on

28,
ia

18

cat

& s oo~
g ad ML Eanr s Dt ee
L y

w7

1.

e

DOMINIC 1: PROGRESS TOWARDS DOMAIN INDEPENDENCGE N
DESIGN BY ITERATIVE REDESIGN

J. R. Dixon
Department of Mechanical Engineering

A. Howe and P, R. Cohen
Departrnent of Computer and |nformation Science

University of Massachusetts
Amherst, Massachusatts

M. K. Simmons
Knowledge-Based Systemns Branch
General Electric Corporate Research and Development
Scherectady, New Yark

ABSTRACT

This paper describes the first working version "of a
program called Dominic that performs design by iterative
redesign in a domain independent manner. The paper
describes in detail the program’s strategy, which stresses the
concept of redesign dependencies to guide its redesign process.

Dominic has been succesfully tested in four different
domains. Its performance on two of these (v-belt drive design
and design of exiruded heat sinks) is presented here.

The redesign class of design problems on which Dominic
works is that large class of problems which are intellectually
manageable and soivable without sub-division into smaller
parts. This includes the various sub-problems ultimately
created when large complex problems are decomposed for
solution.

Dominic is a hill climbing algorithm, similar in this respect
to standard optimization methods. However, its problem
formulation or mput language is more flexible for some design
applications than optimization technigues.

Work is continuing on a Dominic II in an effort to
overcome some of the limitations of Dominic.

L0 INTRODUCTION

In our research we are modelling designt as a process of
Icpeated decomposition into subproblems until the
Subproblems are solvable as entities without further
decomposition. These subproblems are then solved by a

Process of iterative redesign [1, 2, 3, 4, 5] as shown in Figure 1.

15 paper reports on progress made towards generalizing the
Tedesign process. A program catled Dominic is described which
15 able to do design by iterative redesign in several domains.

fus Dominic is, to a degree, domain independent. Though it
Works on only a subclass of redesign problems, and is not
Perfected, it represents progress in our efforts to leamn how to
‘onstruct more general programs for design.

199

Modelling the design process has been a'percnnial topie
for discussion and research. Textbooks on design nearly always
present a model of the process [6, 7, 8, 9). Practicing designers
have reflected on and written about the process {10, 11].
Artificial intelligence researchers have also examined design
models [12, 13]

Modeiling design is also an active area of current researcy
Brown and Chandrasakeran [14] describe design in terms of
types from routine to innovative, They also present an initial
awempt at a language for design knowledge based on a
hierarchical organization of specialists, plans, tasks and ste
[15]. Latombe [16] has developed a system called TROPIC
which operates on a top-down problem solving model thai
increases the level of detail as the design proceeds. Other
studies related to design process models include references [17,
18, 19, 20, 21, 22]. .

20 THE ITERATIVE REDESIGN MODEL

As noted above, iterative redesign is a model for design
problem solving when the problem requires no further

-decomposition to be manageable intellectually. After problem

specifications are obtained, an approximate or rough initiad
design is first synthesized, by copying a previous case, by rule of
thumb, or by some default procedure. Though it is to be hoped
(and is usually true) that the initial trial design so obtained will
not be absurd, seldom will it be an acceptable final solution. (In
those problem domains where research and/or experience have
developed a procedure that can produce an acceptable design
directly (ie, without iteration) from the problem
specifications, "design” is intellectually a dead issue and there
is no need for additional application of intelligence, artificial or
otherwise.)

Once an initial design has been created, its performance is
simulated or predicted by analysis. (Correct analysis is a critical
support needed for good design.) With the trial design's
performance known, the acceptability of the desien can be
Judged. If it is acceptable, the task is complete. If not, the
design must be redesigned, the analysis for expected
performance repeated, and so on iteratively as shown in igure

1.

A preat deal of design is actually done by this iterative
redesign process. Moreover, the decomposition process that

preceeds the redesign cycles is also iterative, consisting largely .-

of iterative respecification and possibly also (though rarely)
some iterative re-decomposition. The essence of the entire
design process is iteration. Therefore, if we are to understand
how to construct programs that design, we must understand
how to control, guide, and generalize iterative design processes
50 that they converge efficiently to acceptable designs.

3.0 THE ARCHITECTURE OF DOMINIC

The architecture of Dominic is shown in Figure 2.
Knowledge of a domain is obtained from a domain expert by a
knowledge acquisition module. The information defining the

SPECIFICATIONS

Y

INITIAL
DESIGN

ANALYSIS
- EVALUATION

X

YES
ACCEPT? ——— DONE

NO

Y

REDESIGN

FAILS

FIGURE 1 - The Redesign Model of Design

DOMAIN
EXPERT

l

DOMAIN
KNOWLEDGE
AQUISITION

DOMAIN
KNOWLEDGE 3
BASE

INFERENCE
ENGINE

PROBLEM
DATA >
BASE

PROBLEM
DATA
AQUISITION

} |

USER DESIGN

FIGURE 2 - Architecture of Dominic.

specific problem to be solved is obtained from a user/designer.
Together, the domain knowledge base and problem data base
form the input to the inference engine.

Each of these modules is described in detail below. First,
however, the structure by which design problems are
formulated in Pominic must be described.

4.0 PROBLEM FORMULATION
Design problems for Dominic are formulated in terms of:

+ problem specification parameters,
+ design variables,

+ performance parameters,

+ an initial design procedure,

+ analyses,

+ dependencies,

+ dependency order list,

+ performance satisfaction scales,
+ constraint equations, and

+ constants.

Each of these terms are now described with respect to the
architechture and operation of Dominic.

Problem specification parameters are those parameters
whose values define a specific problem in a domain. For
example, in the domain of standard v-belt drive design [3], the
problem specifiers are horsepower to be transmitted, center-
distance limits, drive speed, desired load speed, and desired life
of the system. In the domain of rectangular extruded aluminum
heat sinks [4], problem specification parameters include the
overall size, the surface and ambient temperatures, the
maximum fin height allowed, and the amount of heat to be
transferred.

Design variables are those factors whose values the
designer can select and control by design decisions. In the v-
belt domain these are the pulley sizes, the beit type, the belt
length, and the number of belts. In the heat sink domain these
include the fin thickness, fin spacing, and fin height. The
number of design variables determines the size of the design
space that must be explored. Minimum and maximum limits for
each design variable also must be specified in Dominic.

Performance parameters are those factors by which the
quality of a design is judged. Thus this is how the designer’s

©- goals are expressed i Dominic. In the v-belt domain, the
performance parameters are the predicted values of load

speed, life, belt velocity, lateral force on the shaft, and cost. In
the heat sink domain, the performance parameters are the
predicted values for heat transfer and cost. In Dominic, each
performance parameter is also assigned a priority category of
high, maoderate, or low.

The initial design procedure is an optional part of a
problem formulation in Dominic. This procedure must take as
input the set of values for the problem specification
parameters, and compute a fuil set of values: for the design
variables. It is not required that the initial design so generated
be a feasible solution to the design problem; it s only a starting
point. If an initial design procedure is not available, the
program defaults to a trial initial design in which all design
variables are at the midpoint of their maximum and minimum
values.

An analysis is a procedure which, when given the set of |

problem specifications and a set of design variables, can -

compute values for one or more of the performance :

parameters. For example, an analysis procedure in the v-belt

domain predicts the life of a v belt system from data on'
horsepower, belt type, belt length, pulley sizes, etc. In the heat |

sink domain an analysis computes the heat transfer from the fin -

given the physical dimensions and temperatures.

It is impertant to remember that analysis procedures
produce only quantitative information about the goals; they do
not make the judgements about what the quantitative

Ainformation means. That is, the analyses do not by themselves

determine whether the design is a good one, or what to do if it
is not. Traditionally such judgements and decisions have been
made by the human designer. Now we are trying to learn how
to have them done by the computer program.

Dependencies are probably the most important problem
formulation concept in Dominic. A dependency expresses a
relationship between a performance parameter and a design
variable. That is, dependencies describe how individual
performance parameters depend upon the design variables. For
example, in a v-belt system, the predicted system life (a
performance parameter) depends very strongly on the number
of belts (a design variable). In the heat sink domain, a
dependency captures the nearly linear relationship between
heat transfer and fin height.

The dependency order list is an ordered list of design

20

[
i

variables associated with each performance parameter that are
most likely to to effect a change in the performance parameter
In v-belt, for example, the dependency order list for load sPeeci
will be just load pulley diameter and drive pulley diameter
since these are the best ways (in this simple case, the only ways)
to effect the load speed performance. A dependency order list
Is not required by Dominic, but problem solving is enhaneced
when it is available. When available but WIONg, it can cause

serious problems [23].

Performance satisfaction scales indicate how well
particular performance parameters are satisfied depending on
their current predicted values. For example, in the v-belt
domain, the satisfaction scale for load speed might be as
follows {(where the value of load speed is plotted along the

horizontal line): TN

S R AR

UnaccepI Fair | Good,Good |Fair Unaccep
!

1175 1190 1200 1210 Predicted
Specified Load Speed>
Load Speed

‘Thus, if a trial v-belt design has a predicted load speed of 1180
rpm, that will indicate a load speed satisfaction of “fair”. A
speed of 1170 rpm would be categorized as "unsatisfactory”. In
a complete problem formulation, there are satisfaction scales
for each of the performance parameters. The scales may
include more discriminating categories than those shown above
for evaluation, such as "excellent” or "poor". Finer scales than
this, however, do not appear to be helpful.

A constraint equation in Dominic is an inviolable v

relationship among design variables or among design variables
and problem specification parameters. In the v-beit problem,
for example, there is a constraint equation which relates center
distance to belt length and the pulley diameters. In the heat
sink problem, fin width, fin spacing, and the number of fins are
also constrained geometrically.

Finally, there may be constants of the problem domain
such as physical constants (e.g,, the acceleration of gravity} or
material properties. '

3.0 KNCWLEDGE ACQUISITION

The domain knowledge acquisition module in Dominic
must obtain the necessary information from a domain expert to
formulate the problem in the terms described in the preceeding
section. Thus, the domain expert is asked to name problem
specification parameters, the design variabies, the performance
parameters and their priorities, and to provide the data for
satisfaction scales. The domain expert also must supply the
required analysis procedures, constraint equations, and
constant values. Finally, the domain expert provides opinions
on dependency orders, if these are known.

Once the above information is available and stored in
Dominic’s internal format, the program is ready to solve
specific problems in the domain. Using the problem data
acquisition module, a user is prompted for values for the
problem specifications parameters for the particular problem
to be solved. The first user, of course, is the domain expert who
must test the performance of the program to insure that it is
designing as intended. Input parameters may have been
overlooked, for example, or satisfaction scales may need
adjusted. Since Dominic is still a research program, its

‘interfaces with the domain expert and user are not as friendly

N

as expected of finished software. Even so, only a few hours are
required for a domain expert to input the required information.

There are no theoretical limits to the number of design
variables, performance parameters, or problem specification
parameters that can be handled by Dominic. We have not
explored the practical limits, which will depend on computer
memory and speed. It is expected that problems with as many
as a dozen or so design variables and as many specification and
performance parameters will present no difficulties.

6.0 INFERENCE ENGINE

e

The key to Dominic’s operation is the redesign strategy.
Currently, the program operates with a single redesign strategy.
(On-going work is in progress to make a Dominic II in which
several strategies are expressed explicitely, and to give the
program the ability to dvnamically select different strategies
based on an evaluation of its own performance.) Faced with the
need to perform a redesign, the following set of decisions
consiitues a strategy:

+ Which performance parameter(s) should be worked on?

+ By how much should the selected performance parameter(s)
be modified?

+ Which design variable(s) should be changed to effect the

desired change in the performance parameter(s)?

+

By how much should the selected variable(s) be changed?

¥

Considering the possible impact on the other performance
parameters, should the proposed change(s) be implemented?

There are many possible strategies. The one that Dominic uses
is as described below.

First, it should be noted that Dominic works with only one
performance parameter and one design variable at a time. This
Is a distinct limitation, but surely the way to begin; future
versions will be more flexible.

To select which performance parameter to work on, the
program uses a combination of performance parameter
priorities and current degree of satisfaction of the performance
parameters. The matrix shown in Figure 3 shows the order of
selection. For example, if there is a high priority performance
parameter that is currently in the uracceptable category, then
that performance parameter will be worked on first as
indicated by the number "1" in the matrix. Other combinations
are selected in the order shown.

To determine by how much the selected performance
parameter should be changed, Dominic computes the amount
of change that will move the performance parameter into the
next highest category of satisfaction. That is, if a performance
parameter is selected that currently has a satisfaction of poor,
then the program computes the minimum change from the
satisfaction scale required to give that performance parameter
a satisfaction of fair. This, it may be noted, is a rather
conservative policy. A more aggressive strategy could, for
example, propose a change that drives the performance
parameter all the way to the highest satisfaction category.

To select which design variable to change in order to effect
the desired modification in the selected performance
parameter, Dominic first tries to use the dependency order list.
If the list contains untried design yariables,the next variable on
the list is selected. If none are there for use, then the program
selects the design variable with the largest dependency value
with the correct sign found in what we call the "dependency
tabie.” e

The dependency table is a matrix relating each design
variable to each performance parameter. (Figure 4 shows the
status of the dependency table at the conclusion of a v-belt run.
The values in the table are the dependencies, d.) Initiai entries
for the table are optionally obtained from the dormain expert
who may enter initial dependency information as a numerical
value, as "high", "moderate”, or "low", or as an equation.
Dominic converts "high"toa value of 2, "moderate" to 1, and
"low" to 0.5. The domain expert also designates whether the
dependency is positive or negative.

PRIORITY
High Moderate Low

Excellent - - -
CURRENT Good 10 11 12
SATISFACTION Fair 6

Poor 4z

Unace 1or pord P

FIGURE 3 - Table for Selecting Next Performance Parameter for Attention.

Example: The Fi
riori
Will Be An
Unacceptable Rating.)

First Performance Selected Will Be An
One With an Unacee
Moderate Priori

\ High
[Jtable Satisfaction Level. %Iextg
y Performance Parameter With an

202

I3

Y

DESIGN VARIABLES

Drive
Diam
Load Speed 1.0
PERFORMANCE Lateral Force 0.59

re PARAMETERS

Belt Velocity 1.0
System Life 44
Cost 166

FIGURE 4 -- Example of a Dependen

Dependency values are used to relate performance
parameters and design variables as shown here:

where x-new = new value for the selected
design variable

x-old = old value of this
design variable

y-new = desired new value for the
selected performance
parametcr

y-old = old value of this
performance parameter

d = dependency vaiue.

Thus a dependency of d = +1 indicates a positive linear
relationship, whereas a value of, say, -1.45 indicates a more
strongly negative relationship. The form of this equation makes
possible a relatively simple transformation from qualitative and
intuitive judgements about dependencies in a domain to an
intuitively satisfying numerical .scale. The particular
quantitative definition of dependéncy is otherwise arbitrary.
We experimented with another, but found the one stated above
to work better -- and reasonably well.

After each iteration in the course of a design, the

/ dependency table is updated based on the actual values

obtained from analysis of each trial case. In this way. values not
obtained from the domain experi are filled in, and an
increasingly more accurate set of values is maintained. Note,
however, that these values indicate local informution about
dependencies in the neighborhood of the last design tried. The
values are not globally valid except for special (simple) cases.

Once a design variable is selected (whether from the
dependency order list or from the dependency table), since the
performance parameter and the amount of its change have
been previously determined, the amount to change the design

! variable is easily estimated using the above equation from the

dependency value found currently in the table.

Next the program must decide whether or not to

" implement the proposed change, or to seek a different

redesign. In case any proposed change of design variables
violates a constraint equation, that change is not allowed. If
constraints are satisfied, Dominic uses the current values in the
dependency table to estimate new values for each of the

Load Number Belt) "
Diam Belts Length L bl
-1.0 0 0

0.080 0373

0 0 0

-0.74 3.89 104 ™

0.313 0.869 052

Tabte. The Values Shown Are From the
Conclusion of a V-Belt Run.

203

performance parameters. The new level of satisfaction is then -
computed for each performance parameter. Next the program

considers the overall impact on the design using a matrix as

shown in Figure 5. For example, the overall evaluation of the

design is IT1 if (1) all high priority performance parameters are

good or better, and (2) if all moderate priority performance

paramcters are good or better, and (3) if all low priority

performance parameters are fair or better. Dominic has two

ways to deal with the question of whether to implement or not.

One is to allow only changes that do not decrease the overall +
design evaluation level. In"the other, Dominic will implement
changes that allow the overail design to drop by one level so -
long as this does not reduce the evaluation to unacceptable.
That is, a proposed change is ailowed if it is predicted to
change the overall design evaluation from tevel III to level IL.
However, changes from III to I or from I to 0 {unacceptable)
are not allowed. The decision of which policy to follow is now
only under manual control of the user, but will be automated in
Dominic II. The second method permits the program more
flexibility to explore larger changes in the design variables. We
are experimenting to learn the circumstances when each of
these methods should be applied.

If a proposed change is accepted, the change is
implemented and the new design analyzed again. If the change
is rejected, then Dominic tries the next most influential design
variable for the selected performance parameter. If all design
variables are tried and no change can be implemented, then the
program selects the next performance parameter, and starts
again to look for a design variable to improve that performance
parameter. If all performance parameters have been tried and
no changes are possible, Dominic stops unless there are
vacancies in the dependency table at this point.

There may be, and usually are, vacant entries in the
dependency table at the outset since not all dependency
information is known to domain experts. Usually these "holes”
are filled by Dominic during the course of a design as explained
above. However, if a hole persists to the end, Dominic will try
to fill it before actually quitting for good. It does this by
performing what may be viewed as an "experiment"; it
unplements an arbitrary change in the design variable where
the vacancy exists. The subsequent analysis then fills the vacant
spot, and the program can begin agam.

These decision procedures constitute a redesign strategy
for Dominic. There are many variations possible in this
strategy, and we have experimented with some of them {23].
Current rescarch is directed at enabling the program to change
strategies as it runs depending on its own progress (or lack of
progress).

High
v =Exc
OVERALL i >Good
RATING
OF DESIGN I >Fair
I >Poor
0 =Unacc
FIGURE 5 -

To Achieve a Level
Priori
and

PRIORITIES

Moderate Low
>Good >Good
>Fair >Fair
>Fair >Poor
>Poor >Poar
=Unacc =Unacc

Table for Determining Qverall Rating of a Desiﬁn. (Example:
1 Rating, a Design Must Have All I%gh

Performance Parametérs Satisfied to Good or Better,
{ Moderate Priority Performance Parameters Satisfied to

Fair or Better, and All Low Priority Performance Parameters
Satisfied to Fair or Better.)

The program must also decide when to stop. Currently it
stops when an "excellent” design is achieved {i.e., when all
performance parameters are satisfied to their highest possibie
level), or when it has explored all possible changes without
being able to implement any, or when it has executed a preset
limit on the number of iterations.

7.0 EXAMPLES

Dominic has been tried in four domains: v-belt drive
design, extruded heat sink design, rectangular beam design, and
a two-member holiow tube truss design. In all of these the
program has produced acceptable designs, though not without
some difficulties as described in Section 8.0 beiow. Since the
beam and truss problems were very simple problems used by us
only to test the "domain independence” of the program, only
the v-belt and heat sink results are presented here.

Six different v-belt problems have been run on Dominic.
Three typical case results are shown in Figure 6. The numbers
In parentheses are values from the rule-based expert system for
v-belt design called Vexpert [3]. The values in brackets are
from a human expert.

Four heat sink problems have been run on Dominic. Two
typical case results are shown in Figure 7. Values in
parentheses are from the special purpose expert sytem for heat
sink design called Xenif [4]. Figures in brackets are from a
human expert.

The results indicate that Dominic is a reasonably capable
designer in these domains {and in the two others tried) though
the two domain-specific programs (Vexpert and Xenif)
produced slightly superior performance in most cases.
Compare the design costs, for example, in cases V-1, V-2, HS-1,
and HS-2. Apparently the price Faid for Dominic’s generality is
a very slight loss in quality of performance. Perhaps future
improvements in Dominic will change this result.

In addition to these performance tests, a large number of
experiments were run in which various changes were made in
Dominic’s redesign strategy [23]. In these experiments, the
program seldom failed to produce some
satisfactory design. In general, the strategy described above was
as pood as or better than the variations.

Dominic is currently implemented in CommonLISP and
runs on a2 VAX 11/780.

204

8.0 DIFFICULTIES ENCOUNTERED

Despite Dominic’s general success, there are some
difficulties. Perhaps the most significant from a research
standpoint is Dominic’s inability to deal with limitations on
closely coupled design variables. An example of this is the
limitation on the ratio of fin height to fin spacing in the heat
sink problem. Manufacturing considerations constrain this
ratio to be less than or equal to 4.0. If the design happens to
evolve to a place where this ratio is very near the iimit, this
constraint becomes active. Then proposed increases to fin
height or decreases to fin spacing get rejected because they
violate the constraint. Since the program can change only one
design variable at a time, it cannot make both change, keeping
the ratio satisfied. Instead, it simply gets stuck, and does
nothing. At present, when this happens, the program has no
way to detect the situation or to break out of the corner it is in.

A somewhat similar difficulty occurs occasionally in the v-
belt domain when the program attempts to change one of the
pulley diameters. Such a change, without a nearly similar
change in the other pulley diameter will cause the load speed
performance parameter to decrease dramatically. If the
proposed change causes the satisfaction of load speed o go to
unacceptable, then the change is rejected. To keep-the load
speed satisfaction above unacceptable, only a very small change
in one pulley size is permitted, and the program begins to creep
along making only the tiny progress allowed in this situation.
Again the program cannot detect or cure this difficulty at the
present time. It may be noted that the fact that the program can
change only one design variabie at a time is also largely .
responsible for this difficulty,

Another difficulty with Dominic is its inability to deal with
discrete design variables. This occurs on two levels. The first,
rather easy to correct, is illustrated by the fractional number of
belts that Dominic recommends in the cases shown in Figure 8.
More important, however, is the current inability of the
program to consider large single moves in the design space.
Dominic has no way to obtain or to use domain knowledge that
would, say, direct the design to use gears instead of v-belts.

Current work on Dominic IJ is directed towards reselving
these difficulties.

9.0 SUMMARY AND CONCLUSION

Though the program has some difficulties as described,
Dominic generally works to produce acceptable designs for
problems that fit into the redesign class.

Dominic is essentially a hill climbing algorithm. It is
neither a very "strong" method {i.e., one that is powerful
because it has a knowledge rich strategy in a very narrow range
of applicability), nor is it a very "weak” method (i.., one that is
very general and thus widely applicable). It falls somewhere in-
between: it works generally, but oniy on that subclass of design
problems we are calling the redesign class.

As a hill climbing algorithm, Dominic is similar to
standard optimization methods. The major difference between
Dominic and optimization methods lies in the language of the
problem formulations. Optimization techniques require the
user to formulate problems in terms of a quantitative,
mathematical objective functions, whereas Dominic’s
formulation is more akin to a very low level design language;
; that is, Dominic accepts inputs in terms somewhat closer to, or
! more natural to, the physical design problem or domain.

The redesign class of problems on which Dominic works
includes a great many mechanical design problems, including
many sub-problems formed by decomposition of more complex
problems. As a advance in applying knowledge-based systems
to design, Dominic’s relative success appears to justify
optimism that many commen design problems ¢an ultimately
be understood sufficiently well as iterative processes so that
useful general problem solving algorithms for design can be
written.

ACKNOWLEDGEMENT

This work has been supported in part by a grant from
General Electric Company to the University of Massachusetts.

REFERENCES

%] Dixon, I. R., and Simmons, M. K., "Expert Systems for
esign: A Program of Research, ASME Paper No. 85-DET-78,
presented at the Design Engineering Conference, Cincinnati,
OH, September 10-13, 1985.

[2] Dixon, J. R., Simmons, M. K., and Cohen, P. R, "An
Architecture for Applying Artificial Intelligence to Design”,
Proceedings 21st ACM/IEEE Design Automation Conferance,
Albuquerque, NM, June 25-27, 1984. .

[3] Dixon, J. R., and Simmons, M. K., "Expert Systems for
Design: Standard V-Belt Drive Design as an Example fo the
Design-Evaluate-Redesign Architecture”, Las Vegas, Nevada,
August 12-16, 1984,

4] Kulkami, V. M., Dixon, J. R., Sunderland, J. E., and
immons, M. K., "Expert Systems for Design: The Design of
Heat Fins as an Example of Conflicting Sub-goals and the Use
of Dependencies”, Proceedings ASME Computers in
Engineering Conference, Boston, MA, August 4-8, 1985.

ES] Dixon, J. R, Libardi, E. C., Luby, S. C., Nielsen, E., and
ones, C. D, "Knowledge Representation in Design: Issues and
Examples”, SAE Conference, Detroit M, February 24-27,
1986.

EXAMPLE NUMBER

V-1 V-2 V-3
PROBLEM Drive Speed (rpm) 3450 180
PARAMETERS Dond Shess fmm) 3630 1500 500
Horsepower 10 40 400
Ctr Dist Min (in 12 12 12
Ctr Dist Max (in 24 28 32
Life Spec (hours) 4000 4000 8000 .-
RECOMMENDED Belt Type 3v %‘3 Sv '55‘3 gv gj
. V .
Load Pulley (in) 9.9 _1110 g] 11.8 ?4()) 17.6 20.4)
Drive Pulley (in) 5.3 gg 7.7 3:?) 10.5 %g].z)
Beit Length (in} 53 ggs 85 'gg 100 %f
Number of Belts .99 {3 27 (4 15.9]iS
i 2 12f
IPJERFOREI\—/[[_EAIEEE Cost (5 51 _ggf 153. [Hgi) 1587 113%2
Life (hours) 4000(7343) 5232{3360) 8000 8236
Load Spd (rpm) 1998 “28%)’% 1176 11%%90 913 gggi
Belt Vel (fpm) 5203 (2353) 3632 2750) 4108(5183
Shaft Force (Ib) 149 {242 847 {897 8691(9336
147 657 (10761
FIGURE 6 - Examples from Dominic For V-Belt Drive Domain. Values in Parentheses

are from the Domain Specific Expert System V .
Values in Brackets are From a umanyExpnén_ expert [3]

EXAMFPFLE NUMBER

HS-1 HS-2
PROBLEM Heat Min (W) 30 70
PARAMETERS Heat Spec o) 29 %
Max Height (m) 0,05 0.05
Length (m) 01 0.1
Width {m) 0.1 0.
RECOMMENDED Fin Height (m) .0380 (.0491 035 {.050
DESIGN 'n Height (m) 0353] % .ggof,
Fin Thick (m) 001 {003 0010 {0017
Spacing (m) .009 {00 0087 [.0125]
0123] 0133
51

PERFORMANCE Heat Tx {w}
ARAMETERS

P E
Cost (8) 110

FIGURE 7 -
Paren

- [6] Gibson, J. E., Introduction to Engineering Design, Holt,
inehart, and Winston, NY, 1968.

[7] Krick, E. V., An Introduction to
Engincering Design, Wiley, NY, 1967,

(8] Dixon, J. R., Design Engineering: Inveptiveness,
and Decision Making, McGraw-Hill, NY, 1956.

Engingering and
Analysis,

[9] Asimow, M., Iptroduction 1o Desipn, Prentice-Hall,
Englewood Cliffs, NJ, 1962. .

10] Clegg, G. L., The Design of Design, Cambridge
ngincering Series, Cambridge University Press, Cambridge,
England, 1971. .

EII] Marples, D. L., "The Decisions of Engineering Design",
RE Transactions on Engineering Management, June, 1961, PP
55-70.

[12] Simon, H. A., The Sciences of the Artificial, MIT Press,

Cambridge, MA., 1967.

[13] Mostow, J., "Towards Better Models of the Design
Process”, Al Magazine, 6:1, pp 44-46.

14} Brown, D, C. and Chandrasakeran, B., "An Approach to

ert Systems For Mechanical Design”, Proceedings Trends
and Applications, [EEE Computer Society, May 1983, NBS,
- Gaithersburg, MD., pp 173-180.

4

Exam][Jles from Dominic for the Heat Sink Domain. Values
heses are From the
Values in Brackets are From a Human Expert.

206

83.2 (852
85.2

2.22 (2.09
2.05

in

(4],

Domain Specific Program Xenif

PS] Brown, D. C., and Chandrasakeran, B., "Expert Systems
or a Class of Mechanical Design Activity", Proceedings of
IFTP WGS5.2 Working Conference on Knowledge Engineering
in Computer Aided Design, Budapest, Hungary, Sept.,, 1984,

{16] Latombe, J. C, "Artificial Intelligence in Computer-
Aided-Design: the TROPIC System", Tech Report 125,
Stanford Research Institute, February, 1976.

(17] Brown, D. C.,, "Capturing Mechanical Design Knowledge",
Proceedings of the 1985 ASME Computers in Engineering
Conference, Boston, MA., August, 1985,

'18] Brown, D. C, "Failure Handling in a Design Expert
ystem", CAD Journal, November, 1935.

[19] Brown, D. C, and Chandrasakeran, B., "Plan Selection in
Design Problem Solving”, Proceedings of the AISB-85
Conference, Warwick, England, April, 1983.

[20] Mittal, S, Dym, C. L., and Morjoria, M., "PRIDE - An
Expert System for the Design of Paper Handling Systems”,
Applications of Knowledge-Based Systems to Engineering
Analysis and Design, ASME WAM, Miami, Florida,
November, 1985,

£21] Muster, D., and Mistree, F., "A Curriculum and Paradigms
or the Science of Design", Proceedings 1985 ASEE Annual
Conference.

[22] Burrow, L. D. "The 'Design to Product’ AJ\'TEY
Demonstrator”, Int. Conf. on the Development of Flexible
Automation Systems, Publ. No. 237, July, 1984.

[23] Howe, A, Dixon, J. R., Cohen, P. R., and Simmons, M. K.,
"Dominic: A Domain Independent Program for Mechanical
Engineering Design”, Proceedings Applications of Al 1o
Engineering Problems, Southampton, England, April, 1986.

