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Abstract| Finding optimal or at least

good monitoring strategies is an important

consideration when designing an agent. We

have applied genetic programming to this

task, with mixed results. Since the agent con-

trol language was kept purposefully general,

the set of monitoring strategies constitutes

only a small part of the overall space of pos-

sible behaviors. Because of this, it was often

di�cult for the genetic algorithm to evolve

them, even though their performance was su-

perior. These results raise questions as to

how easy it will be for genetic programming

to scale up as the areas it is applied to be-

come more complex.

I. Introduction

Every agent needs to monitor its environment. The

strategy for doing this must weigh the cost of mon-

itoring against the cost of having inaccurate infor-

mation about one's current situation. For the past

two years, we have been working on di�erent sys-

tems that|when given the agent speci�cation, its

task, and the environment in which it operates|

learn these strategies automatically. In all systems,

the learning scheme used was some form of evolu-

tionary computation. In all but one, it was genetic

programming.

Our research goal was to use these systems to

discover and categorize monitoring strategies. We

wanted to generate a lot of di�erent scenarios (sets

of tasks and environments), run the genetic algo-

rithm on each of them, and record the monitor-

ing strategy that emerged in a particular situation,

the implicit assumption being that it was fairly

well suited to the given circumstances. Then, we

would group the monitoring strategies and classify

the groups by general features of the scenarios, end-

ing up with a monitoring strategy taxonomy.

Unfortunately, getting the genetic algorithm to

this point proved to be a very laborious undertaking.

Somewhat surprisingly, the problem was only secon-

darily one of tuning the genetic algorithm to the par-

ticular task|it would generally perform quite well

and produce some kind of sensible solution to the

problem we gave it. It was primarily one of steer-

ing the genetic algorithm towards solutions we were

interested in, namely monitoring strategies. We be-

lieve that the di�culties we encountered might be

an indicator of a more fundamental problem relating

to a general weakness of genetic programming: Can

they deal e�ectively with very large search spaces?

This paper will give a description of the problems

we had, how we attempted to tackle them, and why

we think they arose.

II. A Family of Systems that Learn to

Monitor
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Figure 1: A Family Tree of Monitoring Systems

Our �rst system, creatively named \MON" (for

monitoring), was a pure genetic algorithm. Given

a parameterized set of functions describing when to

monitor next (e.g. a log(t) + b), it would �nd values

for the parameters (e.g. a and b) that minimized

expected cost. This cost consisted of two parts: A

cost for monitoring, i.e. a �xed cost charged for ev-

ery time the environment is probed, and a cost that

is determined by the task, the task penalty.

What do these tasks look like? Here are two ex-

amples from the time domain: In the so-called cup-

cake problem [4], the task is to take cupcakes out of

an oven as close to a predetermined time d in the



future as possible. This problem would be simple if

one had an internal clock that was completely accu-

rate. In this scenario, however, it is not. But it can

be recalibrated by taking a monitoring action, i.e.

looking at a wall clock. The task penalty expresses

how far in time from d the cupcakes were actually re-

moved. Since monitoring has a cost associated with

it, this time di�erential cannot be made arbitrar-

ily small without occurring a very high monitoring

cost. MON was able to show empirically (see [1])

that periodic monitoring is not the optimal strat-

egy for this task. We now have veri�cation that

a strategy called interval reduction (monitor more

frequently as d gets closer) is in fact the best moni-

toring strategy (see [7]).

In another task, which corresponds to monitor-

ing for an event which we will assume occurs at a

�xed rate at any given time, say �re breaking out

in a forest, the task associated penalty is a function

of the time elapsed between the event and it be-

ing detected by the monitoring action. It it easy to

prove that for this problem, periodic monitoring is

the optimal strategy. Periodic monitoring was also

discovered by MON.

Spawned by the positive experiences with MON,

we decided to expand the idea of learning a moni-

toring strategy with a genetic algorithm to a more

general class of problems. A monitoring strategy de-

pends not only on the temporal placement of mon-

itoring actions, but also on what the agent is do-

ing when it is not monitoring. Our second system,

\Learning to Behave" (LTB), learned not only when

to monitor, but also how to accomplish a given task.

It learned behavior.

Behavior was represented in the form of a pro-

gram which controlled a robot in a fairly simple,

simulated, two-dimensional world. The program-

ming language itself consisted of basic e�ector com-

mands such as \MONITOR, \MOVE", or \TURN-

RIGHT", and some control structures such as loops

and later conditionals. Now, genetic programming

was used as the learning mechanism. The task

of the learning algorithm had become somewhat

more complex: it had to evolve complete programs,

guided only by a �tness value expressing how well on

average this particular program did in the simulated

environment. Apart from giving the robot enough

basic commands to solve its given task (usually one

of obstacle avoidance), we supplied it with a mech-

anism to respond immediately to external events,

something which is very important for a real-time

agent. Each robot was equipped with a number of

sensors. Associated with each sensor is a piece of

code called an interrupt handler. When a sensor

value changes, normal program ow is interrupted,

and the corresponding handler is executed in the

manner of a sub-program. Interrupts can be dis-

abled or enabled via explicit commands, making it

possible for the robot to prioritize handler execu-

tion. An example of interrupt handler use will be

given in the next section.

LTB went through a number of revisions, as can

be seen in �gure 1. In the initial representation, pro-

grams were linear lists of commands. They could

contain structures such as LOOP's and IF's, but

their total length was limited. The language was

changed several times. Originally, the representa-

tion was much closer to assembly language than it

is now. All control structures were implemented as

GOTO's, but this was changed later to make pro-

grams more readable. Some commands were added,

such as a construct that loops a variable number of

times. We did a number of experiments using mon-

itoring to facilitate obstacle avoidance, using a very

basic genetic programming model. Crossing over

simply swapped two chunks of code between two

individuals, mutation changed one command into

another. Since the language was relatively simple,

only a few constraints were needed to keep languages

legal, such as ensuring via a modulo operator that

command values and parameters (e.g sensor num-

bers) were kept within their legal ranges. Selection

was scaled roulette wheel as described by Goldberg

[5, pp. 76-79], later tournament selection with a

tournament size of two was used to counter prema-

ture convergence (see [6] for a comparison). LTB

did indeed �nd good monitoring strategies for the

obstacle avoidance tasks.

The linear representation seemed limiting. Cross-

ing over had no semantics. There was no notion

of \behavior modules", useful blocks of code that

were responsible for a speci�c kind of sub-behavior,

as there is in a tree representation used by Koza

[9, 10] and many others in the �eld. We rewrote LTB

to operate on this representation, using parse trees

to represent the main program and the interrupt

handlers. We were hoping that it would improve

performance. As we will see in the next section, it

surprisingly did not.

We wanted to make our behavior description lan-

guage as general as possible, since our monitoring

strategy taxonomy required a large number of sce-

narios to have any weight, and the agents should

be well equipped to solve most of tasks we required

them to. But as we added constructs to LTB, such

as conditionals, compare statements, and more in-

terrupt handlers, monitoring strategies emerged less

and less frequently, even though the �tness functions

were designed to favor them.

We did number of experiments to alleviate these



problems, such as determining which settings of pa-

rameters in the �tness function (such as the cost for

hitting an obstacle, monitoring, etc.) maximized

the �tness di�erence between monitoring and non-

monitoring programs. We also tried using local mat-

ing (also known as \�ne grain parallelism"; for a de-

scription see [3]) to �ght the premature convergence

that we thought was producing the suboptimal re-

sults.

These di�culties with LTB led us away from

learning a complete behavior to solve a given task,

and back to the problem we were really interested

in: monitoring strategies. LMOUSE (\Learning to

Monitor Using Simulated Evolution") was a system

that focused on this aspect. LMOUSE learns func-

tions (explicitly represented in the form of evalu-

ation trees, unlike in MON), that are evaluated to

determine when to monitor next. There is one func-

tion associated with each sensor. The tree's termi-

nals are either sensor values or constants, and the

interior nodes one of the four basic mathematical

operators, a comparison, or a conditional (a condi-

tional evaluates its �rst argument; if it is non-zero,

it returns the value of the second argument, other-

wise the third). The program controlling the agent

is provided by the experimenter. It can be arbitrar-

ily complex, and may very well contain references

to sensor values|values that the genetic algorithm

must determine when to update. One would think

that we have simpli�ed the problem, since the sys-

tem is no longer responsible for solving the complete

task, only for interleaving monitoring events into its

controlling program. But as we shall see, this was

still a very hard problem.

III. Monitoring in Obstacle Avoidance

Tasks

Most of the tasks we presented our systems were

obstacle avoidance tasks1. The environment was

a two-dimensional world divided into 800 square

�elds. Each �eld had a unique \terrain" attribute,

for example \obstacle" (robot could not enter this

�eld) or \grass" (no hindrance to the robot's move-

ment). Even though the terrain was discretized, the

robot could still move continuously within the map.

The obstacles were typically arranged in the center

of the world map to form a large rectangular barrier.

The robot's task was to move from a start point to

goal point without hitting the obstacle. The robot

was rewarded for getting close to the goal, and pe-

nalized for every time it attempted to move onto an

1The notable exception being a comprehensive experiment we
did to compare a particular type of interval reduction, propor-
tional reduction (the time between monitoring events is reduced
proportionally as the deadline approaches) to the strategy of pe-

riodic monitoring [2].

obstacle �eld. These were the main terms in the

robot's �tness function, in addition the robot was

charged a small amount for every e�ector action it

took, plus a monitoring cost for each time it ac-

tively used a sensor. The �tness was the average

of the robot's performance on ten random yet �xed

start-goal pairs.

The robot had three sensors, one that told it if

it had reached the goal, one that told it if it had

hit an obstacle, and one that could detect an ob-

stacle ahead. The �rst two were mainly provided

so that the robot could complete its task; their val-

ues were automatically updated. The third one, the

\sonar", was a lot more interesting. It had to be ac-

tively queried via a MONITOR command to have it

update its value. To make the sensing task more dif-

�cult (and realistic), a noise term could be added to

the value it returned, simulating sensor noise. The

sonar was the only sensor that could be used to pre-

vent a collision with an obstacle, so it was the one

we hoped would be used in a monitoring strategy.

And indeed, it was. After tuning the genetic algo-

rithm, in particular, adding a scheme that dynam-

ically increased mutation and crossing over rate if

there were long periods during which the best in-

dividual in the population showed no improvement,

once in a while the genetic algorithm would �nd a

monitoring strategy. And because its �tness was

generally higher than the �tness of the other strate-

gies found which scrambled around the obstacle on

their way to the goal, we were led to believe that

the sub-optimal results we got could be avoided by

more careful adjustment of the learning algorithm.

Further experiments to determine good values for

other parameters such as population size led to an

increase in the percentage of times linear LTB would

�nd a monitoring strategy to about 50%. Figure 2

shows the best program the system came up with

for a program size of 20 commands.

Its structure is quite simple: After enabling the

interrupt handlers corresponding to the \reached

goal" and \object distance" sensors and turning it-

self towards the goal with \TURNTOGOAL", the

program goes into an in�nite loop. Within this loop,

it periodically moves 14 times, which corresponds

to 2.8 �eld widths, before monitoring for an obsta-

cle ahead (via \MONITOR: object distance", which

sets the object distance sensor to be the distance to

the obstacle|or zero, if there is none). Since the

\object distance" interrupt handler had been pre-

viously enabled, when an obstacle is detected, this

interrupt handler will be called. In it, the robot

turns right by 22.5 degrees, and then monitors for

the obstacle again. If it is still visible, the inter-

rupt handler will be called recursively, turning the



Main program:
TURNTOGOAL
ENABLE: reached_goal
NOP
NOP
ENABLE: object_distance
LOOP infinitely:
LOOP 7 time(s):
MOVE
MOVE

ENABLE: hit_object
TURNTOGOAL
MONITOR: object_distance

*reached_goal* interrupt handler:
STOP
STOP
NOP
*hit_object* interrupt handler:
WAIT
STOP
NOP
*object_distance* interrupt handler:
TURNRIGHT
MONITOR: object_distance

Figure 2: A monitoring strategy for obstacle avoid-

ance behavior (linear LTB, population 800, 2500

generations).

robot further. This will continue until the obsta-

cle is no longer visible, then the agent will move

forward for 2.8 �elds in its current direction before

turning itself towards the goal again and recheck-

ing for the presence of an obstacle. When the goal

point is reached, the \reached goal" handler will be

invoked, which ends the trial with the \STOP" com-

mand. Although the \hit object" handler is enabled,

it never gets called. Figure 3 shows the path of the

robot for two of the start-goal pairs. The changes in

direction away from the obstacle denote the points

where monitoring took place.

Surprisingly, the version of LTB which used the

tree representation only found a monitoring strategy

on about 30% of the runs of the genetic algorithm.

So the more exible representation seemed to actu-

ally be hurting performance. It would be nice to

see a comprehensive comparison between these two

forms of representation in the future.

In our attempt to apply LTB to a greater range of

monitoring tasks, we added a number of constructs

to the basic command set, including an explicit IF-

construct (previously, all conditional actions had

to be handled via interrupt handlers), COMPARE-

construct, several new sensors with corresponding

handlers, and a SHOOT command, which destroyed

the �rst obstacle within a certain distance in front of

the robot. To balance its power, using SHOOT was

made fairly expensive. The motivation for SHOOT

Figure 3: An execution trace generated by the pro-

gram in �gure 2 for two of the ten start-goal pairs.

Hollow circles denote starting �elds, full circles goal

�elds.

was the following: In previous avoidance tasks, a

lot of e�ort not only went into detecting an obsta-

cle, but also �nding a good strategy to circumvent it

once it had been detected. We hoped to make things

easier for the robot by introducing the SHOOT com-

mand, since we were mainly interested in monitor-

ing anyway. A robot could now destroy a detected

obstacle immediately, without the need for a fancy

avoidance behavior. Figure 4 shows the best output

of tree LTB (over 10 separate runs of the system)

for the same obstacle avoidance task.

Instead of using its object distance sensor, the

program uses SHOOT to clear a path through the

obstacle. The \hit object" handler is called the �rst

time the robot encounters the obstacle. In it, \not

equal" will be true, and SHOOT will be executed

a total of four times. Since SHOOT was so expen-

sive, the program minimizes its usage by approach-

ing the obstacle orthogonally, and only later turning

completely towards the goal. While this solution is

certainly ingenious, it is be no means the best. Us-

ing monitoring would have resulted in a higher �t-

ness. The obvious �rst thought was that SHOOT

was somehow distorting the solution. But removing

it didn't help: the robot now simply stopped when

it hit the obstacle, and made no attempt to even

scramble around it.

One such case of di�culty in �nding a monitor-

ing strategy might be explicable with a poorly de-

signed simulator, �tness function, or genetic algo-

rithm. But we experienced the same di�culties

on the wide range of problems and environments

we had selected for the strategy taxonomy experi-



Main program:
LOOP 24 time(s):
MOVE
ENABLE: hit_object
MOVE
MOVE

COMPARE 47 to (terrain_type)
LOOP 21 time(s):
TURNTOGOAL
ENABLE: goal_direction
MOVE
MOVE
LOOP 565 time(s):
MOVE

TURNTOGOAL
MOVE
IF <smaller>
TURNTOGOAL
ENABLE: goal_direction

ELSE
SHOOT
MOVE

MONITOR: goal_direction
*robot_direction* interrupt handler:
MOVE
SHOOT

*robot_speed* interrupt handler:
MONITOR: terrain_type

*reached_goal* interrupt handler:
COMPARE 132 to (object_distance)

*goal_direction* interrupt handler:
EXIT

*hit_object* interrupt handler:
SHOOT
SHOOT
SHOOT
IF <not equal>
SHOOT

ELSE
MOVE
MOVE
MOVE

SHOOT
*object_distance* interrupt handler:
ENABLE: object_distance

*terrain_type* interrupt handler:
ENABLE: robot_speed

*obstacle_density* interrupt handler:
TURNLEFT

Figure 4: The best found strategy for obstacle avoid-

ance with added language constructs and interrupt

handlers (tree LTB, population 800, generations

643).

ment (avoidance of uniformly distributed obstacles,

gradient distributed obstacles, exploration tasks un-

der two di�erent agent architectures, monitoring for

\predictor" events, etc.). The fact that the very

same task that had been solved fairly easily before

(�gure 2) now seemed intractable, spoke for itself.

The algorithm's di�culties had to have something

to do with increased number of program constructs

and interrupt handlers.

We had realized that adding constructs would in-

crease the size of the search space, but this did not

originally worry us. The search space size had in-

creased, but hadn't also the number of \good" so-

lutions? Apparently, the former grows a lot faster

than the latter. If this phenomenon applies only

to monitoring strategies, things wouldn't be so bad.

But this seems implausible: For most reasonably

complex tasks, the set of optimal solutions should

be comprised of only a small number of distinct

strategies. There might be many variations on a

theme, but the number of basic, generalized, strate-

gies should stay small. Any particular strategy will

use a certain number of sensor values, and a certain

con�guration of program constructs. If this is the

case, adding new sensors or constructs will decrease

the size of the set of good solutions considerably,

and we think that is exactly the explanation for the

problems we had.

Even LMOUSE, which was designed in such a way

that every strategy it came up with was a moni-

toring strategy, needed a lot of tweaking before it

came up with a strategy that made any kind of

sense. As is typical with genetic programming, the

system would exploit some (unintended) property

of the simulator to achieve a fairly decent result.

A followup experiment showed why LMOUSE was

having so much trouble: we implemented a search

that sampled 500000 random programs before ter-

minating. Of these 500000, the best one found was

one that did nothing|it terminated the trial imme-

diately. It seems that useful monitoring strategies

are also very rare in the search space of this system,

and it is impressive that LMOUSE could �nd one

at all.

It could be objected that we cannot expect a ge-

netic algorithm to do well in search spaces where

good or desired solutions are so sparse. This is cer-

tainly correct, and by no means the fault of the

algorithm|it is doubtful that any other weak search

method would do any better. But this is not the is-

sue. The issue is that we will need expressive behav-

ior languages to be able to solve more complex prob-

lems. We will not necessarily know how to constrain

the command and sensor sets a priori. If the above

argument holds, these languages might cause very

sparse search spaces to become a lot more frequent,

and methods must be found make them tractable.

IV. Can Genetic Programming Scale Up?

The work we have presented is work in progress.

We were side-tracked from our goal of a monitoring

strategy taxonomy into explaining why our systems



had so much trouble discovering monitoring strate-

gies. We plan to continue our investigation of this

area, and establish a quantative measure of the re-

lationship between search space size and a genetic

programming systems' performance, at least for the

task at hand.

What happens though if we or others discover

search space size is linked inversely to solution den-

sity, which in turn decreases performance? Can

a genetic algorithm of any avor be used to cope

with the type of search spaces we were forced to

deal with? Can genetic programming techniques

be scaled up to languages that contain hundreds

of commands and variety of complex control con-

structs? As is known from theoretical work on ge-

netic algorithms (e.g. [13]), as the complexity of the

encoding language increases, larger populations are

required to get the same allele coverage. But in-

creasing the population size to incorporate a pro-

portion of the very rare solutions will only work

up to a point. Today's fastest machines often take

days or weeks to solve problems of any consequence,

and even parallel architectures will not let popula-

tions increase inde�nitely. Amplifying the problem

is that the �tness for many genetic programming ap-

plications is determined through simulation, a very

time-consuming activity. Manually having to adapt

a general purpose language to the speci�c task that

needs to be solved isn't a satisfying solution, either.

A promising way out of this dilemma might be

modularization. Some fairly recent work [11] focuses

on ways of having genetic programming algorithms

�nd potentially useful sub-behaviors and then build-

ing more complex behaviors from them. In e�ect,

this would reduce the size of the search space by

reducing the number of command combinations; in-

stead of combining basic e�ector actions, the algo-

rithm is working with pre-formed behavior modules.

It also makes the output of the algorithm a lot eas-

ier to understand. Another possibility might be to

insert already proven strategies into the initial pop-

ulation [12].

While it is certainly too early to draw too many

far-reaching conclusions, the nature of search spaces

is certainly something worth keeping an eye on, or

others might be as unpleasantly surprised as we

were. Genetic programming seems to be a very pow-

erful technique, but if it is to have as much impact

as its proponents hope it will, it will have to face

the problem of scaling up sooner or later.
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