “vis-A-area” sensor with a linear Kohonen map.
The map has 9 units, u0 through u8, thus yielding 9 discrete symbols. The plot
shows the values of the map units and the approximative intervals of sensor
values allocated to each unit. It can be noticed that most of the sensor values
are mapped to the first three units, while the last two units get only one value
each.

Table 1. The middle column shows the most likely HMM state sequences for the
twelve experiences and the right column shows their corresponding compressed
stage sequences. In the compressed stage sequences, ci stands for a composite
stage and si stands for a simple stage.

experience state sequence compressed state sequence

pass-right-A s+
1 s+

5 s+
4 s+

8 s+
0 c10 c13

pass-right-A s+
1 s+

5 s+
4 s+

8 s+
0 c10 c13

pass-right-A s+
2 s+

1 s+
5 s+

4 s+
8 s+

0 s2 c10 c13

pass-left-A s+
2 s+

1 s+
5 s+

4 s+
8 s+

0 s2 c10 c13

pass-left-A s+
2 s+

1 s+
5 s+

4 s+
8 s2 c10 s8

pass-left-A s+
2 s+

1 s+
5 s+

8 s+
0 s2 c9 c13

push-A s+
3 s+

1 s+
5 s+

4 s+
6 s+

7 c12 s7

push-A s+
3 s+

1 s+
5 s+

4 s+
6 s+

7 c12 s7

push-A s+
3 s+

1 s+
5 s+

4 s+
6 s+

7 c12 s7

approach-A s+
3 s+

1 s+
5 s+

4 s+
6 c12

approach-A s+
3 s+

1 s+
5 s+

4 s+
6 c12

approach-A s+
3 s+

1 s+
5 s+

4 s+
6 c12

We can see from figure 2 and from table 1 that we can indeed identify a
contiguous run of one HMM state, s+

i , with an experience stage – call it si. Fur-
thermore, some pairs of stages, for example 〈s1 s5〉 appear quite frequently. Such
frequent pairs can be merged into composite stages. By replacing subsequences
of simple stages with composite stages, even more simplified redescriptions of
experiences are obtained. In order to explore this possibility, we implemented a
simple compression algorithm that creates composite stages, guided again by the
minimum description length principle. The description that must be minimized
has two parts: the description of composite stages in terms of simple stages and
the redescription of each individual experience with both composite and simple
stages. The cost of each part is a measure of its description length. Creating a
new composite stage has the effect that the cost of the first part increases, while
that of the second part decreases. Therefore, the total cost, which is the sum of



Learning Elements of Representations for Redescribing Robot Experiences 107

push A approach A

15 19 21 25 3031
s3 s1 s5 s4 s6 s7

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0

  9.0

 10.0 trans-vel
trans-acc

14 16 21 25 27
s3 s1 s5 s4 s6

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0

  9.0

 10.0 trans-vel
trans-acc

15 19 21 25 3031
s3 s1 s5 s4 s6 s7

  0.0

  1.0

grip-front-beam
grip-rear-beam

14 16 21 25 27
s3 s1 s5 s4 s6

  0.0

  1.0

grip-front-beam
grip-rear-beam

15 19 21 25 3031
s3 s1 s5 s4 s6 s7

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0

  9.0

 10.0 vis-a-area
diff-vis-a-area

14 16 21 25 27
s3 s1 s5 s4 s6

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0
vis-a-area

diff-vis-a-area

15 19 21 25 3031
s3 s1 s5 s4 s6 s7

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0 vis-a-x
diff-vis-a-x

14 16 21 25 27
s3 s1 s5 s4 s6

  0.0

  1.0

  2.0

  3.0

  4.0

  5.0 vis-a-x
diff-vis-a-x

15 19 21 25 3031
s3 s1 s5 s4 s6 s7

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0

  9.0

 10.0
vis-a-y

diff-vis-a-y

14 16 21 25 27
s3 s1 s5 s4 s6

  1.0

  2.0

  3.0

  4.0

  5.0

  6.0

  7.0

  8.0 vis-a-y
diff-vis-a-y

Fig. 2. HMM state fragmentation for two experiences: the left column contains
the plots from a “push A” move and the right column from an “approach A”
move. The units on the x-axis are time steps and the units on the y-axis are
discretized sensor values.



108 Laura Firoiu and Paul Cohen

Table 2. The states and atomic propositions that occur in the two experiences in figure
2. The states are listed in their order of appearance: 〈s3 s1 s5 s4 s6〉 for “approach
A”, and 〈s3 s1 s5 s4 s6 s7〉 for “push A”. An atomic proposition like vis-A-x.3.5.6
means that the “vis-A-x” sensor mostly takes values from the set {3, 5, 6}, while “vis-
A-area.5-8” means that the “vis-A-x” sensor takes values in the range 5 . . . 8.

state atomic proposition probability distribution interpretation

trans-vel.0-8 .38 .01 .01 .03 .01 .01 .18 .28 .09 either accelerated or
trans-acc.0.1.5.6 .06 .81 .00 .00 .00 .06 .06 .00 .00 constant move
grip-front-beam.0 1.0 .00 no object within

s3 grip-rear-beam.0 1.0 .00 gripper arms
vis-A-area.0 1.0 .00 .00 .00 .00 .00 .00 .00 .00 very small object
vis-A-x.4 .00 .00 .00 .00 1.0 .00 .00 .00 .00 in the lower central
vis-A-y.2 .00 .00 1.0 .00 .00 .00 .00 .00 .00 region of the visual field

trans-vel.0.1.6.7 .24 .05 .00 .00 .00 .00 .46 .24 .00 mostly constant move
trans-acc.1-2 .00 .90 .10 .00 .00 .00 .00 .00 .00 at high speed

grip-front-beam.0 1.0 .00 no object within
s1 grip-rear-beam.0 1.0 .00 gripper arms

vis-A-area.0-1 .10 .90 .00 .00 .00 .00 .00 .00 .00 small object
vis-A-x.2-6 .00 .00 .39 .02 .34 .17 .07 .00 .00 in the lower central
vis-A-y.2-3 .00 .00 .24 .76 .00 .00 .00 .00 .00 region of the visual field

trans-vel.5-8 .00 .00 .00 .00 .00 .05 .50 .35 .10 constant move
trans-acc.1.8 .00 1.0 .00 .00 .00 .00 .00 .00 .00 at high speed

grip-front-beam.0 1.0 .00 no object within
s5 grip-rear-beam.0 1.0 .00 gripper arms

vis-A-area.1 .00 1.0 .00 .00 .00 .00 .00 .00 .00 small object
vis-A-x.1.2.4.5.6.7 .00 .02 .30 .00 .40 .04 .20 .04 .00 somewhere in the lower

vis-A-y.3-4 .00 .00 .00 .78 .22 .00 .00 .00 .00 region of the visual field

trans-vel.5-8 .00 .00 .00 .00 .00 .16 .09 .63 .12 constant move
trans-acc.1 .00 1.0 .00 .00 .00 .00 .00 .00 .00 at high speed

grip-front-beam.0 1.0 .00 no object within
s4 grip-rear-beam.0 1.0 .00 gripper arms

vis-A-area.2-3 .00 .00 .70 .30 .00 .00 .00 .00 .00 small object
vis-A-x.1.4.6 .00 .23 .00 .00 .58 .00 .19 .00 .00 in the central
vis-A-y.3-5 .00 .00 .00 .14 .70 .16 .00 .00 .00 region of the visual field

trans-vel.5-8 .00 .00 .00 .00 .00 .05 .50 .35 .10 constant move
trans-acc.1 .00 1.0 .00 .00 .00 .00 .00 .00 .00 at high speed

grip-front-beam.0 1.0 .00 no object within
s6 grip-rear-beam.0 1.0 .00 gripper arms

vis-A-area.4-6 .00 .00 .00 .00 .45 .45 .10 .00 .00 medium sized object
vis-A-x.4-5 .00 .00 .00 .00 .65 .35 .00 .00 .00 in the upper central
vis-A-y.5-6 .00 .00 .00 .00 .00 .60 .40 .00 .00 region of the visual field

trans-vel.5-7 .00 .00 .00 .00 .00 .12 .25 .62 .00 constant move
trans-acc.1 .00 1.0 .00 .00 .00 .00 .00 .00 .00 at high speed

grip-front-beam.1 .00 1.0 object present within
s7 grip-rear-beam.0-1 .38 .62 gripper arms

vis-A-area.5-8 .00 .00 .00 .00 .00 .38 .38 .12 .12 large object
vis-A-x.3.5.6 .00 .00 .00 .25 .00 .13 .62 .00 .00 in the upper central
vis-A-y.7-8 .00 .00 .00 .00 .00 .00 .00 .25 .75 region of the visual field



Learning Elements of Representations for Redescribing Robot Experiences 109

the costs of the two parts, may decrease as the result of creating a new compos-
ite stage. The algorithm continues to merge stages greedily, until the total cost
stops decreasing. The results are shown in table 1 in the column “compressed
stage sequence”.

It can be noticed in table 1 that every “approach-A” experience is described
by one composite stage, c12, and every “push-A” experience is described by
the same c12, followed by the simple stage s7. It can be seen in table 2 that
state s7, which defines stage s7, is the only one to be characterized by the
atomic propositions “grip-front-beam.1” and “grip-front-beam.0-1”. These two
propositions tell us that the robot is in “contact” with an object (the object
is within the gripper arms). While it is obvious to us that “contact” is the
difference between an “approach” and a “push”, the algorithm does not get
explicit information about the differences between experiences, and does not
have the explicit goal of finding them. It is interesting then, that the minimum
description length principle led to a re-representation of experiences that makes
this distinction apparent.

It can be also noticed that the stage sequences allow a good clustering of ex-
periences: the first two “pass-right-A” experiences share the same stage sequence
and so do all the “push-A” and respectively, “approach-A”, experiences.

While the above remarks are encouraging for the validity of our approach
- applying the minimum description length criterion for inducing meaningful
elements of representation - we can see in figure 2 that our algorithm fails to
identify the acceleration stage for the two presented experiences. Although the
first state in the sequence, s3, is the only one that assigns nonzero probabilities
to high acceleration values, the transition to the next state, s1, is not triggered
by the change in the acceleration regime, but by the change in the “vis-A-
area” sensor from value 0 to 1. As a matter of fact, it can be noticed that for
both experiences, there are other state changes triggered by this sensor as well:
s5 → s4 occurs when “vis-A-area” becomes 2 and s5 → s4 when “vis-A-area”
becomes 4. This indicates that the partitioning of these experiences into stages
is mostly determined by the visual area of the object, and that the stages are
identified with different degrees of closeness to the object. While this partitioning
is not meaningless, it does not distinguish the important acceleration stage. The
main reason is that the algorithm has no measure of the relative importance of
the sensor variables, other than the reduction in description length obtained by
distinguishing states based on their values. Another reason is that, as discussed
in section 2.3, the cost of the description cannot be minimized globally.

4 Conclusions and Future Work

During the first year of an infant’s life, she apparently develops increasingly rich
and efficient representations of her environment (Mandler calls this process re-
description [4]). We have shown how to re-describe multivariate time series of
sensor values as rudimentary logical descriptions, by creating new objects that
are associated with parts of the world at different abstraction levels. The objects
at one level are grounded in, or mapped to, objects at the previous level. Because



110 Laura Firoiu and Paul Cohen

both memory and time are finite resources, the criterion of simple (short) descrip-
tions must govern the process. In this work we tried to apply these ideas at the
lowest levels of abstractions, by creating atomic propositions grounded in prob-
ability distributions over raw sensor values (physical level). The fragmentation
of time series into states and their corresponding propositional characterizations
often appear to agree with our interpretation of the evolution of experiences.
But this fragmentation is not perfect: for example, as discussed in the previ-
ous section, there is no distinct “acceleration” stage, because the algorithm has
no information that the acceleration sensor is more “important” than others.
Meaningful representations must not be only simple, but also useful ([1]). We
consider useful the elements of representations that predict the outcome of an
experience, predict when a state change occurs, explain the differences between
experiences or explain reward. Our next goal is to define the utility criterion for
representation elements and redesign the learning algorithm to incorporate both
the utility and the minimum description length criteria.

Acknowledgments

This research is supported by DARPA/AFOSRF and DARPA under contracts
No. F49620-97-1-0485 and No. N66001-96-C-8504. The U.S. Government is au-
thorized to reproduce and distribute reprints for governmental purposes notwith-
standing any copyright notation hereon.The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements either expressed or implied, of the
DARPA or the U.S. Government.

References

[1] Paul R. Cohen and Mary Litch. What are contentful mental states? Dretske’s the-
ory of mental content viewed in the light of robot learning and planning algorithms.
To be presented at the Sixteenth National Conference on Artificial Intelligence,
1999.

[2] S. Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.
[3] Teuvo Kohonen. Self-Organizing Maps. Springer, 1995.
[4] Jean M. Mandler. How to build a baby: II. Conceptual primitives. Psychological

Review, 99(4):587–604, 1992.
[5] J. J. Oliver and D. Hand. Introduction to minimum encoding inference. Techni-

cal Report 4-94, Statistics Dept., Open University, September 1994. TR 95/205
Computer Science, Monash University.

[6] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, 77(2):257–285,
1989.

[7] Michael Rosenstein and Paul R. Cohen. Concepts from time series. In Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence, pages 739–745.
AAAI Press, 1998.

[8] Matthew D. Schmill, Tim Oates, and Paul R. Cohen. Learned models for continuous
planning. In Proceedings of Uncertainty 99: The Seventh International Workshop
on Artificial Intelligence and Statistics, pages 278–282, 1999.


	Introduction
	Identifying Experience Stages with Hidden Markov Models
	Hidden Markov Models
	Input Preprocessing
	State Splitting Algorithm for HMM Induction
	State Characterization with Atomic Propositions
	The Model and Data Encoding Costs

	Experiment
	Experiment Setting
	Results

	Conclusions and Future Work

